
Reasoning about Object Capa-
bilities with Logical Relations
and Effect Parametricity
(EuroS&P 2016, Saarbrücken)

Dominique Devriese1, Frank Piessens1, Lars Birkedal2

1 iMinds-DistriNet, KU Leuven,
2 Aarhus University

December 2015



Outline 2/15

Object capabilities

Reasoning about Object Capabilities

Encapsulation, shared data, authority

Reasoning about Primitive I/O

Conclusion

Reasoning about Object Capabilities



Object capabilities 3/15

Example: browser ad sandboxing:

rnode
def
= func(node, d){· · · }

initWebPage
def
= func(document , ad)

let (adNode = document .addChild(“ad_div”))

let (rAdNode = rnode(adNode, 0))

ad .initialize(rAdNode)



Reasoning about Object Capabilities



Object capabilities 4/15

Fine-grained privilege separation.
Control authority of arbitrary, untrusted, untyped code.

Just restrict what it has access to.
Low tech, low overhead.

No types/...
Standard OO techniques/patterns.

High-level OO languages or low-level assembly
Applications:

sandboxing
fault isolation
auditability
etc.

Reasoning about Object Capabilities



Object capabilities 5/15

A capability-safe language:
Private state encapsulation.
Primitive I/O through non-public objects (like document).
No global mutable state.

Examples:
E, Joe-E, Emily, Newspeak etc.
JavaScript 5 (strict mode, after proper initialisation)?

Reasoning about Object Capabilities



Reasoning about capability-safe languages? 6/15

rnode
def
= func(node, d){· · · }

initWebPage
def
= func(document , ad)

let (adNode = document .addChild(“ad_div”))

let (rAdNode = rnode(adNode, 0))

ad .initialize(rAdNode)


Are we 100% sure?

What does the language guarantee precisely? Is it really
capability-safe? What does that mean?
What to ensure precisely?
What can we rely on precisely?

Reasoning about Object Capabilities



Reasoning about capability-safe languages? 7/15

OCap community:

Reference graph
“No Authority Amplification”
“Only Connectivity Begets Connectivity”

Problem:
Syntactic bound on authority.
Ignores behavior.
Necessary, but not sufficient!

Reasoning about Object Capabilities



Reasoning about capability-safe languages? 8/15

What’s the alternative?

Security Researcher

...privilege separation...
...capability-safety...

...security applications...

But how to reason?

Programming Languages Researcher

...logical relations...
...Kripke worlds...

...modular reasoning...

But applications?

Reasoning about Object Capabilities



Reasoning about capability-safe languages? 8/15

What’s the alternative?

Security Researcher

...privilege separation...
...capability-safety...

...security applications...

But how to reason?

Programming Languages Researcher

...logical relations...
...Kripke worlds...

...modular reasoning...

But applications?

Reasoning about Object Capabilities



Reasoning about capability-safe languages 9/15

Our approach:

Untyped
higher-order
language

Private
state en-
capsulation

Primitive I/O
encapsulation

Step-
indexed
logical re-
lations

Recursive
Kripke
worlds

OCap ingredients
PL Reasoning Techniques

Reasoning about Object Capabilities



Reasoning about capability-safe languages 9/15

Our approach:

Untyped
higher-order
language

Private
state en-
capsulation

Primitive I/O
encapsulation

Step-
indexed
logical re-
lations

Recursive
Kripke
worlds Pub/priv

transitions
for authority

OCap ingredients
PL Reasoning Techniques

Reasoning about Object Capabilities



Reasoning about capability-safe languages 9/15

Our approach:

Untyped
higher-order
language

Private
state en-
capsulation

Primitive I/O
encapsulation

Step-
indexed
logical re-
lations

Recursive
Kripke
worlds Pub/priv

transitions
for authority

OCap ingredients
PL Reasoning Techniques

?

