
Computer Science at Kent

Implementation and Application
of Functional Languages
19th International Symposium, IFL 2007

Olaf Chitil (Ed.)

Freiburg, Germany, 27th-29th September 2007

Technical Report No. 12-07
September 2007

Published by the Computing Laboratory,
University of Kent, Canterbury, Kent, CT2 7NF, UK

Preface

The 19th International Symposium on Implementation and Application of Functional
Languages (IFL 2007) is held at Freiburg, Germany, on the 27th to the 29th Septem-
ber 2007. Local organiser is the Programming Languages Group of the Department of
Computer Science of the University of Freiburg.

IFL brings together researchers active in the area of functional programming, with an
emphasis on the implementation and application of the same. IFL provides an annual
open forum for researchers who wish to present and discuss new ideas and concepts,
work in progress, preliminary results, etc. IFL has been held throughout Europe in the
Netherlands, United Kingdom, Germany, Sweden, Spain, Ireland and Hungary. This
year for the first time IFL is co-located with the International Conference on Functional
Programming (ICFP). A record number of 44 papers have been submitted for these draft
proceedings. By the time of printing 73 researchers had registered for attendance at the
symposium.

Following tradition, two proceedings are to be published: the draft proceedings used
at the symposium (this document), released as a technical report of the Computing
Laboratory of the University of Kent, and the post-symposium proceedings based on
revised papers. The draft proceedings are un-refereed and provide a useful reference to
the delegates at the symposium. All participants who give talks at the symposium are
invited to submit revised papers for review after the symposium, to normal conference
standards. The post-symposium proceedings of selected revised papers will be published
by Springer-Verlag in its Lecture Notes in Computer Science (LNCS) series.

Olaf Chitil
Programme Chair
University of Kent
September 2007

Local Organisers

Markus Degen
Peter Thiemann
Stefan Wehr

Supported by Deutsche Forschungsgemeinschaft (DFG)

Table of Contents

Termination and Complexity Bounds for SAFE programs . 8
Salvador Lucas, Ricardo Peña

Graph Parser Combinators . 24
Steffen Mazanek, Mark Minas

Encoding Iterators in Interaction Nets . 40
José Almeida, Ian Mackie, Jorge Sousa Pinto, Miguel Vilaça

Testing Erlang Refactorings with QuickCheck . 55
Huiqing Li, Simon Thompson

Call Graphs, Dominator Trees, and Lambda Lifting. .71
Marco T. Morazan, Ulrik Schultz

To Be or Not to Be . . . Lazy . 89
Mercedes Hidalgo-Herrero, Yolanda Ortega-Mallén

The Structure of the Essential Haskell Compiler, or Coping with Compiler Complexity
. 107

Atze Dijkstra, Jeroen Fokker, Doaitse Swierstra

XHaskell — Adding Regular Expression Types to Haskell .123
Martin Sulzmann, Kenny Zhuo Ming Lu

Evaluating and Using a Grid-Enabled Parallel Haskell . 139
Phil Trinder, Abyd Al Zain, Kevin Hammond

Partial Parsing: Combining Choice with Commitment . 140
Malcolm Wallace

Functional Master-Worker Skeletons . 152
Jost Berthold, Mischa Dieterle, Rita Loogen, Steffen Priebe

Towards an Implementation of a Computer Algebra System in a Functional Program-
ming Language . 168

Oleg Lobachev

Lazy Contract Checking for Immutable Data Structures . 179
Robert Bruce Findler, Shu-yu Guo, Anne Rogers

Haskell – Join – Rules . 195
Martin Sulzmann, Edmund Lam

Splitting and Merging Program Refactorings . 211
Christopher Brown, Simon Thompson

An Interpretation of Temporal Properties in Functional Programs 224
Máté Tejfel, Tamás Kozsik, Zoltán Horváth

3

Approaches to Subtyping in Functional Languages . 229
Glenn Strong

On the Validation of Specifications used in Model-Based Testing 230
Pieter Koopman, Peter Achten, Rinus Plasmeijer

Car Damage Subrogation Workflow — an iTask exercise . 232
Erik Zuurbier, Rinus Plasmeijer

Towards Open Type Functions for Haskell . 233
Tom Schrijvers, Martin Sulzmann, Simon Peyton Jones, Manuel Chakravarty

Transparent Ajax and Client-Site Evaluation of iTasks .252
Rinus Plasmeijer, Jan Martin Jansen, Pieter Koopman, Peter Achten

Static Inference of Non-Monotonic Polynomial Sized Types . 254
Marko van Eekelen, Olha Shkaravska

Efficient, Modular Tries . 258
Frank Huch, Sebastian Fischer

FunSETL — Functional Reporting for ERP Systems . 268
Michael Nissen, Ken Friis Larsen

The Reduceron: Widening the von Neumann Bottleneck for Graph Reduction using an
FPGA . 290

Matthew Naylor, Colin Runciman

Incremental Extension of a Domain Specific Language Interpreter 301
Olivier Michel, Jean-Louis Giavitto

Generic Programming Combinators. .318
Sebastian Fischer, Frank Huch

Supero: Making Haskell Faster . 334
Neil Mitchell, Colin Runciman

Checking Dependent Types Efficiently . 350
Dirk Kleeblatt

HW-Hume in Isabelle . 366
Chunxu Liu, Greg Michaelson

Static Contract Checking for Haskell . 382
Dana Na Xu, Simon Peyton Jones, Koen Claessen

Debugging Lazy Functional Programs by Asking the Oracle . 400
Bernd Braßel, Holger Siegel

Uniqueness Typing Simplified . 416
Edsko de Vries, Rinus Plasmeijer, David Abrahamson

Tabular Expressions and Total Functional Programming . 431
Baltasar Trancón y Widemann, David L. Parnas

4

Positive Supercompilation for a Higher Order Call-By-Value Language 441
Peter Jonsson, Johan Nordlander

The Simple Category of Modules . 457
Mikolaj Konarski

Polytopes & Polytypes: Generic Isosurfacing & Functional Programming 474
Colin Runciman, David Duke, Rita Borgo, Malcolm Wallace

Meta〈Fun〉 — Towards a Functional-Style Interface for C++ Template Metaprograms
. 489

Ádám Sipos, Zoltán Porkoláb, Norbert Pataki, Viktória Zsók

Speculative Inlining of Predefined Procedures in an R5RS Scheme to C Compiler . . 503
Marc Feeley

Circuit Parallelism in Haskell Programs . 519
Andreas Koltes, John O’Donnell

On Implementing S-Net . 531
Clemens Grelck, Frank Penczek

From Contracts Towards Dependent Types: Proofs by Partial Evaluation 534
Stephan Herhut, Sven-Bodo Scholz, Robert Bernecky, Clemens Grelck, Kai Trojah-

ner

A Rational Simplifier for GHC . 551
Laszlo Nemeth

Amortizing the Cost of Commuting Conversions when Beta-Reducing Monadic Normal
Forms and A-Normal Forms . 552

Olivier Danvy

5

Index

Abrahamson, David, 416
Achten, Peter, 230, 252
Al Zain, Abyd, 139
Almeida, Jose, 40

Bernecky, Robert, 534
Berthold, Jost, 152
Borgo, Rita, 474
Brassel, Bernd, 400
Brown, Christopher, 211

Chakravarty, Manuel, 233
Claessen, Koen, 382

Danvy, Olivier, 552
de Vries, Edsko, 416
Dieterle, Mischa, 152
Dijkstra, Atze, 107
Duke, David, 474

Feeley, Marc, 503
Findler, Robert Bruce, 179
Fischer, Sebastian, 258, 318
Fokker, Jeroen, 107

Giavitto, Jean-Louis, 301
Grelck, Clemens, 531, 534
Guo, Shu-yu, 179

Hammond, Kevin, 139
Herhut, Stephan, 534
Hidalgo-Herrero, Mercedes, 89
Horvath, Zoltan, 224
Huch, Frank, 258, 318

Jansen, Jan Martin, 252
Jonsson, Peter, 441

Kleeblatt, Dirk, 350
Koltes, Andreas, 519
Konarski, Mikolaj, 457
Koopman, Pieter, 230, 252
Kozsik, Tamás, 224

Lam, Edmund, 195
Larsen, Ken Friis, 268
Li, Huiqing, 55
Liu, Chunxu, 366
Lobachev, Oleg, 168
Loogen, Rita, 152
Lu, Kenny Zhuo Ming, 123
Lucas, Salvador, 8

Mackie, Ian, 40
Mazamek, Steffen, 24
Michaelson, Greg, 366
Michel, Olivier, 301
Minas, Mark, 24
Mitchell, Neil, 334
Morazan, Marco T., 71

Naylor, Matthew, 290
Nemeth, Lazlo, 551
Nissen, Michael, 268
Nordlander, Johan, 441

O’Donnell, John, 519
Ortega-Mallen, Yolanda, 89

Parnas, David L., 431
Pataki, Norbert, 489
Pena, Ricardo, 8
Penczek, Frank, 531
Peyton Jones, Simon, 233, 382
Pinto, Jorge Sousa, 40
Plasmeijer, Rinus, 230, 232, 252, 416
Porkolab, Zoltan, 489
Priebe, Steffen, 152

Rogers, Anne, 179
Runciman, Colin, 290, 334, 474

Scholz, Sven-Bodo, 534
Schrijvers, Tom, 233
Schultz, Ulrik, 71
Shkaravska, Olha, 254

6

Siegel, Holger, 400
Sipos, Adam, 489
Strong, Glenn, 229
Sulzmann, Martin, 123, 195, 233
Swierstra, Doaitse, 107

Tejfel, Máté, 224
Thompson, Simon, 55, 211
Trancón y Widemann, Baltasar, 431
Trinder, Phil, 139
Trojahner, Kai, 534

van Eekelen, Marko, 254
Vilaca, Miguel, 40

Wallace, Malcolm, 140, 474

Xu, Dana Na, 382

Zsok, Viktoria, 489
Zuurbier, Erik, 232

7

Termination and complexity bounds for SAFE
programs?

Salvador Lucas Ricardo Peña

Sistemas Informáticos y Computación Sistemas Informáticos y Computación
Universidad Politécnica de Valencia Universidad Complutense de Madrid

slucas@dsic.upv.es ricardo@sip.ucm.es

Abstract. Safe is a first-order eager functional language with facilities
for programmer-controlled destruction and copying of data structures
and is intended for compile-time analysis of memory consumption. In
Safe, heap and stack memory consumption depends on the length of
recursive calls chains. Ensuring termination of Safe programs (or of par-
ticular function calls) is therefore essential to implement these features.
Furthermore, being able to giving bounds to the chain length required
by such terminating calls becomes essential in computing space bounds.
In this paper, we investigate how to analyze termination of Safe pro-
grams by using standard term rewriting techniques, i.e., by transforming
Safe programs into term rewriting systems whose termination can be
automatically analyzed by means of existing tools. Furthermore, we in-
vestigate how to use proofs of termination which combine the dependency
pairs approach together with polynomial interpretations to obtain suit-
able bounds to the length of chains of recursive calls in Safe programs.

1 Introduction

Safe [23, 25, 21] is a first-order eager functional language with facilities for pro-
grammer controlled destruction and copying of data structures and is intended
for compile time analysis of memory consumption. In Safe, the allocation and
deallocation of compiler-defined memory regions for data structures is associated
to function application. So, heap memory consumption depends on the length
of recursive calls chains. In order to compute space bounds for such chains it is
essential to compute bounds to their lengths and, in turn, to previously ensure
termination of such functions.

In this paper we investigate how to use rewriting techniques for proving
termination of Safe programs and giving appropriate bounds to the number
of recursive calls of Safe programs as a first step to compute space bounds.
In particular, we introduce a transformation for proving termination of Safe
programs by translating them into Term Rewriting Systems.
? Work partially supported by the EU (FEDER) and the Spanish MEC, under grant

TIN 2004-7943-C04. Salvador Lucas was partially supported by the EU (FEDER)
and the Spanish MEC grant HA 2006-0007, and by the Generalitat Valenciana un-
der grant GV06/285. Ricardo Peña was partially supported by the Madrid Region
Government under grant S-0505/TIC/0407 (PROMESAS).

8

Both termination and complexity bounds of programs have been investigated
in the abstract framework of Term Rewriting Systems (TRSs [3, 22]). A suitable
way to prove termination of programs written in declarative programming lan-
guages like Haskell or Maude [8] is translating them into (variants of) term
rewriting systems and then using techniques and tools for proving termination
of rewriting. See [11, 13] for recent proposals of concrete procedures and tools
which apply to the aforementioned programming languages.

Polynomial interpretations have been extensively investigated as suitable
tools to address different issues in term rewriting [3]. For instance, the limits of
polynomial interpretations regarding their ability to prove termination of rewrite
systems were first investigated in [15] by considering the derivational complexity
of polynomially terminating TRSs, i.e., the upper bound of the lengths of arbi-
trary (but finite) derivations issued from a given term (of size n) in a terminating
TRS. Hofbauer has shown that the derivational complexity of a terminating TRS
can be better approximated if polynomial interpretations over the reals (instead
of the more traditional polynomial interpretations over the naturals) are used to
prove termination of the TRS [14].

Complexity analysis of first order functional programs (or TRSs) has also
been successfully addressed by using polynomial interpretations [4–7]. The aim
of these papers is to classify TRSs in different (time or space) complexity classes
according to the (least) kind of polynomial interpretation which is (weakly)
compatible with the TRS. Recent approaches combine the use of path orderings
[10] to ensure both termination together with suitable polynomial interpretations
for giving bounds to the length of the rewrite sequences (which are known finite
due to the termination proof), see [6]. Polynomials which are used in this setting
are weakly monotone, i.e., if x ≥ y then P (. . . , x, . . .) ≥ P (. . . , y, . . .). This is in
contrast with the use of polynomials in proofs of polynomial termination [18],
where monotony is required (i.e., whenever x > y, we have P (. . . , x, . . .) >
P (. . . , y, . . .)). However, when using polynomials in proofs of termination using
the dependency pair approach [1], monotony is not longer necessary and we can
use weakly monotone polynomials again [9, 20]. The real advantage is that, we
can now avoid the use of path orderings to ensure termination: with the same
polynomial intepretation we can both prove termination and as we show in this
paper, obtain suitable complexity bounds. Furthermore, since the limits of using
path orderings to prove termination of rewrite systems are well-known, and they
obviously restrict the variety of programs they can deal with, we are able to
improve on the current techniques.

