Machine-checked correctness and complexity
of a Union-Find implementation

Arthur Charguéraud Francois Pottier

December 16, 2015

1/1

Message

Let's begin with a demo...

Proving correctness and termination is not enough!

Verification methodology

We extend the CFML logic and tool with time credits.

This allows reasoning about the correctness and (amortized) complexity
of realistic (imperative, higher-order) OCaml programs.

3/1

Separation Logic

Heap predicates:
H : Heap — Prop

Usually, Heap is loc — value. The basic predicates are:

[] = M.h=yg

[P] = M.h=g AP

Hl*HQ = M. thhg. hlJ_hQ/\h:hlk‘!')hQ/\thl /\thg
dz. H = Mh. dz. Hh

[—wv = M. h= (v

4/1

Separation Logic with time credits

We wish to introduce a new heap predicate:

$n : Heap — Prop where n € N

Intended properties:

$(n+n') =$%n » $n° and $0 = []
Intended use:

A time credit is a permission to perform “one step” of computation.

Connecting computation and time credits

Idea:
» Make sure that every function call consumes one time credit.

» Provide no way of creating a time credit.

Thus,

(total number of function calls) < (initial number of credits)

6/1

Ensuring that every call consumes one credit

The CFML tool inserts a call to pay() at the beginning of every function.

let rec find x =

pay();
match !x with
| Root _ -> x

| Link y -> let z = find y in x := Link z; z

The function pay is fictitious. It is axiomatized:

Apppay () (81) (A_.[])

This says that pay() consumes one credit.

7/1

Contributions

» The first machine-checked complexity analysis of Union-Find.
» Not just at an abstract level, but based on the OCaml code.

» Modular. We establish a specification for clients to rely on.

8/1

The Union-Find data structure: OCaml interface

type elem
val make

[/“TJ? [T
@ Qe
g 0O O

: unit -> elem
val find :
val union :

elem -> elem
elem -> elem -> elem

9/1

The Union-Find data structure: OCaml implementation

Pointer-based, with path compression and union by rank:

type rank = int
type elem = content ref
and content =

| Link of elem

| Root of rank

let make () = ref (Root 0)

let rec find x =
match !'x with

| Root _ -> x

| Link y ->
let z = find y in
x := Link z;
z

let link x y =
if x == y then x else
match !x, !y with
| Root rx, Root ry ->

if rx < ry then begin

x := Link y;
¥
end else if rx > ry then begin
y := Link x;
X
end else begin
y := Link x;
x := Root (rx+1);
X
end

-> assert false

let union x y = link (find x) (find y)

10/1

Complexity analysis

Tarjan, 1975: the amortized cost of union and find is O(a(N)).
» where N is a fixed (pre-agreed) bound on the number of elements.
Streamlined proof in Introduction to Algorithms, 3rd ed. (1999).

A()(.%‘) =x+1

Ay () = Aﬁf*”(x)
= Ap(Ag(...Ax(x)...)) (2 + 1 times)
a(n) = min{k | Ax(1) > n}

Quasi-constant cost: for all practical purposes, a(n) < 5.

1/1

Specification of find

Theorem find_spec : VYNDR x, x €D —
App find x
(UF N D R «$(alpha N + 2))
(funr =UFNDR »\[r =R x]).

The abstract predicate UF N D R is the invariant.
It asserts that the data structure is well-formed and that we own it.

» D is the set of all elements, i.e., the domain.
» N is a bound on the cardinality of the domain.

» R maps each element of D to its representative.

12/1

Specification of union

Theorem union_spec : VNDRxy,x €D -y eD —
App union x y
(UF N D R x$(3«(alpha N)+6))
(fun z =
UFND (funw=If Rw=Rx VRw =Ry then z else Rw)
*x[z=Rzx vz =Ry]).

The amortized cost of union is 3a(N) + 6.

13/1

Definition of ®, on paper

p(z) = parent of x if 2 is not a root

k(z) = max{k| K(p(z)) = Ax(K(x))} (the level of z)

i(2) = max{i| K(p(x)) > A, (K(x))} (the index of x)

¢(z) =a(N) - K(x) if 2 is a root or has rank 0
o(z) = ((N) — k(x)) - K(z) —i(x) otherwise

O = Y,epola)

For some intuition, see Seidel and Sharir (2005).

14/1

http://dx.doi.org/10.1137/S0097539703439088

Definition of @, in Coq

Definitionp F x :=

epsilon (funy =F x y).
Definitionk F K x :=

Max (fun k =K (p F x) > A k (K x)).
Definition i FKx :=

Max (fun i =K (pF x) > iter i (A (k F K x)) (X x)).

Definition phi FK N x :
If (is_root F x) v(K x = 0)
then (alpha N) * (K x)
else (alpha N — k FK x) x (K x) — (i FK x).
Definition Pni DFK N :=
Sum D (phi F K N).

15/1

Machine-checked amortized complexity analysis

Proving that the invariant is preserved naturally leads to this goal:

® + advertised cost > ®' + actual cost

For instance, in the case of £ind, we must prove:
Phi DF KN 4 (alpha N+ 2) > Phi DF' KN + (d + 1)
where:
» F is the graph before the execution of find x,
» F’ is the graph after the execution of find x,

» d is the length of the path in F from x to its root.

16/1

Summary

» A machine-checked proof of correctness and complexity.
» Down to the level of the OCaml code.

v

3000 loc of high-level mathematical analysis.

v

400 loc of specification and low-level verification.
» Future work: write O(a(n)) instead of 3a(n) + 6.

http://gallium. inria.fr/"fpottier/dev/uf/

17/1

http://gallium.inria.fr/~fpottier/dev/uf/