Reasoning about Object Capabilities



Reasoning about capability-safe languages 9/15

Our approach:

Untyped
higher-order
language

Private
state en-
capsulation

Primitive I/O
encapsulation

Step-
indexed
logical re-
lations

Recursive
Kripke
worlds Pub/priv

transitions
for authority

OCap ingredients
PL Reasoning Techniques

Effect
Parametricity

Reasoning about Object Capabilities



Encapsulation of private state 10/15

Register state machine to govern fresh data structure.

ticketDispenser
def
= func(attacker)

let(o = ref 0)

let (dispTkt = func(){
let (v = deref o){o := v + 2; v}})

attacker(dispTkt);

deref o



0start

2

4

6

· · ·

Reasoning about Object Capabilities



Limited authority over shared data 11/15

Public transitions: accessible under current authority.
Private transitions: potentially accessible by others.

rnode
def
= func(node, d){· · · }

initWebPage
def
= func(document , ad)

let (adNode = document .addChild(“ad_div”))

let (rAdNode = rnode(adNode, 0))

ad .initialize(rAdNode)



Reasoning about Object Capabilities



Primitive I/O 12/15

Effect interpretation: custom property about primitive effects
ρ ∈ P(Cap)

µ ∈ P(Val)→ P(Expr)
+ admissibility conditions...

Effect parametricity.

Theorem (Fundamental Theorem for λJS )

If Γ,Σ ` e then for a valid effect interpretation (µ, ρ) and for all n, γ
and w with (n,w) ∈ JΣKµ,ρ and (n, γ) ∈ JΓKµ,ρ w, we have that
(n, γ(e)) must be in E [µ JSValµ,ρ] w.

Reasoning about Object Capabilities



Conclusion 13/15

Capability Safety is:
Private state encapsulation.
Absence of global state.
Primitive I/O encapsulation.

Modular reasoning in cap-safe language:
Reference graph dynamics is not enough
Logical relations to the rescue.

Some novel features:
Authority over shared data using public/private transitions.
Effect parametricity.

(Not shown: relational version)

Reasoning about Object Capabilities



Future work 14/15

Build effect interpretations into Kripke worlds?
A program logic?
Apply to full JavaScript?

Reasoning about Object Capabilities



Backup slide: formal details 1/3

Worlds:

IslandName
def
= N

W
def
= {w ∈ IslandName ↪→ Island | dom(w) finite}

Island
def
=


ι = (s, φ, φpub, H) | s ∈ State ∧ φ ⊆ State2∧

H ∈ State→ StorePred ∧ φpub ⊆ φ ∧
φ, φpub reflexive and transitive


StorePred

def
= {ψ ∈ Ŵ →mon,ne UPred(Store)}

roll :
1

2
·W ∼= Ŵ

Reasoning about Object Capabilities



Backup slides: formal details 2/3

Effect interpretations:

ρ : W →mon,ne UPred(Loc)

µ : (W →mon,ne UPred(Val))→ne (W →ne Pred(Cmd)).

JSValµ,ρ predicate:

JSValµ,ρ : W →mon,ne UPred(Val)

JSValµ,ρ
def
= Cnst ∪ ρ ∪ {JSValµ,ρ} ∪ ([JSValµ,ρ]→ µ JSValµ,ρ)

Reasoning about Object Capabilities



Backup slides: formal details 3/3

Admissibility conditions for effect interpretation:
A-Pure: If (n, v) ∈ P w then (n, v) ∈ µ P w

A-Bind: If (n, cmd) ∈ µ P w and (n′, E〈v〉) ∈ E [µ P ′] w′ for all
n′ ≤ n, w′ w w and (n′, v) ∈ P w′, then (n,E〈cmd〉) ∈ E [µ P ′] w.
A-Assign: If (n, v1) ∈ JSValµ,ρ w and (n, v2) ∈ JSValµ,ρ w,
then (n, v1 = v2) ∈ µ JSValµ,ρ w.
A-Deref: If (n, v) ∈ JSValµ,ρ w, (n, deref v) must be in
µ JSValµ,ρ w.
A-Ref: If (n, v) ∈ JSValµ,ρ w, then (n, ref v) ∈ µ JSValµ,ρ w.

Reasoning about Object Capabilities


	Object capabilities
	Reasoning about Object Capabilities
	Encapsulation, shared data, authority
	Reasoning about Primitive I/O
	Conclusion
	Appendix