2 Preliminaries

A binary relation R on a set A is terminating (or well-founded) if there is no
infinite sequence a1 R a2 R a3 · · ·. Given f : Ak → A and i ∈ {1, . . . , k}, we
say that R is monotonic on the i-th argument of f (or that f is i-monotone
regarding R) if f(x1, . . . , x, . . . , xk) R f(x1, . . . , y, . . . , xk) whenever x R y, for
all x, y, x1, . . . , xk ∈ A. We say that R is monotonic regarding f (or that f is
R-monotone) if R is i-monotonic on the i-th argument of f for all i, 1 ≤ i ≤ k.

9

A transitive and reflexive relation � on A is a quasi-ordering. A transitive and
irreflexive relation > on A is an ordering.

Terms and term rewriting Throughout the paper, X denotes a countable set of
variables and F denotes a signature, i.e., a set of function symbols {f, g, . . .},
each having a fixed arity given by a mapping ar : F → N. The set of terms built
from F and X is T (F ,X). A context is a term C[] with a ‘hole’ (formally, a
fresh constant symbol). A rewrite rule is an ordered pair (l, r), written l → r,
with l, r ∈ T (F ,X), l 6∈ X and Var(r) ⊆ Var(l). A TRS is a pair R = (F , R)
where R is a set of rewrite rules. Given R = (F , R), we consider F as the disjoint
union F = C]D of symbols c ∈ C, called constructors and symbols f ∈ D, called
defined functions, where D = {root(l) | l → r ∈ R} and C = F − D. Given a
TRS R, a term t ∈ T (F ,X) rewrites to s, written t →R s, if t = C[σ(l)] and
s = C[σ(r)], for some rule ρ : l → r ∈ R, context C[] and substitution σ. A TRS
R is terminating if →R is terminating.

A conditional, oriented TRS (CTRS), has rules of the form l → r ⇐ C, where
C = s1 → t1, . . . , sk → tk is called an oriented condition. A 3-CTRS satisfies
var(r) ⊆ var(l) ∪ var(C) for every conditional rule. It is deterministic if the
variables of the righthand side ti of every condition si → ti of C are introduced
before they are used in the lefthand side sj of a subsequent condition sj → tj .

Term orderings and algebraic interpretations A term ordering is a pair (�, >)
of relations over the set T (F ,X) of terms over the signature F and variables
X . The relation � is a quasi-ordering and > is an ordering and they satisfy
> ◦ � ⊆ > or � ◦ > ⊆ >. The relation R is stable if, whenever t R s, we have
σ(t) R σ(s) for all terms t, s and substitutions σ. A term ordering (�, >) is said
to be (1) well-founded if > is well-founded; (2) stable if both � and > are stable;
(3) weakly monotonic if � is monotonic; and (4) strictly monotonic if both �
and > are monotonic. A reduction pair is a well-founded, stable, and weakly
monotonic term ordering.

Term orderings can be obtained by giving appropriate interpretations to the
function symbols of a signature. Given a signature F , an F-algebra is a pair
A = (A,FA), where A is a set and FA is a set of mappings fA : Ak → A for
each f ∈ F where k = ar(f). For a given valuation mapping α : X → A, the
evaluation mapping [α] : T (F ,X) → A is inductively defined by [α](x) = α(x)
if x ∈ X and [α](f(t1, . . . , tk)) = fA([α](t1), . . . , [α](tk)) for x ∈ X , f ∈ F ,
t1, . . . , tk ∈ T (F ,X). Given a term t with Var(t) = {x1, . . . , xn}, we write [t] to
denote the function Ft : An → A given by Ft(a1, . . . , an) = [α(a1,...,an)](t) for
each tuple (a1, . . . , an) ∈ An, where α(a1,...,an)(xi) = ai for 1 ≤ i ≤ n.

A quasi-ordered F-algebra, is a triple (A,FA,�A), where (A,FA) is an F-
algebra and �A is a quasi-ordering on A. Then, we can define a stable quasi-
ordering � on terms given by t � s if and only if [α](t) �A [α](s), for all
α : X → A. We can also define a stable ordering > on terms by t > s if
[α](t) �A [α](s), for all α : X → A, where �A is the strict part of �A, i.e.,
�A =�A − �A.

10

3 The SAFE language

Safe was first introduced in [23] as a research platform to investigate analyses
related to sharing of data structures and to memory consumption. Currently it
is provided with a type system guaranteeing that all well-typed programs will be
free of dangling pointers at runtime, in spite of the memory destruction facilities
provided by the language. More information can be found in [25] and [21].

There are two versions of Safe: full-Safe, in which programmers are supposed
to write their programs, and Core-Safe (the compiler transformed version of
full-Safe), in which all program analyses are defined.

Full-Safe syntax is close to Haskell’s. The main difference is that Safe is eager
and (at this moment) first-order. Safe admits two basic types (booleans and
integers), algebraic datatypes (which are introduced by means of the usual data
declarations), and the definition of functions by means of conditional equations
with the usual facilitites for pattern matching, use of let and case expressions,
and where clauses. No recursion is possible inside let expressions and where
clauses and no local function definition can be given.

A Safe program consists of a sequence of (possibly recursive) function defini-
tions together with a main expression. The only free variables allowed in func-
tion’s bodies are function’s formal arguments and the names of the previously
defined functions, and the only free variables allowed in the main expression are
the names of the defined functions.

Additionally, the programmer can specify a destructive pattern matching
operation by using symbol ! after the pattern. The intended meaning of this
operator is the destruction of the cell which is associated to the constructor
symbol thus allowing its reuse later.

The merge-sort program of Figure 1 uses a constant heap space to implement
the sorting of the list. This is a consequence of the destructive constant-space
versions splitD and mergeD of the funtions which respectively split a list into
two pieces and merge two sorted lists. Types which are shown in the program
above are inferred by the compiler. A symbol ! in a type signature indicates that
the corresponding data structure is destroyed by the function. Variables ρ are
polymorphic and indicate the region where the data structure ‘lives’.

3.1 Core-Safe syntax

The Safe compiler first performs a region inference which determines which re-
gion have to be used for each construction. A function has at most two associated
memory regions: a working region which can be addressed by using the reserved
identifier self and an output region which is passed as a parameter. For this
reason, the low-level syntax, called Core-Safe requires an additional parameter
r both in some function calls and in expressions such as (C xi

n)@r which de-
notes a construction, and x@r which denotes the copy of the structure with root
labeled x into a region r. The compiler also flattens the expressions in such a
way that the application of functions is made on constants or variables only.
Also, where clauses are translated into let expressions, and boolean conditions

11

splitD :: ∀a, ρ.Int → [a]!@ρ → ρ → ([a]@ρ, [a]@ρ)@ρ
splitD 0 xs! = ([], xs!)
splitD n []! = ([], [])
splitD n (x : xs)! = (x : xs1, xs2)

where (xs1, xs2) = splitD (n− 1) xs

mergeD :: ∀a, ρ.[a]!@ρ → [a]!@ρ → ρ → [a]@ρ
mergeD []! ys! = ys!
mergeD xs! []! = xs!
mergeD (x : xs)! (y : ys)!

| x ≤ y = x : mergeD xs (y : ys!)
| otherwise = y : mergeD (x : xs!) ys

msortD :: ∀a, ρ.[a]!@ρ → ρ → [a]@ρ
msortD xs
| n ≤ 1 = xs!
| otherwise = mergeD (msortD xs1) (msortD xs2)
where (xs1, xs2) = splitD (n ‘div ‘ 2) xs

n = length xs

Fig. 1. Mergesort program in full-SAFE

in the guards are translated into case expressions. Bound variables are also
conveniently renamed to avoid name clashes.

The syntax of Core-Safe is shown in Figure 2. We use the notation xi
n to

abbreviate the sequence x1 . . . xn. Note that constructions can only occur on
binding expressions be inside let expressions. The normal form of an expression
is either a basic constant c, or a pointer p to a construction. We assume the
existence of a heap which keeps track of the correspondence between pointers
and constructions. The complete operational semantics can be found in [25].

Function splitD defined in the Safe program above is translated into the
following Core-Safe definition:

splitD n xs r = case n of

0 -> ([]@r,xs!)@r

_ -> case! xs of

[] -> ([]@r,[]@r)@r

: x xx -> let z = let n’ = n-1 in splitD n’ xx @r in

let xs1 = case z of (ys1,ys2) -> ys1 in

let xs2 = case z of (zs1,zs2) -> zs2 in

let xs1’ = (: x xs1)@r in

(xs1’, xs2)@r

4 Transformation from Core-SAFE to CTRS

In this section we describe a transformation of Core-SAFE programs into con-
ditional term rewriting systems. For the purpose of the transformation, we can
even simplify the Core-SAFE syntax, because information concerning destruc-
tive patterns and regions is not relevant for termination purposes. Thus, we use

12

prog → dec1; . . . ; decn; e
dec → f xi

n r = e {single-recursive, polymorphic function}
| f xi

n = e {This does not return a new data structure}
a → c {atom is a basic constant}

| x {or a variable}
e → a

| x@r {copy}
| x! {reuse}
| (f ai

n)@r {function application}
| (f ai

n)
| let x1 = be in e {non-recursive, monomorphic}
| case x of alt i

n {read-only case}
| case! x of alt i

n {destructive case}
alt → C xi

n → e {algebraic datatype alternative}
| → e {default alternative for literal case}

be → C ai
n@r {constructor application}

| e

Fig. 2. Syntax of Core-Safe

the simplified syntax in Figure 3. We assume that each case expression in a
function definition has a unique integer label k. The transformation is defined
by means of the following auxiliary functions:

1. trP which takes a sequence of Core-Safe function definitions and returns a
CTRS.

2. trF which takes a function definition and returns a set of conditional rewrite
rules.

3. trR which given an expression e, or a binding expression be, the set V of
its free variables, and a condition C = s1 → t1, . . . , sk → tk consisting of
atomic (rewrite) conditions si → ti, returns the right-hand side of a rule
together with its conditional part, and a possibly empty set of conditional
rewrite rules. In fact, we treat C as a list; if the conditional part C = [] then
the generated right-hand side has no conditional part.

4. trL which, given a expression e and the set V of its free variables yields a
left part of a condition, and a sequence of atomic conditions to its left.

Assume that var(V) assigns the variables in V to a given term t in a fixed
ordering. The transformation is given in Figure 4. Our running example would
be transformed into the following CTRS:

splitD(n,xs) -> case1(n,n,xs)

case1(0,n,xs) -> Tup(Nil,xs)

case1(S(x),n,xs) -> case2(xs,n)

case2(Nil,n) -> Tup(Nil,Nil)

case2(Cons(x,xx),n) -> Tup(xs1’,xs2) <= n-1 -> n’, splitD(n’,xx) -> z,

case3(z) -> xs1, case4(z) -> xs2, Cons(x,xs1) -> xs1’

case3(Tup(ys1,ys2)) -> ys1

case4(Tup(zs1,zs2)) -> zs2

13

prog → dec1; . . . ; decn; e
dec → f xi

n = e {A single version of function declaration}
a → c {basic constant}

| x {variable (replaces reuse and copy expressions)}
e → a

| f ai
n {A single version of function application}

| let x1 = be in e {non-recursive, monomorphic}
| case x of alt i

n {a single version of case}
alt → C xi

n → e
| → e

be → C ai
n {constructor application (region is irrelevant)}

| e

Fig. 3. Simplified Core-SAFE

trP(def i

n
)

def
=

Sn
i=1 trF (def i)

trF (f xi
n = e)

def
= f(x1, . . . , xn) → trR(e, fv(e), [])

trR(c, V, C)
def
= c ⇐ C

trR(x, V, C)
def
= x ⇐ C

trR(Cr ai
n, V, C)

def
= Cr(a1, . . . , an) ⇐ C

trR(f ai
n, V, C)

def
= f(a1, . . . , an) ⇐ C

trR(k : case x of Ci xij
ni → ei

n
, V, C)

def
=

{casek(x, var(V)) ⇐ C} ∪
{casek(Ci(xi1, . . . , xini), var(V)) → trR(ei, fv(ei), []) | i ∈ {1..n}}

trR(let x1 = e1 in e2, V, C)
def
= trR(e2, fv(e2), C ++ [, trL(e1, fv(e1)) → x1])

trL(e, V)
def
= trR(e, V, []) if e ∈ {c, x, Cr ai

n, f ai
n, case}

trL(let x1 = e1 in e2, V)
def
= [trL(e1, fv(e1)) → x1,] ++ trL(e2, fv(e2))

Fig. 4. Transformation from Core-SAFE to CTRS

Proposition 1. Every Core-SAFE program P is transformed into an oriented,
left-linear, non-overlapping, deterministic 3-CTRS trP(P) which is, therefore,
confluent.

Proof. The resulting system is an oriented CTRS just by inspection of the gen-
erated rules.

For every defined symbol f , a single rule is generated with all argument
variables xi

n distinct. For every case expression labelled k, a non-overlapping
set of rules caseK , one for every data constructor Ci, is generated. Each rule
introduces distinct pattern variables xij

ni . So, the CTRS is non-overlapping
and left-linear.

By induction on the calls to trR(e, V, C), it is easy to show that fv(e) ⊆
V ∪ var(C). From here, and by inspection of the rules l → r ⇐ C generated,
we conclude that the system is 3-CTRS. Finally, the last rule of trL satisfies

14

fv(e2) ⊆ V ∪{x1}. By induction on the number of simple conditions included in
C we can prove that every condition C is deterministic. �

Proposition 2. Given a Core-SAFE program P and its transformed 3-CTRS
R = trP(P) the main expression e of P terminates according to Safe semantics
if and only if the term te associated to e terminates in R. Furthermore, in every
term (except the last one, if it exists) of the reduction sequence of te there is only
one redex.

Proof. It simultaneously uses the small-step semantics of SAFE (not shown in
this paper, see [24]) and the CTRS rules. It proceeds by induction on the depth
k of the definition of the function symbols in the initial term. Then, by cases on
the expressions e in function’s bodies and, when the expression e is a let or a
case, by induction on the number of operational semantics steps reducing e to
normal form. �

Now we can apply standard transformations from deterministic 3-CTRS into
unconditional TRSs [22, Def. 7.2.48]. If R is a 3-CTRS, let us call U(R) to the
TRS resulting from the transformation. For instance, in our running example
U(R) would be the following TRS:

splitD(n,xs) -> case1(n,n,xs)

case1(0,n,xs) -> Tup(Nil,xs)

case1(S(x),n,xs) -> case2(xs,n)

case2(Nil,n) -> Tup(Nil,Nil)

case2(Cons(x,xx),n) -> U1(n-1,x,xx)

U1(n’,x,xx) -> U2(splitD(n’,xx),x)

U2(z,x) -> U3(case3(z),z,x)

U3(xs1,z,x) -> U4(case4(z),x,xs1)

U4(xs2,x,xs1) -> U5(Cons(x,xs1),xs2)

U5(xs1’,xs2) -> Tup(xs1’,xs2)

case3(Tup(ys1,ys2)) -> ys1

case4(Tup(zs1,zs2)) -> zs2

Proposition 3. For every Core-SAFE program P,the TRS U(trP(P)) satisfies
the following properties:

1. It consists of non-overlapping rules. Moreover, all the lefthand sides are of
the form f(p1, . . . , pn) where the pi are flat patterns.

