KU LEUVEN

Reasoning about Object Capabilities with Logical Relations and Effect Parametricity (EuroS&P 2016, Saarbrücken)

Dominique Devriese¹, Frank Piessens¹, Lars Birkedal²

¹ iMinds-DistriNet, KU Leuven,

² Aarhus University

December 2015

Object capabilities

Reasoning about Object Capabilities

Encapsulation, shared data, authority

Reasoning about Primitive I/O

Conclusion

KU LEUVEN

Example: browser ad sandboxing:

 $\begin{aligned} rnode &\stackrel{\text{def}}{=} \texttt{func}(node, d) \{ \cdots \} \\ initWebPage &\stackrel{\text{def}}{=} \texttt{func}(document, ad) \\ & \left\{ \begin{array}{l} \texttt{let} (adNode = document.addChild(``ad_div'')) \\ \texttt{let} (rAdNode = rnode(adNode, 0)) \\ ad.initialize(rAdNode) \end{array} \right\} \end{aligned}$

KULEU

- Fine-grained privilege separation.
- Control authority of arbitrary, untrusted, untyped code.
 - Just restrict what it has access to.
- Low tech, low overhead.
 - No types/...
 - Standard OO techniques/patterns.
- High-level OO languages or low-level assembly
- Applications:
 - sandboxing
 - fault isolation
 - auditability
 - etc.

A capability-safe language:

- Private state encapsulation.
- Primitive I/O through non-public objects (like *document*).
- No global mutable state.

Examples:

- E, Joe-E, Emily, Newspeak etc.
- JavaScript 5 (strict mode, after proper initialisation)?

KU LEUVEN

```
\begin{aligned} rnode &\stackrel{\text{def}}{=} \texttt{func}(node, d) \{ \cdots \} \\ initWebPage &\stackrel{\text{def}}{=} \texttt{func}(document, ad) \\ & \left\{ \begin{array}{l} \texttt{let} (adNode = document.addChild(``ad\_div'')) \\ \texttt{let} (rAdNode = rnode(adNode, 0)) \\ ad.initialize(rAdNode) \end{array} \right\} \end{aligned}
```

Are we 100% sure?

- What does the language guarantee precisely? Is it really capability-safe? What does that mean?
- What to ensure precisely?
- What can we rely on precisely?

OCap community:

- Reference graph
- "No Authority Amplification"
- "Only Connectivity Begets Connectivity"

Problem:

- Syntactic bound on authority.
- Ignores behavior.
- Necessary, but not sufficient!

What's the alternative?

KU LEUVEN

What's the alternative?

...logical relations... ...Kripke worlds... ...modular reasoning...

But applications?

Programming Languages Researcher

...privilege separation... ...capability-safety... ...security applications...

But how to reason?

Security Researcher

KU LEUVEN

9/15

KU LEUVEN

9/15

KU LEUVEN

9/15

KU LEUVEN

9/15

Register state machine to govern fresh data structure.

```
ticketDispenser \stackrel{\text{def}}{=} \texttt{func}(attacker)
\left\{ \begin{array}{l} \texttt{let}(o = \texttt{ref } 0) \\ \texttt{let}(dispTkt = \texttt{func}()\{ \\ \texttt{let}(v = \texttt{deref } o)\{o := v + 2; v\}\}) \\ attacker(dispTkt); \\ \texttt{deref } o \end{array} \right\}
```


KU LEUVEN

Public transitions: accessible under current authority. Private transitions: potentially accessible by others.

 $\begin{aligned} rnode &\stackrel{\text{def}}{=} \texttt{func}(node, d) \{ \cdots \} \\ initWebPage &\stackrel{\text{def}}{=} \texttt{func}(document, ad) \\ & \left\{ \begin{array}{l} \texttt{let} (adNode = document.addChild(``ad_div")) \\ \texttt{let} (rAdNode = rnode(adNode, 0)) \\ ad.initialize(rAdNode) \end{array} \right\} \end{aligned}$

KU LEUVEN

KULEL

Effect interpretation: custom property about primitive effects $\begin{array}{l} \rho \in \mathcal{P}(Cap) \\ \mu \in \mathcal{P}(Val) \rightarrow \mathcal{P}(Expr) \end{array} + \text{admissibility conditions...} \end{array}$

Effect parametricity.

