
Machine-checked correctness and complexity

of a Union-Find implementation

Arthur Charguéraud François Pottier

December 16, 2015

1 / 1

Message

Let’s begin with a demo...

Proving correctness and termination is not enough!

2 / 1

Verification methodology

We extend the CFML logic and tool with time credits.

This allows reasoning about the correctness and (amortized) complexity
of realistic (imperative, higher-order) OCaml programs.

3 / 1

Separation Logic

Heap predicates:
𝐻 : HeapÑ Prop

Usually, Heap is loc ÞÑ value. The basic predicates are:

r s ” 𝜆ℎ. ℎ “ H

r𝑃 s ” 𝜆ℎ. ℎ “ H ^ 𝑃

𝐻1 ‹𝐻2 ” 𝜆ℎ. Dℎ1ℎ2. ℎ1 K ℎ2 ^ ℎ “ ℎ1 Z ℎ2 ^ 𝐻1 ℎ1 ^ 𝐻2 ℎ2
DD𝑥.𝐻 ” 𝜆ℎ. D𝑥. 𝐻 ℎ

𝑙 ãÑ 𝑣 ” 𝜆ℎ. ℎ “ p𝑙 ÞÑ 𝑣q

4 / 1

Separation Logic with time credits

We wish to introduce a new heap predicate:

$𝑛 : HeapÑ Prop where 𝑛 P N

Intended properties:

$p𝑛` 𝑛1q “ $𝑛 ‹ $𝑛1 and $ 0 “ r s

Intended use:

A time credit is a permission to perform “one step” of computation.

5 / 1

Connecting computation and time credits

Idea:

§ Make sure that every function call consumes one time credit.

§ Provide no way of creating a time credit.

Thus,

(total number of function calls) ď (initial number of credits)

6 / 1

Ensuring that every call consumes one credit

The CFML tool inserts a call to pay() at the beginning of every function.

let rec find x =

pay();

match !x with

| Root _ -> x

| Link y -> let z = find y in x := Link z; z

The function pay is fictitious. It is axiomatized:

App pay pq p$ 1q p𝜆_. r sq

This says that pay() consumes one credit.

7 / 1

Contributions

§ The first machine-checked complexity analysis of Union-Find.

§ Not just at an abstract level, but based on the OCaml code.

§ Modular. We establish a specification for clients to rely on.

8 / 1

The Union-Find data structure: OCaml interface

type elem

val make : unit -> elem

val find : elem -> elem

val union : elem -> elem -> elem

9 / 1

The Union-Find data structure: OCaml implementation

Pointer-based, with path compression and union by rank:

type rank = int

type elem = content ref

and content =

| Link of elem

| Root of rank

let make () = ref (Root 0)

let rec find x =

match !x with

| Root _ -> x

| Link y ->

let z = find y in

x := Link z;

z

let link x y =

if x == y then x else

match !x, !y with

| Root rx, Root ry ->

if rx < ry then begin

x := Link y;

y

end else if rx > ry then begin

y := Link x;

x

end else begin

y := Link x;

x := Root (rx+1);

x

end

| _, _ -> assert false

let union x y = link (find x) (find y)

10 / 1

Complexity analysis

Tarjan, 1975: the amortized cost of union and find is 𝑂p𝛼p𝑁qq.

§ where 𝑁 is a fixed (pre-agreed) bound on the number of elements.

Streamlined proof in Introduction to Algorithms, 3rd ed. (1999).

𝐴0p𝑥q “ 𝑥` 1

𝐴𝑘`1p𝑥q “ 𝐴
p𝑥`1q
𝑘 p𝑥q

“ 𝐴𝑘p𝐴𝑘p...𝐴𝑘p𝑥q...qq (𝑥` 1 times)
𝛼p𝑛q “ mint𝑘 |𝐴𝑘p1q ě 𝑛u

Quasi-constant cost: for all practical purposes, 𝛼p𝑛q ď 5.

11 / 1

Specification of find

Theorem find_spec : @N D R x, x P D Ñ
App find x

(UF N D R ‹ $(alpha N + 2))
(fun r ñ UF N D R ‹ \[r = R x]).

The abstract predicate UF𝑁 𝐷𝑅 is the invariant.
It asserts that the data structure is well-formed and that we own it.

§ 𝐷 is the set of all elements, i.e., the domain.

§ 𝑁 is a bound on the cardinality of the domain.

§ 𝑅 maps each element of 𝐷 to its representative.

12 / 1

Specification of union

Theorem union_spec : @N D R x y, x P D Ñ y P D Ñ

App union x y

(UF N D R ‹ $(3*(alpha N)+6))
(fun z ñ

UF N D (fun w ñ If R w = R x _R w = R y then z else R w)
‹ [z = R x _z = R y]).

The amortized cost of union is 3𝛼p𝑁q ` 6.

13 / 1

Definition of Φ, on paper

𝑝p𝑥q “ parent of 𝑥 if 𝑥 is not a root

𝑘p𝑥q “ maxt𝑘 |𝐾p𝑝p𝑥qq ě 𝐴𝑘p𝐾p𝑥qqu (the level of 𝑥)

𝑖p𝑥q “ maxt𝑖 |𝐾p𝑝p𝑥qq ě 𝐴
p𝑖q
𝑘p𝑥qp𝐾p𝑥qqu (the index of 𝑥)

𝜑p𝑥q “ 𝛼p𝑁q ¨𝐾p𝑥q if 𝑥 is a root or has rank 0

𝜑p𝑥q “ p𝛼p𝑁q ´ 𝑘p𝑥qq ¨𝐾p𝑥q ´ 𝑖p𝑥q otherwise

Φ “
ř

𝑥P𝐷 𝜑p𝑥q

For some intuition, see Seidel and Sharir (2005).

14 / 1

http://dx.doi.org/10.1137/S0097539703439088

Definition of Φ, in Coq

Definition p F x :=
epsilon (fun y ñ F x y).

Definition k F K x :=
Max (fun k ñ K (p F x) ě A k (K x)).

Definition i F K x :=
Max (fun i ñ K (p F x) ě iter i (A (k F K x)) (K x)).

Definition phi F K N x :=
If (is_root F x) _(K x = 0)
then (alpha N) * (K x)
else (alpha N ´ k F K x) * (K x) ´ (i F K x).

Definition Phi D F K N :=
Sum D (phi F K N).

15 / 1

Machine-checked amortized complexity analysis

Proving that the invariant is preserved naturally leads to this goal:

Φ` advertised cost ě Φ1 ` actual cost

For instance, in the case of find, we must prove:

Phi D F K N + (alpha N + 2) ě Phi D F’ K N + (d + 1)

where:

§ F is the graph before the execution of find x,

§ F’ is the graph after the execution of find x,

§ d is the length of the path in F from x to its root.

16 / 1

Summary

§ A machine-checked proof of correctness and complexity.

§ Down to the level of the OCaml code.

§ 3000 loc of high-level mathematical analysis.

§ 400 loc of specification and low-level verification.

§ Future work: write 𝑂p𝛼p𝑛qq instead of 3𝛼p𝑛q ` 6.

http://gallium.inria.fr/~fpottier/dev/uf/

17 / 1

http://gallium.inria.fr/~fpottier/dev/uf/