2. The righthand sides have at most a nesting depth of 1. In the worst case they
are of the form g(e1, . . . , en) with g being a function symbol and all the ei

being either variables, flat patterns, or terms f(a1, . . . , am) with f being a
function symbol and the aj variables or basic constants.

Proof. Straightforward by considering Proposition 1 for the original CTRS and
the definition of the U(R) transformation. �

It is a standard result [22, Prop. 7.2.50] that the termination of U(R) implies
the termination of R.

15

5 Termination and complexity bounds

Termination of rewriting can be proved by using the dependency pairs approach
[1]. Given a TRSR = (C]D, R) the set DP(R) of dependency pairs forR is given
as follows: if f(t1, . . . , tm) → r ∈ R and r = C[g(s1, . . . , sn)] for some defined
symbol g ∈ D, and context C[·], and s1, . . . , sn ∈ T (F ,X), then f](t1, . . . , tm) →
g](s1, . . . , sn) ∈ DP(R), where f] and g] are new fresh symbols associated to f
and g respectively. Termination of rewriting can be ensured by inspecting the
cycles of the dependency graph associated to the TRS R. The nodes of the
dependency graph are the dependency pairs in DP(R); we refer the reader to [1]
for details about how to build it.

An argument filtering π for a signature F is a mapping that assigns to every
k-ary function symbol f ∈ F an argument position i ∈ {1, . . . , k} or a (possibly
empty) list [i1, . . . , im] of argument positions with 1 ≤ i1 < · · · < im ≤ k.
Argument filterings apply to terms to remove appropriate symbols and subterms
(see [1]). Furthermore, when S is a subset of rules, we write π(S) to denote the
set {π(s) → π(t) | s → t ∈ S}.

The following results justify the use of reduction pairs (see Section 2) in
proofs of termination using dependency pairs.

Theorem 1 (DP termination [1]). A TRS R is terminating if and only if
there is a reduction pair (�,A) such that R ⊆� and DP(R) ⊆A.

Proofs of termination using the dependency pair approach are usually achieved
by considering the dependency graph, or rather the cycles in the dependency
graph.

Theorem 2 (SCC termination [12]). A TRS R is terminating if and only
if for all cycles C in the dependency graph there is an argument filtering πC

and a reduction pair (�C,AC) such that π(R) ⊆ �C, π(C) ⊆ �C ∪ AC, and
π(C) ∩ AC 6= ∅.

In general, the dependency graph of a TRS is not computable and we need
to use some approximation of it (e.g., the estimated dependency graph, see [1]).
According to Theorem 2, the important point in proofs of SCC termination is the
generation of appropriate argument filterings πC and reduction pairs (�C,AC)
for each cycle C in the (estimated) dependency graph. In the following, we are
interested in their generation by means of polynomial interpretations.

Proposition 4. Given a Core-SAFE program P, there is a bijection between
cycles in the dependency graph of the TRS RP = U(trP(P)) and recursive calls
in P.

Proof. Straightforfard by inspection of the transformation and by knowing the
arcs in the estimated dependency graph require unification between the right
part of a dependency pair and the left part of another pair. In our transformed
system, a cycle is closed when the internal call f](t1, . . . , tn) to a recursive Core-
SAFE function f unifies with the dependency pair f](x1, . . . , xn) → r coming
from the initial (and only) rule defining function f . �

16

So, in our running example, the only existing cycle in the dependency graph
contains the following dependency pairs:

SplitD(n,xs)-> Case1(n,n,xs)

Case1(s(x),n,xs) -> Case2(xs,n)

Case2(cons(x,xx),n) -> U1(n-1,x,xx)

U1(n’,x,xx) -> SplitD(n’,xx)

which corresponds to the internal recursive call of splitD . Here, we capitalize the
first letter of a function name f to indicate its associated symbol f].

Let us assume that we use Theorem 1 and —by hand or by using a suitable
tool— we find a polynomial interpretation of the TRS resulting from transform-
ing a Core-Safe program. Let us call [[f]]] to the polynomial interpreting the
symbol f] associated to the Core-Safe function symbol f . This polynomial is
guaranteed to remain non-negative for non-negative arguments and to decrease
at each dependency pair. Moreover, in contrast to the polynomials obtained by
using Theorem 2, there is a single polynomial interpreting each symbol f].

Proposition 5 (polynomial bounds). If [[f]]] is the polynomial (satisfying
Theorem 1 and) interpreting the symbol f] associated to a n-ary function symbol
f in a Core-SAFE program and x1, . . . , xn are interpreted as the sizes of the input
arguments to f , then the number N(x1, . . . , xn) of recursive calls to f with argu-
ments t1, . . . , tn of sizes x1, . . . , xn, respectively, is bounded by [[f]]](x1, . . . , xn),
i.e. N(x1, . . . , xn) ≤ [[f]]](x1, . . . , xn)

Proof. The proposition is a consequence of Proposition 4 and of the fact that
the polynomial obtained for DP-termination is an upper bound on the number
of times a cycle of the depencency graph is traversed during the rewriting of a
term. �

Consider the TRS U(R) obtained in Section 4 for our running example. The
following polynomial intepretation:

[pred](X) = 1/2.X

[S](X) = 2.X + 1

[splitD](X1,X2) = 0

[case1](X1,X2,X3) = 0

[0] = 0

[tup](X1,X2) = 0

[nil] = 0

[case2](X1,X2) = 0

[cons](X1,X2) = X2 + 2

[U1](X1,X2,X3) = 0

[U2](X1,X2) = 0

[case3](X1,X2) = 0

[SPLITD](X1,X2) = 2.X1 + 2.X2 + 1

[CASE1](X1,X2,X3) = X1 + X2 + 2.X3

[CASE2](X1,X2) = 2.X1 + X2

[UU1](X1,X2,X3) = 2.X1 + 2.X3 + 2

[UU2](X1,X2) = 1

[PRED](X) = 0

[CASE3](X1,X2) = 0

17

Safe function Polynomial inferred

length(x) 2x + 1
splitD(n, x) 2n + 2x + 1
mergeD(x, y) x + y + 1
msortD(x) No proof obtained
insert(x, t) 2t + 1

Fig. 5. Polynomials obtained for several Core-Safe functions

which is obtained by mu-term [19] proves DP-termination of U(R).
The problem now is that it is unclear how to give a suitable definition of

polynomial associated to a given defined symbol f . In principle, a symbol f] can
occur in several cycles C, thus leading to different polynomials [[f]]]C.

6 Case studies

We have applied Theorem 1 to the TRS’s obtained by transforming the Core-Safe
functions presented in Section 3 —including function length with the obvious
definition— and have obtained the polynomials shown in Figure 5.

The last one insert is the function inserting an element in a binary search
tree. Its full-Safe definition is as follows:

data Tree a = Empty | Node (Tree a) a (Tree a)

insert x Empty = Node Empty x Empty

insert x (Node l y r)

| x < y = Node (insert x l) y r

| x == y = Node l y r

| x > y = Node l y (insert x r)

and the CTRS resulting from the trP transformation is:

insert(x,t) -> case1(t,x)

case1(Empty,x) -> Node(l0,x,r0) <= Empty -> l0, Empty -> r0

case1(Node(l,y,r),x) -> case2(c,l,y,r,x) <= lt(x,y) -> c

case2(False,l,y,r,x) -> case3(c’,l,y,r,x) <= eq(x,y) -> c’

case2(True,l,y,r,x) -> Node(l’,y,r) <= insert(x,l) -> l’

case3(False,l,y,r,x) -> case4(c’’,l,y,r,x) <= gt(x,y) -> c’’

case3(True,l,y,r,x) -> Node(l,y,r)

case4(False,l,y,r,x) -> error

case4(True,l,y,r,x) -> Node(l,y,r’) <= insert(x,r) -> r’

From the above results, and interpreting the argument variables as charac-
terizing the size of the corresponding data structures, we are glad to see that
the bounds obtained are rather accurate. For instance, if an argument x is of
type list and we interpret x as its length, the polynomial x + y + 1 accurately
bounds the number of recursive calls to mergeD(x, y). To see whether interpret-
ing argument variables as sizes is correct or not we must pay attention to the

18

interpretation given by Proposition 5 to data constructors. During the execu-
tion of a function f , the formal arguments of f will be replaced by actual ones
and these consist just of ground terms formed by data constructors. By knowing
the polynomial interpretation obtained for these constructors, we can know the
polynomial associated to the whole term representing the actual data structure
passed to f as actual argument. In the examples above, we have obtained the
following interpretation for the list data constructors:

[[Nil]] = 0
[[Cons(x, xs)]] = k + xs

being k = 1 or k = 2. For binary trees, we have obtained:

[[Empty]] = 0
[[Node(l, x, r)]] = 1 + l + r

Then, the polynomial associated to a complete list will be related to its length
and the one associated to a binary tree will coincides with its cardinality. This
circumstance allows us to interpret argument variables as sizes (at least in the
examples we have tried so far).

The polynomials obtained for length and splitD are less accurate, but at least
they show an accurate linear dependency with their argument sizes. The bound
for insert is also accurate as the binary tree needs not be balanced: in the worst
case, the number of recursive calls grows linearly with the tree size.

We have not obtained a termination proof for msortD. We must be prepared
for that due to the incompleteness of any termination proving algorithm. Appar-
ently, the current TRS termination proving technology is not able to detect that
the sizes of the lists passed as arguments to msortD in the two recursive calls
are strictly smaller that the list of the external call. Manipulating the rules, it
is possible to obtain a termination proof for U(trF (msortD)) but it is not clear
that this manipulation can always be obtained automatically.

7 Hierarchical composition of SAFE programs

When proving termination and complexity bounds of Safe programs, two strate-
gies can be applied:

1. Either the whole program is transformed into a TRS, and then this is sub-
mitted to a termination prover tool such as MU-TERM.

2. Or else each function is separately analyzed for termination, assuming that
the functions possibly called from the analized one in turn terminate.

Approach (1) is more realistic in the sense that the TRS exactly corresponds
to the original Core-Safe program. In particular, constructor and function sym-
bols are global to the whole program and the polynomials obtained for them,
in case of success, guarantee that every term will be finitely rewritten. That is,
every well-formed main expression using those symbols will terminate.

However, programs can be huge and the time needed by the termination tool
will probably increase more than linearly with program size. So, it is worthwhile

19

to investigate the modularity properties of the TRS obtained from the trans-
formation of Safe programs. Intuitively, if we get a polynomial bounding the
number of recursive calls of a particular function f , this is a property which
depends on the definition of f (and, of the definition of all the functions used by
f) but not on its use in enclosing contexts. So, we expect that the polynomial
of a function f , once obtained, will remain stable along the function definitions
following that of f in the Safe text. In this case, f ’s polynomial would not need
to be inferred again when analyzing the functions that follows f .

Data constructors are a different matter as they miss a definition. Our experi-
ments tell us that almost always they get a polynomial which clearly indicates the
size of the data structure starting at this constructor, as it has been mentioned
in Section 6. Then, we believe that it is desirable to force a fixed interpretation
for the constructors, and this interpretation should convey the intuitive notion
of size for the corresponding data structure.

In this vein, when inferring the polynomial for a particular function f , we
could force the interpretation of the functions defined previously to f , to the
polynomials obtained for them. In this way, the termination tool will have to
infer only the polynomials for the new defined symbols introduced by the trans-
formation of f , and the amount of work would approximately be proportional
to the complexity of f .

We should then prepare our termination tool for this mixed working mode,
i.e. for receiving some polynomials as given and then inferring the rest.

8 Related Work

We have already cited in the introduction the works ([4–7]) aiming to classify
TRS’s in time and space complexity classes by using polynomial interpretations.

In the area of programming languages, there have been some attempts to infer
complexity space bounds by using specialized type systems. The two following
works compute linear space bounds of first order functional programs:

• Hughes and Pareto [17] incorporate in Embedded-ML the concept of re-
gion and their sized-types system is able to type-check heap and stack linear
bounds from annotations given by the programmer.

• More recently, in a proof carrying code framework, Hofmann and Jost [16]
have developed a type system to infer linear bounds on heap consumption.
The underlying machinery is a Linear Programming system which solves the
restrictions generated during type inference.

Related to the latter there has been the successful EU funded project Mobile
Resources Guarantees [2] which, in addition to inferrring space bounds, produces
formal certificates of this property. These certificates can be verified by a proof-
checker. A follow-on project is the Netherlands funded one AHA [26], which tries
to extend the above results to space bounds beyond linear ones.

Our approach seems promising with respect to these works in that any poly-
nomial can be inferred by current termination proving tools. Polynomic space

20

bounds can be easily obtained by multiplying the polynomial bounding the num-
ber of recursive calls and the space needed at each recursive call. The latter will
be in general another polynomial given that inner calls can consume polynomic
space in the self region.

9 Conclusions and Future Work

The experiments reported in this paper encourages us to continuing the ex-
ploration of the approach of using TRS termination tools to infer polynomial
bounds on the number of recursive calls of real programs.

However, much work remains to be done. In particular, we consider using
DP-termination as a first approach to the problem due to the following reasons:

1. It forces all dependency pairs of the TRS to be strictly oriented while in fact
only one strictly oriented pair per cycle is required for SCC-termination. The
consequence is that termination proofs will fail more often.

2. Bounding the total number of recursive calls is sometimes too a rough bound
on the length of recursive calls chains, due to the fact that a function may
be multiple-recursive.

SCC-termination seems more promising in both repects but it requires a
correct way of composing the polynomials obtained for the different cycles of
the TRS. It is not clear that the least upper bound of all the polynomials gives
always the correct bound. We conjecture that adding the polynomials obtained
for a given symbol f# will always be a safe bound.

Another path to explore is to provide the termination proving tool with some
help from the programmer in order to prove termination, and to infer correct
polynomials, in cases, such as the msortD, function where the tool fails to obtain
a proof.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236(1-2):133–178, 2000.

2. D. Aspinall, S. Gilmore, M. Hofmann, D. Sanella, and I. Stark. Mobile Resources
Guarantees for Smart Devices. In Proceedings of the Int. Workshop CASSIS’05,
pages 1–26. LNCS 3362, Springer, 2005.

3. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, Cambridge, 1998.

4. G. Bonfante, A. Cichon, J.-Y. Marion, and H. Touzet. Complexity classes and
rewrite systems with polynomial interpretation. In G. Gottlob, E. Grandjean, and
K. Seyr, editors, 12th International Workshop on Computer Science Logic, CSL
’98, volume 1584 of Lecture Notes in Computer Science, pages 372–384. Springer-
Verlag, 1998.