Theorem (Fundamental Theorem for $\lambda_{JS})$

If $\Gamma, \Sigma \vdash e$ then for a valid effect interpretation (μ, ρ) and for all n, γ and w with $(n, w) \in \llbracket \Sigma \rrbracket_{\mu,\rho}$ and $(n, \gamma) \in \llbracket \Gamma \rrbracket_{\mu,\rho} w$, we have that $(n, \gamma(e))$ must be in $\mathcal{E}[\mu \text{ JSVal}_{\mu,\rho}] w$.

- Capability Safety is:
 - Private state encapsulation.
 - Absence of global state.
 - Primitive I/O encapsulation.
- Modular reasoning in cap-safe language:
 - Reference graph dynamics is not enough
 - Logical relations to the rescue.
- Some novel features:
 - Authority over shared data using public/private transitions.
 - Effect parametricity.
- (Not shown: relational version)

KU LEUVEN

- Build effect interpretations into Kripke worlds?
- A program logic?
- Apply to full JavaScript?

KULE

Worlds:

$$\begin{split} & \text{IslandName} \stackrel{\text{def}}{=} \mathbb{N} \\ & W \stackrel{\text{def}}{=} \{ w \in \text{IslandName} \hookrightarrow \text{Island} \mid \text{dom}(w) \text{ finite} \} \\ & \text{Island} \stackrel{\text{def}}{=} \left\{ \begin{array}{l} \iota = (s, \phi, \phi^{\text{pub}}, H) \mid s \in \text{State} \land \phi \subseteq \text{State}^2 \land \\ & H \in \text{State} \to \text{StorePred} \land \phi^{\text{pub}} \subseteq \phi \land \\ & \phi, \phi^{\text{pub}} \text{ reflexive and transitive} \end{array} \right\} \\ & \text{StorePred} \stackrel{\text{def}}{=} \{ \psi \in \hat{W} \to_{mon,ne} UPred(\text{Store}) \} \\ & roll : \frac{1}{2} \cdot W \cong \hat{W} \end{split}$$

Effect interpretations:

$$\rho: W \to_{mon,ne} UPred(Loc)$$

$$\mu: (W \to_{mon,ne} UPred(Val)) \to_{ne} (W \to_{ne} Pred(Cmd)).$$

JSVal_{μ,ρ} predicate:

$$\begin{split} \mathsf{JSVal}_{\mu,\rho} &: W \to_{mon,ne} UPred(Val) \\ \mathsf{JSVal}_{\mu,\rho} \stackrel{\text{def}}{=} Cnst \cup \rho \cup \{\mathsf{JSVal}_{\mu,\rho}\} \cup ([\mathsf{JSVal}_{\mu,\rho}] \to \mu \; \mathsf{JSVal}_{\mu,\rho}) \end{split}$$

KU LEUVEN

Admissibility conditions for effect interpretation:

- A-Pure: If $(n,v) \in P \ w$ then $(n,v) \in \mu \ P \ w$
- A-BIND: If $(n, cmd) \in \mu P w$ and $(n', E\langle v \rangle) \in \mathcal{E}[\mu P'] w'$ for all $n' \leq n, w' \sqsupseteq w$ and $(n', v) \in P w'$, then $(n, E\langle cmd \rangle) \in \mathcal{E}[\mu P'] w$.
- A-ASSIGN: If $(n, v_1) \in JSVal_{\mu,\rho} w$ and $(n, v_2) \in JSVal_{\mu,\rho} w$, then $(n, v_1 = v_2) \in \mu JSVal_{\mu,\rho} w$.
- A-DEREF: If $(n, v) \in JSVal_{\mu,\rho} w$, (n, deref v) must be in $\mu JSVal_{\mu,\rho} w$.
- A-REF: If $(n, v) \in \mathsf{JSVal}_{\mu, \rho} w$, then $(n, \mathsf{ref} v) \in \mu \mathsf{JSVal}_{\mu, \rho} w$.

KULEU

3/3