5. G. Bonfante, A. Cichon, J.-Y. Marion, and H. Touzet. Algorithms with polynomial
interpretation termination proof. Journal of Functional Programming, 11(1):33–53,
2001.

21

6. G. Bonfante, J.-Y. Marion, and J.Y. Moyen. Quasi-interpretations and Small Space
Bounds. In J. Giesl, editor, 16th International Conference on Rewriting Techniques
and Applications, RTA’05, volume 3467 of Lecture Notes in Computer Science,
pages 150–164. Springer-Verlag, 2005.

7. A. Cichon and P. Lescanne. Polynomial interpretations and the complexity of
algorithms. In D. Kapur, editor, 11th International Conference on Automated
Deduction, CADE’92, volume 607 of Lecture Notes in Artificial Intelligence, pages
139–147. Springer-Verlag, 1992.

8. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J.F.
Quesada. Maude: specification and programming in rewriting logic. Theoretical
Computer Science, 285(2):187–243, 2002.

9. E. Contejean, C. Marché, A.-P. Tomás, and X. Urbain. Mechanically proving
termination using polynomial interpretations. Journal of Automated Reasoning,
34(4):315–355, 2006.

10. N. Dershowitz. Orderings for term-rewriting systems. Theor. Comput. Sci., 17:279–
301, 1982.

11. F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving operational
termination of membership equational programs. Higher-Order and Symbolic Com-
putation, page to appear, 2007.

12. J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting
using dependency pairs. Journal of Symbolic Computation, 34:21–58, 2002.

13. Jürgen Giesl, Stephan Swiderski, Peter Schneider-Kamp, and René Thiemann.
Automated termination analysis for haskell: From term rewriting to programming
languages. In Frank Pfenning, editor, RTA, volume 4098 of Lecture Notes in Com-
puter Science, pages 297–312. Springer, 2006.

14. D. Hofbauer. Termination Proofs by Context-Dependent Interpretations. In
A. Middeldorp, editor, 12th International Conference on Rewriting Techniques and
Applications, RTA’01, volume 2051 of Lecture Notes in Computer Science, pages
108–121. Springer-Verlag, 2001.

15. D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations.
In N. Dershowitz, editor, 3rd International Conference on Rewriting Techniques
and Applications, RTA’89, volume 355 of Lecture Notes in Computer Science, pages
167–177. Springer-Verlag, 1989.

16. M. Hofmann and S. Jost. Static prediction of heap space usage for first-order func-
tional programs. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 185–197. ACM Press, 2003.

17. R. J. M. Hughes and L. Pareto. Recursion and Dynamic Data-Structures in
Bounded Space; Towards Embedded ML Programming. In Proceedings of the
Fourth ACM SIGPLAN International Conference on Functional Programming,
ICFP’99, ACM Sigplan Notices, pages 70–81, Paris, France, September 1999. ACM
Press.

18. D.S. Lankford. On proving term rewriting systems are noetherian. Technical
report, Louisiana Technological University, 1979.

19. S. Lucas. MU-TERM: A Tool for Proving Termination of Context-Sensitive Rewrit-
ing. In Vincent van Oostrom, editor, RTA, volume 3091 of Lecture Notes in Com-
puter Science, pages 200–209. Springer, 2004.

20. S. Lucas. Polynomials over the reals in proofs of termination: from theory to
practice. RAIRO Theoretical Informatics and Applications, 39(3):547–586, 2005.

21. M. Montenegro, R. Peña, and C. Segura. An inference algorithm for guaranteeing
safe destruction. In Proceedings of the 8th Symposium on Trends in Functional
Programming, TFP’07, New York, April 2-4, pages 1–16, Chapter XIV, 2007.

22. E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.

22

23. R. Peña and C. Segura. A first-order functional language for reasoning about heap
consumption. In Proceedings of the 16th International Workshop on Implementa-
tion of Functional Languages, IFL’04, pages 64–80, 2004.

24. R. Peña and C. Segura. Formally Deriving a Compiler for SAFE. In Proceedings of
the 18th International Sympsium on Implementation and Application of Functional
Languages, IFL’06, Budapest, pages 429–446, 2006.

25. R. Peña, C. Segura, and M. Montenegro. A sharing analysis for SAFE. In Pro-
ceedings of the 7th Symposium on Trends in Functional Programming, TFP’06,
Nottingham (UK), March 2006. Also in Selected papers of TFP’06, to be published
by Intellect, pages 205–221, 2006.

26. M. van Eekelen, O. Shkaravska, R. van Kesteren, B. Jacobs, E. Poll, and S. Smet-
sers. AHA: Amortized Space Usage Analysis. In Proceedings of the 8th Symposium
on Trends in Functional Programming, TFP’07, New York, April 2-4, pages 1–16,
Chapter XVI, 2007.

23

Graph Parser Combinators

Steffen Mazanek, Mark Minas

Universität der Bundeswehr, München, Germany,
{steffen.mazanek|mark.minas}@unibw.de

Abstract. Graphs are a central data structure in computer science. A
set of graphs can be described by a graph grammar in a manner similar
to a string grammar known from the theory of formal languages. Such a
graph grammar can be used, for instance, to describe correct diagrams of
a particular visual language, and the membership of a particular diagram
can be checked using a graph parser. Unfortunately, graph parsing is
known to be computationally expensive in general. There are quite simple
graph languages that crush most general-purpose graph parsers.
In this paper we present graph parser combinators, a new approach to
graph parsing inspired by the well-known string parser combinators. The
basic idea is to define primitive graph parsers for elementary graph com-
ponents and a set of combinators for the construction of more advanced
graph parsers. Using graph parser combinators efficient special-purpose
graph parsers can be composed conveniently.

Keywords: functional programming, graph parsing, parser combinators

1 Introduction

Graphs are a central data structure in computer science. In the context of func-
tional programming languages they are used to represent terms (with sharing of
common subterms) such that term rewriting is, in fact, graph rewriting [1]. Fur-
thermore graphs are heavily used for modeling and specification. For instance,
the second author has specified visual languages using hypergraph grammars [2].

A hypergraph is a generalization of a graph where edges do not necessarily
connect exactly two nodes, but are allowed to connect an arbitrary number of
nodes as determined by the type of the edge. Hypergraph grammars are used to
define a particular hypergraph language in analogy to string grammars known
from formal language theory. We introduce hypergraphs formally in Sect. 3.

Checking whether a given hypergraph belongs to a particular hypergraph
language or not can be done by using a hypergraph parser. However, even for
restricted kinds of grammars hypergraph parsing is NP-complete [3, p. 142 ff.].
Thus a general-purpose hypergraph parser cannot be expected to run in polyno-
mial time for arbitrary grammars. There are quite simple hypergraph languages
that crush most general-purpose hypergraph parsers. And even if a graph lan-
guage can be parsed in polynomial time by a general-purpose parser, a special-
purpose parser tailored to the language is likely to outperform it.

24

For this reason we propose a new approach to graph parsing: Graph Parser
Combinators. We have been inspired by the work of Hutton and Meijer [4] who
have proposed monadic parser combinators for string parsing. The basic principle
of such a parser combinator library is that primitive parsers are provided that can
be combined into more advanced parsers using a set of powerful combinators. For
example, in string settings there are the sequence and choice combinators that
can be used to emulate a grammar. However, a wide range of other combinators
are also possible. For instance, in parser combinator libraries there often are
combinators many (applies a given parser multiple times and collects the results)
and sepBy (similar to many except that a given separator has to be interspersed).

Parser combinators are very popular, because they integrate seamlessly into
the rest of the program and hence the full power of the host language can be used.
Unlike Yacc [5] no extra formalism is needed to specify the grammar. Another
benefit is that parsers are first-class values within the language. For example,
we could construct lists of parsers or pass them as function parameters. The
possibilities are only restricted by the potential of the host language.

Having all these benefits in mind it seems to be quite interesting to see how
parser combinators can be adopted to graph settings. The discussion of this idea
is the main contribution of this paper:

– We propose a framework and a set of graph parser combinators in Sec-
tion 4 that can be used to implement efficient special-purpose graph parsers
straightforwardly.

– Then we go on to demonstrate the practical use of these combinators by
applying them to a real-world example, namely the visual language VEX
(visual expressions). This example is introduced in Section 2 and the corre-
sponding parser is constructed in Section 5.

A first Impression

At this point we provide a toy example to give an impression of what a parser
constructed using our combinators is going to look like.

An important advantage of the combinator approach is that a more operative
description of a language can be given. For example, the language of the strings
{anbncn|n ∈ IN} is not context-free. Hence a general-purpose parser for context-
free languages cannot be applied at all, although parsing this language actually
is very easy: “Take as many as as possible, then take the same number of bs and
finally take the same number of cs.”

Using PolyParse [6], a widely-available parser combinator library for strings
maintained by Wallace, a parser for this string language can be defined as shown
in Fig. 1a. The type of this parser determines that there may be a user-state s
(not used in this example), that the tokens have to be characters and that the
result is a number. If the given word is not a member of the language one of the
calls of exactly fails.

Note, that the given parser uses the do-notation, syntactic sugar Haskell [7]
provides for dealing with monads. Monads in turn provide a means to simulate

25

abc::Parser s Char Int

abc =
do

as←many (char ’a’)

let na=length as

exactly na (char ’b’)

exactly na (char ’c’)

return na

(a) String parser

abcG::NGrappa s String Int

abcG n =
do

(n’,as)←chain (edge "a" 0 1) n

let na = length as

(n’’,_)←exactChain na (edge "b" 0 1) n’

(n’’’,_)←exactChain na (edge "c" 0 1) n’’

return na

(b) Graph parser

Fig. 1: Parsers for the string and the graph language anbncn

state in Haskell. In parser settings they are used to hide the list of unconsumed
input. Otherwise all parsers in a sequence would have to pass this list as a
parameter explicitly.

In order to motivate our approach to graph parser combinators we provide
the graph equivalent to the previously introduced string parser abc. Strings gen-
erally can be represented as hypergraphs straightforwardly. For instance, Fig. 2
provides the graph representation of the string “aabbcc”.

A graph parser for this graph language can be defined using our combinators
in a manner quite similar to the parser given above as shown in Fig. 1b. The
main differences between the implementations of abc and abcG are:

– A starting node has to be passed as a parameter.
– Parsers also return the number of the node where they finish.
– Tentacle numbers identifying connections have to be provided as parameters

of edge.

Interestingly a context-free hypergraph grammar can be defined that gener-
ates the string hypergraphs anbncn (see [3, p. 109]). However, parsing according
to this graph grammar is polynomial whereas the given parser is linear in com-
plexity.

Although many details have been omitted here, we hope that the idea behind
graph parser combinators is understandable already. In this paper we present
the framework and the combinators that can be used to conveniently implement
parsers like abcG.

Fig. 2: The string graph “aabbcc”

26

2 A running example: VEX

In this section we introduce the visual language VEX as our running exam-
ple. Visual languages and graphs are highly related, because graphs are a very
natural means of describing complex situations on an intuitive level. Graphs
in particular appear to be well suited as an intermediate data structure in vi-
sual language editors. For instance, in editors generated using the diagram editor
generator DiaGen [2], visual components are mapped to hyperedges and a hyper-
graph parser is used to check whether the diagram is a member of the particular
language. This mapping is described in more detail in Section 3.

VEX [8] is a language for the visual-

Fig. 3: The VEX expressions
λx.(y x) and λx.λy.(x y)

ization of lambda expressions. In Fig. 3
two exemplary VEX diagrams are given
that represent the lambda terms λx.(y x)
and λx.λy.(x y). A VEX diagram basi-
cally consists of a set of circles, lines and
arrows, whose layout determines the rep-
resented lambda term.

A λ-abstraction is represented by a
circle c1 containing a smaller circle c2 (the
abstraction’s parameter) internally tan-
gent to it. The body of the abstraction
is given by the components contained in
c1. A line between a variable v and c2 in-
dicates that v is bound to the parameter
of the abstraction.

Function application is expressed by
two circles externally tangent to each other.
An arrow between these circles indicates
the direction of application. Per default

application associates to the left. However, a different order of application can
be determined by a particular numbering scheme.

Circles that do not contain other circles represent variables. Variables have
to be connected by a line either with the parameter of an abstraction or with a
free variable circle. Free variable circles are used to identify occurrences of free
variables within an expression and must not be contained in another circle. It is
possible but not necessary to specify names of abstraction parameters and free
variables.

We do not want to go into more detail here – [8] provides a full and more
precise description of the syntax. In the following we will use the language VEX
to clarify the notions of graphs, graph grammars and parsing. Furthermore the
benefits of our parser combinators are demonstrated by constructing a special-
purpose parser for VEX.

27

3 Definition of Graphs

In this section we give a formal definition of hypergraphs and Haskell types for
their representation.

Following [3] a hypergraph consists of a set of hyperedges and a set of nodes.
A hyperedge is an atomic item with a fixed number of tentacles, called the type
of the hyperedge. It can be embedded into a hypergraph by attaching each of its
tentacles to a node. Directed graphs are a special case of this notion, i.e. they
are hypergraphs whose edges are distinguished by exactly two tentacles, the first
representing the source of the edge and the second the sink, respectively.

In Fig. 4 the hypergraph model of

Fig. 4: Hypergraph representation of
the VEX expressions of Fig. 3

Fig. 3 is shown. Each visual compo-
nent is mapped to a particularly la-
beled hyperedge represented by a rect-
angular box. For instance, the free vari-
able circle in the upper left is mapped
to a hyperedge labeled “freevar”. The
filled black circles represent nodes that
we have additionally marked with num-
bers. A line between a hyperedge and
a node indicates that the node is vis-
ited by that hyperedge. The binding of
the variable to the free variable circle
in the upper diagram is mapped to an
edge “bind” that links the “freevar”
and “var” edges.

The small numbers close to the hyperedges are the tentacle numbers. Without
these numbers the image may be ambiguous, since different tentacles usually play
different roles. For instance, the tentacle with number 1 of “abstr” hyperedges
always has to be attached to the body of the abstraction and the tentacles 1 and
2 of “apply” hyperedges to a function and its argument, respectively.

Before we provide Haskell types that represent the graph data structures we
have to introduce our graph model more formally, in particular because it differs
from standard definitions as found in, e.g., [3, Sect. 2.2], that do not introduce
the notion of a context.

Let C be a set of labels and type : C → IN a typing function for C. In the
following a hypergraph H over C is a finite set of tuples (e, lab, ns), where e
is a (hyper-)edge1 number unique in H, lab ∈ C is an edge label and ns is a
sequence of node numbers such that type(lab) = |ns| (length of sequence). The
nodes represented by the node numbers in ns are called incident to edge e. A
tuple (e, lab, ns) we call a context (in analogy to [9]).

The position of a particular node n in the sequence of nodes within a context
of an edge e represents the tentacle of e that n is attached to. Hence the order of

1 We call hyperedges just edges and hypergraphs just graphs if it is clear from the
context that we are talking about hypergraphs.

28

nodes matters. The same node number also may occur in more than one context
indicating that the edges represented by those contexts are connected via this
node.

Note, that our notion of hypergraphs is slightly more restrictive than usual,
because we do not allow isolated nodes. In particular the nodes of H are given
by V =

⋃
(e,l,ns)∈H ns, i.e., they are derivable from the set of contexts and not

determined in advance. In fact, in many hypergraph application areas isolated
nodes simply do not occur. For example, in the context of visual languages
diagram components may be represented by hyperedges and nodes may just
represent connection points of diagram components, i.e., each node is attached
to at least one edge. So we ignore this issue at the moment.

The following Haskell code introduces the basic data structures for repre-
senting nodes, edges and (hyper-)graphs altogether:

module Graph where

type Node = Int

type Edge = Int

type Tentacle = Int

type Context lab = (Edge, lab, [Node])

type Graph lab = [Context lab]

For the sake of simplicity, we represent nodes and edges by integer numbers.
We declare a graph as a list of contexts, where each context represents a labeled
hyperedge including its incident nodes represented by their numbers.

The first VEX graph given in Fig. 4 can then be represented as the following
Haskell term:

vex1::Graph String

vex1 = [(0,"abstr",[1,2]),(1,"apply",[2,3,4]),(2,"var",[4]),

(3,"bind",[4,2]),(4,"var",[3]),(5,"bind",[3,5]),(6,"freevar",[5])]

The node numbers occurring in this term correspond directly to the node
numbers given in the figure. The edges are numbered uniquely.

Note, that the given Haskell declaration does not ensure per se that only
valid hypergraphs can be constructed. For instance, it has to be checked that
the number of incident nodes corresponds to the type of the particular edge.

We additionally provide a function matchContext that searches for a partic-
ular Context and returns both this context and the remaining graph:

matchContext::(Context lab→Bool)→Graph lab→(Maybe (Context lab), Graph lab)

matchContext _ [] = (Nothing, [])

matchContext test (c:g)

| test c = (Just c, g)

| otherwise = let (c’, g’) = matchContext test g in (c’, c:g’)

In this section we have declared Haskell data types that represent a graph
as a list of so-called contexts. The fact, that we use the data type list as a
container may seem weird at first sight and indeed this is not the most efficient
representation. However, using this standard data structure will pay off in the
next section.

29

4 Parsing Graphs

In this section we introduce our graph parser combinators. However, first the
notion of a parser in graph settings has to be clarified.

4.1 Graph Grammars and Parsers

A set of hypergraphs, i.e. a hypergraph language, can be defined using a graph
grammar – an extension of formal language theory to graph settings. A widely
known kind of graph grammar are hyperedge replacement graph grammars
(HRGG) as described in [3]. Here, a nonterminal hyperedge of a given hypergraph
is replaced by a new hypergraph that is glued to the remaining graph by fusing
particular nodes. Formally, such a HRGG G is a quadruple G = (N,T, P, S)
that consists of a set of nonterminals N ⊂ C, a set of terminals T ⊂ C with
T ∩N = ∅, a finite set of productions P over N and a start symbol S ∈ N . To
describe VEX we have to extend this notion with so-called embeddings – special
productions to insert an additional hyperedge in an already derived hypergraph.

The graph grammar for VEX can

Fig. 5: Graph grammar for VEX

be defined as GV = (NV , TV , PV , V ex)
where NV = {V ex, Lambda, Freevar},
TV = {freevar, apply, abstr, var, bind}
and PV contains the productions given
in Fig. 5. These productions are no-
tated very similar to BNF known from
string grammars, i.e. left-hand side lhs
and right-hand side rhs are separated
by the symbol ::= and several rhs of
one and the same lhs are separated
by vertical bars. By convention we use
lower case letters to label terminal hy-
peredges; in contrast labels of nonter-
minal hyperedges start with a capital
letter.

Note, that the grammar of VEX is
not context-free, i.e. there are produc-
tions with more than one edge at their lhs, although the graph language is quite
simple. In particular the embedding of the “bind” edge cannot be defined in a
context-free manner such that the derivation is not a tree, but a DAG. The given
grammar also does not ensure that there has to be exactly one “bind” hyper-
edge connected to each variable. Such restrictions usually have to be expressed
by so-called application conditions (see, e.g., [2]).

A general-purpose graph parser for HRGGs gets passed a particular HRGG
and a graph as parameters and constructs a derivation tree of this graph ac-
cording to the grammar. This can be done, for instance, in a way similar to
the well-known algorithm of Cocke, Younger and Kasami [10] in string settings
(all HRGGs can be transformed to the graph equivalent of the string notion

30

Chomsky Normal Form). However, such a parser could not deal with our VEX
grammar, because of the embeddings.

Another problem regarding this grammar is caused by the “Freevar” produc-
tions. Since the terminal “freevar” hyperedges are not connected in a specific
way a lot of different derivations are possible. It is simply not clear, in which
order the different “freevar” edges have to be derived. A general-purpose parser
usually performs poorly on such highly ambiguous grammars.

Having this in mind we can state, that a general-purpose parser capable of
parsing VEX hypergraphs has to be quite powerful. Hence the language VEX
highly motivates the construction of a special-purpose parser.

4.2 A Combinator Library

The main contribution of this paper is the introduction of graph parser com-
binators, a library that simplifies the construction of special-purpose parsers as
motivated above. Our design goals have been:

– Intuitive look and feel, i.e. short training period for people already familiar
with parser combinators.

– Straightforward translation of a grammar to a parser.
– Simple parsers for simple languages even if the grammar of the language is

complicated.2

– Sufficient performance for practically relevant applications.

We do not start from scratch implementing our graph parser combinator
library. Rather we use PolyParse [6] as a base, a light-weight monadic parser
combinator library already mentioned in the introduction.

In string settings a parser basically is a function that takes a string and
returns a list of results including their remaining strings. However, since it is
very useful to lex the input first, most parsing libraries have generalized the
parser type to take a list of tokens instead of characters. As our graphs are
lists of contexts we can just instantiate the token type to Context and use the
already existing framework, that has in particular appeared to be well-suited
for practical applications. Since PolyParse is widely-used in string settings, this
approach has the additional benefit that many users are already familiar with
its usage.

So, in the following we use the module PolyState, a part of [6], as a base
for our module Grappa3:

module Grappa where

import Text.ParserCombinators.PolyState

import Graph

2 A good example is the language of the string graphs {anbncn|n ∈ IN}. The HRGG
describing this language is quite complicated despite the simplicity of the language.

3 The name Grappa is a shorthand for GRAPh PArser (in fact, we distill the most out
of a graph instead of wine mash).

31

First we define our basic graph parser type:

type Grappa s lab a = Parser s (Context lab) a

The type Parser that we instantiate is defined as follows in module PolyState:

newtype Parser s t a = P (s → [t] → (EitherE String a, s, [t]))

Thereby EitherE is a type similar to Either that additionally provides sup-
port for different gradations of failing. Note, that in addition to the token list,
a state of type s is carried along. For instance, we will need such a state when
parsing VEX to keep track of variable bindings. The type parameter t defines the
type of the tokens. The parse result has to be of type a. Thus the type Grappa
describes the class of parsers whose tokens are given by contexts as introduced
in Section 3.

There is an instance of the type class Monad for the type Parser defined
in module PolyState. Hence in the following we also can use the convenient
do-notation.

A main difference between graph parsing and string parsing is that in graph
settings we normally do not know where to actually start parsing. There is no
such thing as a first character/token. Thus, most of our parsers will need a start
node as a parameter explicitly. For convenience, we define an additional type
NGrappa that hides this node parameter:

type NGrappa s lab a = Node→Grappa s lab a

Most combinators will return a result of type NGrappa. The following function
converts such a NGrappa to a normal Grappa by trying every node of the graph
as a starting point successively.

nGrappaToGrappa::NGrappa s lab a→Grappa s lab a

nGrappaToGrappa ng = do

g←getTokens

oneOf (map ng (nodes g))

Using getTokens the current token list, i.e. graph, is queried (but not con-
sumed). Thereafter the standard combinator oneOf is used that tries a list of
parsers one after the other until finally a particular parser succeeds. We construct
this parser list by mapping ng to all nodes of the graph.

Of course this function has to be used with care – at least if performance is
an issue. In particular it does not choose the biggest parse but the first successful
one. However, its declaration demonstrates how flexibly parser combinators can
be composed.

Now we can declare our first primitive parser, context, that searches for and
consumes the first context passing a particular test. This choice is deterministic
for performance reasons:

context::(Context lab→Bool)→Grappa s lab (Context lab)

context test = P (λs ts→
case matchContext test ts of

(Nothing,_)→(Left (False,"No context fits."),s,ts)

(Just c, ts’)→(Right c,s,ts’))

32

Note, that there are only very few parsers that need to access the internals of
the Parser type directly; context is such a parser. If no matching context can
be found it fails (Left) softly (indicated by the boolean value False) returning
a proper error message. Otherwise it returns the particular context removing it
from the graph to be processed further.

Most of the time we are only interested in contexts (hyperedges), that are
connected to a particular node. In this case the function connContext is handy,
since it additionally checks if the context is connected to a given node n via a
particular tentacle t, i.e. ns!!t==n:

connContext::(Context lab→Bool)→Tentacle→NGrappa s lab (Context lab)

connContext test t n = context (λc@(_,_,ns)→test c && ns!!t==n)

And if we additionally demand the edge to have a particular label we can
use labContext or connLabContext, respectively:

labContext lab = context (hasEdgeLab lab)

connLabContext lab = connContext (hasEdgeLab lab)

The following parser edge can be used to process a particularly labeled con-
nected context and additionally returns the node that is attached via a particular
tentacle. This node can be understood as the link to a successive context.

edge::(Eq lab)⇒lab→Tentacle→Tentacle→NGrappa s lab (Node,Context lab)

edge lab inT outT n = do

c@(_,_,ns)←connLabContext lab inT n

return (ns!!outT,c)

Our library provides some more helpful primitive parsers. However, we omit
their definitions here and rather switch the focus to combinators.

A first important combinator is chain. It applies a given NGrappa as long as
possible assuring proper connections between the different parses. Its result is
the list of these partial results. Note, that the connecting nodes are especially
important, because they have to be provided as starting points for the particular
parser. Therefore the active node has to be passed through, i.e. the parser has
to also return the node where it stops.

chain::NGrappa s lab (Node,a)→NGrappa s lab (Node,[a])

chain p n = do {

(n’,x)←p n;

(n’’,xs)←chain p n’;

return (n’’,x:xs)

} ‘onFail‘ return (n,[])

The string combinator exactly used in the introduction can be carried over
to graph settings quite easily, too:

exactChain::Int→NGrappa s lab (Node,a)→NGrappa s lab (Node,[a])

exactChain 0 p n = return (n,[])

exactChain num p n = do

(n’,x)←p n

(n’’,xs)←exactChain (num-1) p n’

return (n’’,x:xs)

33

Note, that with chain and exactChain all combinators used in the definition
of our motivating example abcG, i.e. the parser for the string graphs {anbncn|n ∈
IN}, are introduced already.

In addition several parser combinators known from string parsing can be
reused for graph parsing straightforwardly, e.g. oneOf. Furthermore, there are
some combinators that have to be used with care. Their semantics changes in
graph settings, because they do not maintain proper connections (unlike to string
settings the order of tokens, i.e. contexts, does not represent a particular kind of
connection anymore). For instance, the combinator many can be used in graph
settings just to parse more or less independent subgraphs or star shapes.

And finally there are combinators that should not be used in most cases. The
combinators next and satisfy, for instance, depend on the head of the token
list. They are frequently used in string settings, however, in graph settings there
is no such thing as a next token.

There are a lot more primitive parsers and combinators imaginable. However,
the ones presented in this section give a good first insight. Furthermore, they
are in particular needed to tackle our example VEX.

5 Parsing VEX

In this section we construct a parser for the example language VEX using the
combinators defined in the previous section. The purpose of the presentation of
this parser is twofold. First, we demonstrate how the combinators have to be
used. And second, we intend to show, that special-purpose graph parsers can be
defined very straightforwardly.

In Fig. 6 the parser for VEX diagrams is presented. Our goal is to map a
VEX graph to its underlying λ-term. Hence we define the type Lambda, that
represents λ-terms straightforwardly and that is going to be the result type of
the parser. Note, that Lambda is a kind of tree and not a DAG as one might
expect, because variable bindings are resolved by proper naming.

VEX is an example where we really need a parser state. In particular we
store a number used to construct a name for the next fresh variable to be bound
in an abstraction. Further on the state contains a lookup table that maps node
numbers to variable names. The type VexState represents these requirements.

The top-level parser vex first consumes all (many) “freevar” edges using the
parser freevar. Thereby the lookup table is extended properly introducing fresh
names for the new variables. Note, that the “freevar” edges are consumed in the
order of their occurrence within the list of contexts, i.e. we are not interested
in the fact, that they may also be parsed in other orders. Finally the remaining
graph is parsed using lambda.

The parser lambda does accept either an application (apply), an abstrac-
tion (abstr) or a variable (var). An application consists of a hyperedge labeled
“apply” that is connected to two subgraphs via its tentacles 1 and 2, that have
to be parseable with lambda again. The overall result then is composed by the

34

data Lambda = Abstr String Lambda |
Apply Lambda Lambda |
Var String

type VexState = (Int,[(Node,String)])

vex::NGrappa VexState String Lambda

vex n = do

many freevar

lambda n

freevar::Grappa VexState String ()

freevar = do

(_,_,[n])←labContext "freevar"

stUpdate (λ(nn,vt)→(nn+1,(n,"v"++show nn):vt))

lambda::NGrappa VexState String Lambda

lambda n = oneOf [apply n, abstr n, var n]

var,abstr,apply::NGrappa VexState String Lambda

apply n = do

(_,_,ns)←connLabContext "apply" 0 n

l1←lambda (ns!!1)

l2←lambda (ns!!2)

return (Apply l1 l2)

abstr n = do

(_,_,ns)←connLabContext "abstr" 0 n

oldstate@(nn,vt)←stGet

stUpdate (const (nn+1,(ns!!1,"v"++show nn):vt))

l←lambda (ns!!1)

stUpdate (const oldstate)

return (Abstr ("v"++show nn) l)

var n = do

connLabContext "var" 0 n

(_,_,ns)←connLabContext "bind" 0 n

‘adjustErrBad‘

const ("No bind at node "++show n)

(_,vt)←stGet

case lookup (ns!!1) vt of

Nothing→fail $ show (ns!!1) ++
" out of scope!"

Just v→return (Var v)

vexParse::Node→Graph String→Either String Lambda

vexParse n = (λ(res,_,_)→res) ◦ runParser (vex n) (1,[])

Fig. 6: A parser for VEX diagrams

35

application of the data constructor Apply to the results yielded by parsing these
subgraphs.

Parsing an abstraction means introducing a new variable in the lookup table
that can be released after parsing its body. The state can be queried and changed
using the PolyState functions stGet and stUpdate, respectively.

Hyperedges labeled “var” represent variables only if there also is a “bind”
edge to a node that can be mapped to a variable name via the lookup table.
Otherwise a severe error has to be raised using adjustErrBad, because the whole
parse cannot succeed anymore if a variable is not bound.

Note, that at “apply” edges there are two directions to further process the
graph that both have to yield a valid subgraph. This is a main difference to string
parsing where the next token is always predetermined. We have dealt with this
issue by parsing an application depth-first beginning with its left side. Since the
diagram language VEX does not support sharing of common subexpressions we
can consume recognized input unconditionally anyhow.

The parser for VEX graphs can be called using the function vexParse that
applies the function runParser defined in PolyState to an initial state and just
returns the result or an error message. For our examples we get:

Vex> vexParse 1 vex1 Vex> vexParse 1 vex2

Right λv2→(v1 v2) Right λv1→(λv2→(v1 v2))

6 Performance

In [3, p. 142 ff.] it is proved that parsing of HRGGs is NP-complete. Thus a
general-purpose graph parser cannot be expected to run in polynomial time in
general. And indeed, even the quite simple language VEX does cause a general-
purpose parser to run in exponential time in the worst case. This occurs if there
is a high number of “freevar” edges, since these edges can be derived in so many
different ways/orders (n!). The parser presented in Section 4, however, is not
affected by this issue: We parsed 100.000 “freevar” edges in about one second.

We have also measured the execution time to parse the string graphs anbncn

for several n using a general-purpose parser. As already mentioned it is possible
to describe this graph language with a HRGG. It turns out that these string
graphs can be parsed in polynomial time regarding this grammar, however, per-
formance is worse than one might expect for such a simple language.

Using a special-purpose algorithm like the one presented as a motivating
example in the introduction, we could parse such a string graph of length 10.000
in less than a second. Admittedly this comparison does not consider that we
have to pass the start node explicitly. If we do not have the starting node and
all nodes have to be tried, we get at the very most a factor 3 ∗ n. This still
outperforms a general-purpose algorithm.

We could further improve the performance by using an efficient set imple-
mentation for the representation of graphs instead of lists. So we can definitely
say, that special-purpose parsers constructed using our graph parser combinators
are superior from a performance point of view.

36

7 Related Work

To our best knowledge graph parser combinators have not been considered up to
now. So in this section we shortly sketch several related approaches to parsing
in general and dealing with graphs in functional languages.

Besides PolyParse [6] there are other parser combinator libraries that are also
widely-used. For instance, Parsec [11] is well-known for its high performance and
good error reporting capabilities. The main difference between Parsec and Poly-
Parse is that Parsec is predictive by default only backtracking where an explicit
try is inserted whereas in PolyParse backtracking is the default except where
explicitly disallowed by a commit. We have to gain more experience with graph
parser combinators to judge which approach is better suited in our settings.

In string settings the complement of the parser combinator approach is parser
generation. Thereby a grammar is given, e.g. in EBNF, from which a real parser
in a particular language can be generated. The tool Happy [12] can be used to
generate such a Haskell parser. However, the advantage of a parser generator
for strings – namely that efficient parsers can be generated for nearly arbitrary
context-free grammars – does not count that much in graph settings because of
the NP-completeness.

At this point we also have to mention the work of Erwig [9], because our
declarations are mainly inspired by his approach. Erwig criticized the imperative
style of the algorithms described in, e.g., [13] and proposed a new approach:
looking at graphs as inductively defined data types. So he presented a graph
declaration where nodes are added inductively one at a time. Incident edges are
represented as a part of their so-called contexts. Unfortunately his library [14]
does not generalize to hypergraphs and also does not support graph rewriting
and parsing.4

To our knowledge there only is one other approach that aims at the com-
bination of functional programming and graph transformation. At the time of
writing a textbook is work in progress that provides an implementation of the
categorical approach to graph transformation with Haskell [16]. Since graphs
satisfy the laws of a category a higher level of abstraction is used to implement
graph transformation algorithms. The benefit of this approach is its generality
since it just depends on categories with certain properties. However, up to now
parsers are not considered. From an efficiency point of view this approach of
course also is restricted by the NP-completeness of the problem domain.

Finally we want to pick up visual languages again, since they are a very
important area of application for graph grammars as we have demonstrated by
our running example. Hypergraphs as a model for visual languages have been
elaborated in-depth in the work of the second author. In particular the practical
relevance of hypergraph parsing has been proven by the implementation of the
diagram editor generator DiaGen, that allows the generation of diagram editors
out of hypergraph grammars (see, e.g., [2]).

4 In fact, Erwig discussed termgraph rewriting in [15], however, the presented algo-
rithm is tailored to the problem and cannot be generalized straightforwardly.

37

8 Conclusion and Further Work

In this paper we have introduced graph parser combinators, a new approach to
the construction of efficient special-purpose graph parsers.

We have demonstrated that our library is efficient and extensible. It allows
the construction of graph parsers in a for Haskell programmers familiar man-
ner. Thus in combination with the also implemented general-purpose hypergraph
parser we have taken an important first step towards a functional graph trans-
formation library.

As we have backed up by examples our library in its present form is perfectly
usable already. Nevertheless a lot of work remains to be done.

First of all we have to provide a solid theoretical foundation. Up to now
disturbing components – both edges and nodes – are just ignored by most of the
combinators. For instance, our parser for VEX is not suited for checking whether
a graph is a member of the language, but it is very useful to extract and parse
a valid subgraph. We have to further research how to simplify the writing of
correct parsers using our framework.

Another area of future research is the extension of the set of combinators.
Compared to string settings for graph settings there are many more interesting
patterns worth their own combinator. For instance, it would be very useful to
have a combinator that recognizes a particular subgraph isomorphic to a given
graph. However, in general such a combinator cannot be implemented efficiently.
Further on it would be interesting to see how capabilities for error recovery could
be added (like [17] in string settings).

And finally we have to switch the underlying data structure from lists to an
efficient implementation of sets to provide fast random access to a particular
context. Fortunately the interface to our library would not be affected by an
internal change of the data structure.

All in all, we propose the following as an attractive approach to graph parsing:

– First, try using a general-purpose graph parser and see how it scales. If
performance is good or not an issue everything is ok.

– However, if performance is a problem use the graph parser combinator library
presented in this paper to construct an efficient special-purpose graph parser
in no time.

Acknowledgements

We would like to thank Malcolm Wallace for his useful comments regarding Poly-
Parse and Martin Erwig, whose work on graphs in functional settings inspired
this paper and who gave us a lot of encouraging feedback.

38

References

1. Plump, D.: Term graph rewriting. In Ehrig, H., Engels, G., Kreowski, H.J., Rozen-
berg, G., eds.: Handbook of Graph Grammars and Computing by Graph Trans-
formation. Vol. II: Applications, Languages and Tools. World Scientific (1999)
3–61

2. Minas, M.: Concepts and realization of a diagram editor generator based on hyper-
graph transformation. Science of Computer Programming 44(2) (2002) 157–180

3. Drewes, F., Habel, A., Kreowski, H.J.: Hyperedge replacement graph grammars.
In Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph
Transformation. Vol. I: Foundations. World Scientific (1997) 95–162

4. Hutton, G., Meijer, E.: Monadic parser combinators. Technical Report NOTTCS-
TR-96-4, Department of Computer Science, University of Nottingham (1996)

5. Johnson, S.C.: Yacc: Yet another compiler compiler. Technical Report 32, Bell
Laboratories, Murray Hill, New Jersey (1975)

6. Wallace, M.: polyparse http://www.cs.york.ac.uk/fp/polyparse/.
7. Peyton Jones, S.: Haskell 98 Language and Libraries. The Revised Report. Cam-

bridge University Press (2003)
8. Citrin, W., Hall, R., Zorn, B.: Programming with visual expressions. In Haarslev,

V., ed.: Proc. 11th IEEE Symp. Vis. Lang, IEEE Computer Soc. Press (5–9 1995)
294–301

9. Erwig, M.: Inductive graphs and functional graph algorithms. J. Funct. Program.
11(5) (2001) 467–492

10. Kasami, T.: An efficient recognition and syntax analysis algorithm for context
free languages. Scientific Report AF CRL-65-758, Air Force Cambridge Research
Laboratory, Bedford, Massachussetts (1965)

11. Leijen, D., Meijer, E.: Parsec: Direct style monadic parser combinators for the
real world. Technical Report UU-CS-2001-27, Department of Computer Science,
Universiteit Utrecht (2001)

12. Gill, A., Marlow, S.: Happy - the parser generator for haskell
http://www.haskell.org/happy.

13. King, D.: Functional Programming and Graph Algorithms. PhD thesis, University
of Glasgow (1996)

14. Erwig, M.: FGL - A Functional Graph Library
http://web.engr.oregonstate.edu/~erwig/fgl/haskell/.

15. Erwig, M.: A functional homage to graph reduction. Technical Report 239, Fern-
Universität Hagen (1998)

16. Schneider, H.J.: Graph transformations - an introduction to the categorical ap-
proach. http://www2.cs.fau.de/~schneide/gtbook/ (2007)

17. Swierstra, S.D., Azero Alcocer, P.R.: Fast, error correcting parser combinators: a
short tutorial. In Pavelka, J., Tel, G., Bartosek, M., eds.: SOFSEM’99 Theory and
Practice of Informatics, 26th Seminar on Current Trends in Theory and Practice
of Informatics. Volume 1725 of LNCS. (November 1999) 111–129

39

Encoding Iterators in Interaction Nets

(Extended Abstract)

José B. Almeida1, Ian Mackie2, Jorge Sousa Pinto1, and Miguel Vilaça1

1 Departamento de Informática / CCTC
Universidade do Minho, Braga, Portugal

2 LIX, CNRS UMR 7161, École Polytechnique, 91128 Palaiseau Cedex, France

Abstract. We propose a method for encoding iterators (recursion operators) using inter-
action nets. The method can be used to obtain a visual notation for functional programs,
and also to extend with recursion the many translations of the λ-calculus into interaction
nets, which have been proposed as efficient implementation mechanisms. We exemplify the
method with a number of list-processing examples that illustrate the application to practical
functional programming. Our examples also show that the method seems to generate, from
appropriate functional programs, many typical examples of interaction net programs.
Keywords: Recursion operators, interaction nets, visual programming.

1 Introduction

Interaction nets have been extensively used as an implementation mechanism for the λ-calculus.
The main motivation for this approach is that it results in highly efficient evaluation strategies,
made possible by the close control kept on the erasing and duplication of terms.

The use of visual notations for functional programs has long been an active research topic; the
goal is to have a notation that can be used:

1. to input functional programs visually, and
2. to animate visually the execution of functional programs, with the obvious applications in

debugging and education.

The existence of translations of functional programs into interaction nets allows for the use of this
graphical formalism as a visual notation, as long as the translation allows for the correspondence
between the programs and their visual representations to be immediately established. The interest
of using interaction nets as a visual notation is that programs can be animated without leaving the
interaction formalism: instead of resorting to a functional interpreter to run individual reductions
of the program and then displaying the result of each reduction, a program can be animated by
simply reducing the net.

In this paper we extend the ideas of applying interaction nets beyond the pure λ-calculus, to
richer languages including recursive types and recursive function definitions based on recursion
operators, such as iterators and primitive recursors (fixpoint operators have been studied else-
where [1, 11]). Our approach is based on the following principles that directly take advantage of
interaction net features:

– Pattern-matching at the language level is implemented by the matching mechanism in the
framework. The inherent inability to match constructors at level deeper than 1 raises no
problems, since recursion operators in general match only the top-level constructors.

– Each occurrence of a recursion operator gives rise to a new interaction symbol (a definition,
in the programming view), and the operator parameters are internalized in the symbol’s in-
teraction rules.

– Rule application then corresponds to the expansion of a recursive definition. Recursion is cap-
tured very naturally by interaction rules in which the recursion operator symbol is reintroduced
in the right-hand side.

40

2 José B. Almeida, Ian Mackie, Jorge Sousa Pinto, and Miguel Vilaça

To illustrate our ideas, we take the simply-typed λ-calculus with booleans, natural numbers,
and their respective iterators. This system is very close to Gödel’s System T [5]. To allow for the
examples to have a more realistic programming flavour, list types (and a list iterator) are also
included. We choose to implement normal-order evaluation for this language, and take the token-
passing implementation of the λ-calculus [15] as the basis on which our ideas are incorporated.
Technically the main contribution of this paper is thus an expansion of this implementation to a
richer typed language, resulting in a highly intuitive way of representing visually programs and
their evaluation.

An interesting feature of the work presented in this paper is that the interaction systems output
by our encodings result in exactly the same definitions that one would obtain programming directly
at the visual level with interaction nets. In this sense our work justifies semantically this functional
subset of interaction nets. Moreover this provides further evidence that our approach is indeed an
appropriate and natural way to represent functional programs visually.

Work in the area of Visual Functional Programming has addressed different aspects of visual
programming. The Pivotal project [7] offers a visual notation (and Haskell programming environ-
ment) for data-structures, not programs. Visual Haskell [14] more or less stands at the opposite
side of the spectrum of possibilities: this is a dataflow-style visual notation for Haskell programs,
which allows programmers to define their programs visually (with the assistance of a tool) and
then have them translated automatically to Haskell code. Kelso’s VFP system [8] is a complete
environment that allows to define functional programs visually and then reduce them step by
step. Finally, VisualLambda [3] is a formalism based on graph-rewriting: programs are defined as
graphs whose reduction mimics the execution of a functional program. As far as we know none
of these systems is widely used. Visual Haskell and VisualLambda have in common that func-
tions are represented as boxes with input ports for the arguments and an output port for the
result; the contents of the box correspond to the body of the function. They differ in that Visual
Haskell uses variables to refer to function arguments, while VisualLambda uses a purely graphical
notation based on arrows. Kelso’s VFP uses a notation without boxes, more inspired by the tradi-
tional representations of functional programs used in implementation-oriented abstract machines.
In particular, it allows for named functions but also for λ-abstractions, and an explicit application
node exists. Variables are used for arguments, as in Visual Haskell. Higher-order programming is a
fundamental feature of functional programming. A function f can take function g as an argument
and g can then be applied within the body of f . Expressing this feature is easy if variables are used
as in Visual Haskell and VFP; in VisualLambda a special box would be used as a placeholder for
g (in the body of f) to be instantiated later, and an arrow would link an input port in the box of
f to the box of g. The work presented in this paper uses a pure visual representation of programs,
without variables. In this aspect it resembles VisualLambda, however our work differs significantly
from this in that no boxes are used, and all the graph-rewriting operations are local in the sense
that only two nodes of the graph are involved in each step. A second difficulty arising from the
higher-order nature of programs is that a (curried) function of two arguments may receive only its
first argument and return as result a function. In a box-based representation this means that it
must be possible for a box to lose its input ports one by one—a quite complicated process. Graph
rewriting in general, and our approach in particular, treat this problem naturally as will become
clear.

Structure of the Paper. Section 2 contains background material on interaction nets and encodings
of the λ-calculus, and Section 3 defines the functional language used in the paper. Section 4
introduces the translation of functional programs into token-passing interaction nets. Section 5
discusses how the approach can be used with other translations of the λ-calculus into nets, and
Section 6 presents a number of illustrative examples. Section 7 considers extensions of the language
with other recursion operators. We conclude the paper in Section 8.

41

Encoding Iterators in Interaction Nets 3

2 Background

Interaction nets [9] are constrained graph rewrite systems that can still encode all the computable
functions. Interaction nets provide a model of computation in a graphical setting. Programs are
represented as particular kinds of graphs, and computation is expressed as graph transformations.
They are user-defined, in the same way as term rewriting systems, by giving a signature Σ (a set
of symbols, which are nodes of the graph) and a set of rewrite rules R. An occurrence of a symbol
will be called an agent. Each agent has a fixed arity. If the arity of an agent is n, then there are
n+1 ports for the agent: a distinguished one, depicted by an arrow, called the principal port, and
n auxiliary ports. Agents are represented graphically in the following way:

A net N built on a signature Σ is a graph (not necessarily connected) with agents at the
vertices. The edges of the net connect agents together at the ports such that there is only one edge
at every port, although edges may connect two ports of the same agent. The ports of an agent
that are not connected to another agent are called the free ports of the net.

A pair of agents, say (α, β), connected on their principal ports is called an active pair, which
is the interaction net analogue of a redex. An interaction rule replaces an occurrence of the active
pair (α, β) by a net N . The rule has to satisfy a very strong condition: all the free ports are
preserved during reduction, and moreover there is at most one rule for each pair of agents. The
diagram below illustrates the idea, where N is any net built from the signature:

An interaction net system is therefore fully defined by the pair (Σ, R). We say that a net is in
normal form if it does not contain any active pairs. We use the notation =⇒ for one-step reduction
and =⇒∗ for its transitive reflexive closure. Additionally, we write N ⇓ N ′ if there is a sequence
of interaction steps N =⇒∗ N ′, such that N ′ is a net in normal form. The strong constraints on
the definition of interaction rules imply that reduction commutes (the one-step diamond property
holds), and thus confluence is easily obtained. Consequently, any normalizing interaction net is
strongly normalizing.

A number of different translations of the λ-calculus into interaction nets exist. These have in
common some basic principles:

– If t is a λ-term then T (t) is a net in a fixed interaction net system (ΣT , RT).
– If t is a term then T (t) is an interaction net constructed with symbols from Σt. This net has

at least one free port, corresponding to the root of the term, which will be drawn at the top
of the net.

– Variables are translated simply as edges in T (t).
– If x1 . . . xn are free variables in t, then the net T (t) has n additional free ports (represented

at the bottom) corresponding to each of the variables .
– T (λx.t) is a net constructed structurally from T (t). Usually this introduces an abstraction

symbol at the root of the term, with a port linked to the edge representing the bound variable
x and a port linked to the root of the abstraction body net, T (t). A special case exists when
x 6∈ FV(t), which is usually handled by introducing an erasing agent ε.

– T (tu) is a net constructed structurally from T (t) and T (u). Usually this introduces an ap-
plication symbol (or net) with ports connected to the root ports of T (t) and T (u). A special
case exists when a free variable occurs in both terms, since a single edge must represent this

42

4 José B. Almeida, Ian Mackie, Jorge Sousa Pinto, and Miguel Vilaça

variable at the bottom of the term. This is usually handled by introducing a copying agent
c—its two auxiliary ports are connected to the edges representing the free variable in T (t)
and T (u), and the edge connected to its principal port represents the variable in T (tu).

A straightforward translation can be used if the language is restricted to linear λ-terms. In
this case just two agents @ and λ are needed that interact as:

λ

@

In the presence of non-linearity, some pairs of duplicating agents must annihilate when they
interact, while others must duplicate each other. For this some extra machinery is required to
handle the free variables in abstractions, such as a line of agents representing the ‘boundary’
of the term. These schemes have the advantage of imposing reduction strategies that cannot be
defined using a term-based abstract machine; very efficient reduction strategies have been defined
in this way. There are a number of interaction net encodings of the λ-calculus, which follow different
strategies. To give just a sample: Gonthier, Abadi and Lévy [6] gave an implementation of optimal
β-reduction. Mackie [12, 13] gave several systems, each giving a new strategy for reduction in
the λ-calculus. [10] gave a method to implement existing strategies (head reduction). Correctness
results differ between translations: stronger results establish a relation between the nets T ((λx.t)u)
and T (t[u/x]); weaker results establish relations between T (t) and T

(
t
)
, where (·) denotes some

notion of canonical form.

The token-passing encodings of [15] cope with non-linear terms by introducing a special eval-
uation agent (also called an evaluation token) that traverses the net imposing a call-by-name
or call-by-value strategy. Applications are now represented by agents whose principal ports are
located at the root of the terms, so in fact programs are represented by syntax trees, with addi-
tional edges corresponding to variables. The effect of the evaluation agent is to transform these
into regular @ agents, whose principal port is turned towards the net representing the applied
function.

The translation Ttp (·) encodes terms in the system (Σtp, Rtp) where Σtp = {⇓,@,@′, λ, c, ε, δ}
and Rtp consists of the rules:

and the standard rules for the eraser ε and duplicator δ are:

43

Encoding Iterators in Interaction Nets 5

The arity of each symbol can be inferred from the rules. To emphasize the use of @′ as a
syntactic symbol, we represent graphically the instances of @ and @′ respectively as:

The translation itself is shown in Figure 1, where T (.) stands for Ttp (·). It generates nets
containing no active pairs, so no reduction can happen. To start the reduction (corresponding
to normal order evaluation), a ⇓ symbol must be connected to the root port of the term. Let
⇓N denote the net obtained by connecting a ⇓ agent to the root port of N , then the following
correctness result holds: t ⇓ z iff ⇓Ttp (t) −→∗ Ttp (z), where the evaluation relation · ⇓ · is defined
by the standard normal-order evaluation rules:

λx.t ⇓ λx.t

t ⇓ λx.t′ t′[u/x] ⇓ z

t u ⇓ z

Fig. 1. The token-passing translation of λ-terms: the nets T (t u) and T (λx.t). c denotes an arrays of c
agents, one for each free variable occurring in both t and u. In T (λx.t), a special case exists (not depicted)
when the bound variable does not occur in the term: an ε agent must be connected to the λ agent instead.

3 The language BNL

In this paper we use the simply-typed λ-calculus extended with natural numbers, booleans, lists,
and iterators for these recursive types. The language BNL is defined by the following syntax for
types and terms (x, y range over a set of variables):

τ ::= Bool | Nat | List(τ) | τ → τ

t, u, v ::= x | λx.t | t u | tt | ff | cond t u v
| 0 | suc(t) | iternat (λx.t)u v | nil | cons(t, u) | iterlist (λxy.t) u v

44

6 José B. Almeida, Ian Mackie, Jorge Sousa Pinto, and Miguel Vilaça

and by the typing rules given by:

Γ, x : σ ` t : τ

Γ ` λx.t : σ → τ

Γ ` t : σ → τ Γ ` u : σ

Γ ` tu : τ

Γ ` tt : Bool Γ ` ff : Bool Γ ` 0 : Nat

Γ ` n : Nat

Γ ` suc(n) : Nat Γ ` nil : List(τ)

Γ ` h : τ Γ ` t : List(τ)

Γ ` cons(h, t) : List(τ)

Γ ` t : Bool Γ ` V : τ Γ ` F : τ

Γ ` condV F t : τ

Γ ` t : Nat Γ ` λx.S : τ → τ Γ ` Z : τ

Γ ` iternat (λx.S) Z t : τ

Γ ` t : List(σ) Γ ` λxy.C : σ → τ → τ Γ ` N : τ

Γ ` iterlist (λxy.C) N t : τ

The reduction rules of BNL are as follows:

(λx.t)u −→ t[u/x]
condV F tt −→ V

condV F ff −→ F

iternat (λx.S) Z 0 −→ Z

iternat (λx.S) Z (suc(n)) −→ S[(iternat (λx.S) Z n)/x]
iterlist (λxy.C) N nil −→ N

iterlist (λxy.C)N cons(h, t) −→ C[h/x, (iterlist (λxy.C) N t)/y]

The normal-order (call-by-name) evaluation semantics are as follows. Note that terms with an
outermost constructor are taken to be canonical forms.

λx.t ⇓ λx.t

t ⇓ λx.t′ t′[u/x] ⇓ z

t u ⇓ z 0 ⇓ 0 suc(n) ⇓ suc(n)

tt ⇓ tt ff ⇓ ff

t ⇓ tt V ⇓ z

condV F t ⇓ z

t ⇓ ff F ⇓ z

condV F t ⇓ z

t ⇓ 0 Z ⇓ z

iternat (λx.S) Z t ⇓ z

t ⇓ suc(n) S[iternat (λx.S) Z n/x] ⇓ z

iternat (λx.S) Z t ⇓ z

nil ⇓ nil cons(u, v) ⇓ cons(u, v)
t ⇓ nil N ⇓ z

iterlist (λxy.C) N t ⇓ z

t ⇓ cons(u, v) C[u/x, iterlist (λxy.C) N v/y] ⇓ z

iterlist (λxy.C) N t ⇓ z

4 A Token-passing Encoding of BNL

In this section we extend the token-passing call-by-name translation of the λ-calculus to BNL. We
keep the translation of applications and abstractions, and propose a new way to encode recursive
function definitions. Later it will be argued that this approach can be applied with other base
translations of the λ-calculus.

45

Encoding Iterators in Interaction Nets 7

Terms of inductively defined types can be represented in interaction nets in the natural way,
as trees where each node corresponds to a constructor, with its principal port facing the parent
node. For BNL we would have constructors: tt, ff, 0 and nil with arity 0; suc with arity 1; and
cons with arity 2. A unique feature of interaction nets is that they allow for the representation of
both programs and data in the same simple graphical formalism.

One key aspect of our approach is that each occurrence of an iterator will give rise to a
new symbol, which will have one interaction rule for each different constructor of its argument
type. This very simple form of pattern-matching, directly available in interaction nets, is suf-
ficient for iterators and other recursion operators such as primitive recursors or accumulations
(Section 7). The interaction rules of this agent internalise the iterator’s parameters, so that the
net T (iterlist (λxy.C) N cons(h, t)) one-step reduces to T (C[h/x, iterlist (λxy.C) N t/y]), with an
evaluation token on top to control normal-order evaluation.

A second key aspect is that each such new symbol will have auxiliary ports in a one-to-one
correspondence with the free variables in the iterator term, since iterator terms are not restricted
to be closed. The significance of this will be clear from the examples.

The interaction system will not be extended by introducing a fixed set of symbols; instead a new
symbol will be introduced for each occurrence of a recursion operator, so a dedicated interaction
system is generated for each term. Specifically, the interaction system in which the net T (t) will
be evaluated is given as: (Σt, Rt) = (Σtp ∪ ΣBNL ∪ Σ0

t , Rtp ∪ RBNL ∪ R0
t), where (Σtp, Rtp) has

been defined in Section 2, the symbols in ΣBNL can be depicted as:

and the rules in RBNL are given below.

Finally, (Σ0
t , R0

t) = S (t), with the function S (·) defined recursively as follows (∪ is occasionally
used to denote pairwise union). Note that we do not mention explicitly the arity of each agent,
but this can be inferred from interaction rules involving the agent.

S (x) .= S (tt) .= S (ff) .= S (0) .= S (nil) .= (∅, ∅)
S (λx.t) .= S (suc(t)) .= S (t)
S (tu) .= S (cons(t, u)) .= S (t) ∪ S (u)
S (condV F b) .= ({ItBool

V,F , ItBool
V,F

′
} ∪Σ,RItBool

V,F
∪R),

where (Σ, R) = S (b)∪S (V)∪S (F), and RItBool
V,F

consists of the interaction rules included
in Figures 2(a) and 2(b).

S (iternat (λx.S)Z n) .= ({ItNat
S,Z , ItNat

S,Z

′} ∪Σ, RItNat
S,Z

∪R)
where (Σ, R) = S (n)∪S (S)∪S (Z) and RItNat

S,Z
consists of the interaction rules included

in Figures 2(a) and 2(c).

S (iterlist (λxy.C) N l) .= ({ItList
C,N , ItList

C,N

′
} ∪Σ, RItList

C,N
∪R)

where (Σ, R) = S (l)∪S (C)∪S (N) and RItList
C,N

consists of the interaction rules included
in Figures 2(a) and 2(d).

46

8 José B. Almeida, Ian Mackie, Jorge Sousa Pinto, and Miguel Vilaça

(a)

(b)

(c)

(d)

Fig. 2. Interaction rules for iterators

47

Encoding Iterators in Interaction Nets 9

In Figures 2(b) to 2(d), c denotes an array of c agents and ε denotes an array of ε agents. The
size of this array depends on the number of free variables in the corresponding terms. We may
now define the translation from BNL programs into interaction nets. Iterator terms are naturally
translated as syntax trees (like any other terms in the token-passing approach), which requires the
introduction of a companion syntactic agent i′ for each iterator agent i. As was the case for the
encoding of the λ-calculus, we use the same names but depict the agents by triangles.

Definition 1. The translation T (·) is a function that given a BNL program t constructs an
interaction net T (t) in the interaction system (Σt, Rt) as follows:

– If t is an abstraction or application, then T (t) is defined as in Figure 1.
– If t is one of tt, ff, 0, or nil, then T (t) is an instance of the corresponding symbol.
– If t = suc(n), then T (t) is constructed by connecting the auxiliary port of a suc agent to the

root port of T (n).
– If t = cons(h, t′), then T (t) is constructed by connecting the auxiliary ports of a cons agent to

the root ports of T (h) and T (t′).
– If t = condV F b then T (t) is given by the net in Figure 3(a).
– If t = iternat (λx.S) Z n then T (t) is given by the net in Figure 3(b).
– If t = iterlist (λxy.C) N l then T (t) is given by the net in Figure 3(c).

(a) (b) (c)

Fig. 3. Translations of iterators

Lemma 1. Let t be a closed BNL term; then: t ⇓ z =⇒ ⇓T (t) −→∗ T (z).

Lemma 2. Let t be a closed BNL term and z a canonical form, then: ⇓T (t) −→∗ T (z) =⇒
t ⇓ z.

Proposition 1 (Correctness). If t is a closed BNL term and z a canonical form, then: t ⇓
z ⇐⇒ ⇓T (t) −→∗ T (z).

5 Handling Other Encodings

The token-passing translation of the λ-calculus has the advantage of implementing a simple eval-
uation order and maintaining a structure in the nets that is always immediately recognizable and
understandable in terms of the evaluation semantics. As such it is totally appropriate for our goal
of providing a visual representation for functional programs.

This translation is however not representative of most work in this area, which has concen-
trated on designing efficient, rather than simple, translations. These efficient translations are not
controlled by an evaluation token, and in fact they produce nets already containing active pairs.

Let T (·) be one such translation. T (tu) is constructed from T (t) and T (u) by introducing an
application symbol @ with its principal port connected to the root port of T (t). Our treatment of

48

10 José B. Almeida, Ian Mackie, Jorge Sousa Pinto, and Miguel Vilaça

iterators can be adapted to this setting by simply removing the evaluator tokens and introducing
the iterator agents with the principal port immediately facing the argument. For instance we have
that T (iternat (λx.S)Z n) may be given by the following net, with the rules below.

When the iterated function is a closed term, a correctness result can be easily established:

Lemma 3. Let λx.S be a closed term, then

1. T (iternat (λx.S) Z 0) −→ T (Z)
2. T (iternat (λx.S) Z suc(n)) −→ T (S[iternat (λx.S)Z n/x])

We remark that it is always possible to work with iterators with closed functions—thus this
result applies to all programs. In general the correctness of the resulting translation of BNL has
to be proved for each base translation of the λ-calculus. If such a result can be established, it still
has to be studied if, and in what way, the reduction strategy imposed by the translation for the
λ-calculus is modified by this treatment of recursion. An alternative approach exists, which is not
suited for obtaining a visual representation of programs, but more suited for extending arbitrary
translations without disrupting the underlying, presumably efficient reduction strategy. In this
approach we add a single new symbol to the interaction system, for each recursion operator in
the language, and extend the encoding accordingly. We exemplify this approach with the natural
numbers iterator. We introduce a symbol ItNat and define T̂ (iternat (λx.S) Z n) to be the following
net, with the the rules below.

Observe that the iterator parameters are no longer internalised in the agent, and the interaction
rule for successor simply encodes the application of the external function connected to agent. This

49

Encoding Iterators in Interaction Nets 11

is a conservative extension in the sense that it does not disturb the reduction strategy imposed by
the translation T̂ (·), since substitutions are no longer realized by the iterator reductions.

Using the fact that erasing and duplication for this system hold, i.e., if t is a closed term then
the agent ε erases the net T (t) and the agent δ produces two copies of T (t).

Lemma 4. Let λx.S be a closed term, then

1. T̂ (iternat (λx.S) Z 0) −→∗ T̂ (Z)
2. T̂ (iternat (λx.S) Z suc(n)) −→∗ T̂ ((λx.S) (iternat (λx.S)Z n))

6 Examples

Example 1. add : Nat → Nat → Nat, defined by λxy.iternat (λr.suc(r)) y x. The free variable y
in the second argument of the iterator gives rise to an auxiliary port in the symbol ItNat

suc(r),y. It is
encoded as the following net, where add stands for ItNat

suc(r),y, with the rules below.

We now leave behind the token-passing translation and concentrate instead on the encoding
of iterators, assuming a translation in the spirit of Section 5.

Example 2. The append function: app : List(a) → List(a) → List(a), defined as

λl1l2.iterlist (λhr.cons(h, r)) l2 l1

This is a very similar iteration to the previous example. The free variable in the second argument of
the iterator gives rise to an auxiliary port in the symbol ItList

cons(h,r),l2 . It is encoded as the following
net, where app stands for ItList

cons(h,r),l2 , with the rules below.

50

12 José B. Almeida, Ian Mackie, Jorge Sousa Pinto, and Miguel Vilaça

Example 3. The function map : a → b → List(a) → List(b), defined as

map = λfl.iterlist (λhr.cons(fh, r)) nil l

This example differs from the previous in that a free variable now occurs in the first argument
of the iterator. Again this generates an auxiliary port in ItList

cons(fh,r),nil. Note also the introduction
of a duplicator agent for this argument. The function is encoded as the following net, where
map ≡ ItList

cons(fh,r),nil, with the rules below.

7 Extending the Language with New Operators

Primitive recursion requires a recursor for natural numbers, with the following syntax, typing and
reduction rules: t, u, v ::= . . . | recnat (λx.Z) S t,

Γ ` t : Nat Γ ` λxy.S : τ → Nat → τ Γ ` Z : τ

Γ ` recnat (λxy.S) Z t : τ

recnat (λxy.S)Z 0 −→ Z

recnat (λxy.S) Z (suc(n)) −→ S[recnat (λxy.S) Z n/x, n/y]

Essentially the extra computational power of the primitive recursor comes from the fact that
it has access to its argument, in addition to the recursive result on that argument. The factorial
function, for instance, can be defined in this way, but not with an iterator. Only a few modifications
are required: an agent RecNat

S,Z must be used in the translation of the expression recnat (λxy.S)Z t

instead of ItNat
S,Z , and the only difference in the corresponding interaction system (with respect to

ItNat
S,Z) is the interaction rule with the successor symbol, shown below, where we note that with an

argument suc(n), the net representing n must now be duplicated.

51

Encoding Iterators in Interaction Nets 13

Extending the language with other recursion operators is not only a matter of expressiveness,
but also of convenience. We take as example the foldl list operator: even though it can be encoded
with foldr (the Haskell list iterator), it is still convenient to have it in the language. For instance,
a linear time, tail-recursive function for reversing lists can be written in the two following ways:

revt l = foldr (\h r a -> r(h:a)) id l []
revt l = foldl (\r h -> h:r) [] l

The latter is clearly preferable for its simplicity. The first version can be written in BNL as
revt = λl.iterlist (λxya.y cons(x, a)) (λx.x) l nil. Applying the encoding of Section 4 results in the
introduction of an agent ItList

(λa.y cons(x,a)),(λx.x). Naturally, the interaction rules for this agent in-
troduce encodings of abstractions in their right-hand sides, which results in a quite complicated
definition.

To accommodate the second, simpler definition, we now consider the extension of BNL with
an operator corresponding to foldl.

t, u, v ::= . . . | acclist (λxy.t) u v

with the following typing and reduction rules:

Γ ` t : List(τ) Γ ` λxy.C : σ → τ → σ Γ ` N : σ

Γ ` acclist (λxy.C) N t : σ

acclist (λxy.C)N nil −→ N

acclist (λxy.C) N cons(h, t) −→ acclist (λxy.C)C[N/x, h/y] t

The function S (·) is extended to create accumulator symbols as follows.

S (acclist (λxy.C)N l) = ({AccList
C,N} ∪Σ, RAccList

C,N
∪R)

where (Σ, R) = S (l) ∪ S (C) ∪ S (N)

and RAccList
C,N

consists of the following rules:

The translation is then extended as follows (we exemplify this in the setting without tokens
for the sake of simplicity). T̂ (acclist (λxy.C) N l) is defined to be the net

52

14 José B. Almeida, Ian Mackie, Jorge Sousa Pinto, and Miguel Vilaça

We remark that in the reduction rules for acclist (λxy.C) N l the second argument N is not
fixed throughout iteration; as such it cannot be internalized as part of the definition of the agent
AccList

C,N . Instead the corresponding net is connected to an auxiliary port in that agent. The second
version can now be written revt = λl.acclist (λxy.cons(y, x)) nil l, and T̂ (revt) is the following net,
where revt stands for AccList

cons(y,x),nil, with the rules below.

8 Conclusions and Future Work

We have presented an approach to encoding in interaction nets functional programs defined with
recursion operators, and given the full details of the application of this approach to the token-
passing implementation of a normal-order language, which results in a very convenient visual
notation for this language.

The approach can be extended to other base encodings; to richer sets of inductive types; and
to other recursion operators. We are currently working on the encoding of a fixpoint operator for
general recursion in the token-passing setting, and also on the encoding of co-iterator operators.

We are also in the process of developing a tool for visual functional programming. The tool
consists of an evaluator for interaction nets together with a compiler module that translates
programs to nets. It will allow users to type in a functional program, visualize it, and then follow
its evaluation visually step by step. Initially the implementation will be based on the token-passing
encodings with call-by-name, call-by-value, and call-by-need, for which we will adapt the encoding
of the λ-calculus given in [16].

A different line of work is inspired by work of the datatype-generic programming community
and the school of program calculation [2]. This prompts the investigation of visual fusion laws
for instance, which is a topic closely related to notions of contextual equivalence for interaction
nets [4].

53

Encoding Iterators in Interaction Nets 15

References

1. A. Asperti and S. Guerrini. The Optimal Implementation of Functional Programming Languages,
volume 45 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1998.

2. R. Bird and O. de Moor. Algebra of Programming. Prentice Hall, 1997.
3. L. Dami and D. Vallet. Higher-order functional composition in visual form. Technical report, 1996.
4. M. Fernández and I. Mackie. Operational equivalence for interaction nets. Theoretical Computer

Science, 297(1–3):157–181, February 2003.
5. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, 1989.
6. G. Gonthier, M. Abadi, and J.-J. Lévy. The geometry of optimal lambda reduction. In Proceedings of

the 19th ACM Symposium on Principles of Programming Languages (POPL’92), pages 15–26. ACM
Press, Jan. 1992.

7. K. Hanna. Interactive Visual Functional Programming. In S. P. Jones, editor, Proc. Intnl Conf. on
Functional Programming, pages 100–112. ACM, October 2002.

8. J. Kelso. A Visual Programming Environment for Functional Languages. PhD thesis, Murdoch
University, 2002.

9. Y. Lafont. Interaction nets. In Proceedings of the 17th ACM Symposium on Principles of Programming
Languages (POPL’90), pages 95–108. ACM Press, Jan. 1990.

10. S. Lippi. Encoding left reduction in the lambda-calculus with interaction nets. Mathematical Structures
in Computer Science, 12(6):797–822, 2002.

11. I. Mackie. The geometry of interaction machine. In Proceedings of the 22nd ACM Symposium on
Principles of Programming Languages (POPL’95), pages 198–208. ACM Press, January 1995.

12. I. Mackie. YALE: Yet another lambda evaluator based on interaction nets. In Proceedings of the 3rd
International Conference on Functional Programming (ICFP’98), pages 117–128. ACM Press, 1998.

13. I. Mackie. Efficient λ-evaluation with interaction nets. In V. van Oostrom, editor, Proceedings of the
15th International Conference on Rewriting Techniques and Applications (RTA’04), volume 3091 of
Lecture Notes in Computer Science, pages 155–169. Springer-Verlag, June 2004.

14. H. J. Reekie. Realtime Signal Processing – Dataflow, Visual, and Functional Programming. PhD
thesis, University of Technology at Sydney, 1995.

15. F.-R. Sinot. Call-by-name and call-by-value as token-passing interaction nets. In P. Urzyczyn, editor,
TLCA, volume 3461 of Lecture Notes in Computer Science, pages 386–400. Springer, 2005.

16. F.-R. Sinot. Token-passing nets: Call-by-need for free. Electr. Notes Theor. Comput. Sci., 135(3):129–
139, 2006.

54

Testing Erlang Refactorings with QuickCheck

Huiqing Li and Simon Thompson

Computing Laboratory, University of Kent, UK
{H.Li, S.J.Thompson}@kent.ac.uk

Abstract. Refactoring is a technique for improving the design of exist-
ing programs without changing their behaviour. Wrangler is a tool built
at the University of Kent to support Erlang program refactoring; the
Wrangler tool is written in Erlang.
In this paper we present the use of a novel testing tool, Quviq QuickCheck,
for testing the implementation of Wrangler. QuickCheck is a specification-
based testing tool for Erlang. With QuickCheck, programs are tested by
writing properties in a restricted logic, and using the tool these properties
are tested in randomly generated test cases.
This paper first gives overviews of Wrangler and Quviq QuickCheck,
then discusses the various ways in which refactorings can be validated,
and finally shows how QuickCheck can be used to test the correctness of
refactorings in an efficient way.

1 Introduction

Refactoring [7] is a technique for transforming program source code in such a
way that it changes the program’s internal structure and organisation, but not
external behaviour. The key characteristic that distinguishes refactoring from
general code manipulation is its focus on structural change, strictly separated
from changes in functionality. Functionality-preservation requires that refactor-
ings do not introduce (or remove) any bugs. Refactorings typically have two
apsects: program analysis is required to check that certain side-conditions are
met by the program in question in order for the refactoring to preserve behaviour,
and program transformation which carries out the actual program restructuring.
In a slogan: “Refactoring = Condition + Transformation”.

Refactorings can be done manually, but this can be tedious and error-prone for
small programs, and impractical for larger systesm. Software tools (“refactor-
ing engines”) can help programmers perform refactorings automatically, and are
available for a variety of languages, including Smalltalk, Java, C#, C++, Haskell
and Erlang. With a refactoring tool, the programmer only needs to select which
part of the program to be refactored and which refactoring to apply, and the
tool will automatically check the side-conditions and apply the transformations
throughout the whole program if the side-conditions are satisfied. Wrangler is
the tool that we are implementing to support refactoring Erlang [1] programs,
and this forms one aspect of ’Formally-Based Tool Support for Erlang Develop-
ment’1 [6], a joint research project between Universities of Kent and Sheffield.
1 FORSE is supported by EPSRC, UK.

55

Implementing a practical and usable refactoring tool for a real world program-
ming language is by no means trivial. A refactoring tool needs to get access
to the program’s syntax and static semantics (possibly including type informa-
tion), to implement different kinds of program analysis and transformation, and
to preserve the comments, and potentially, layout, of the transformed program.
Among other criteria, such as efficiency, usability and completeness, the reliabil-
ity of a refactoring tool is vital for it to be accepted in practice. A bug within a
refactoring tool can introduce bugs in the refactored programs silently, and such
bugs may be impossible to detect statically, if they result in a valid program
which behaves differently from the original.

The correctness of refactorings implemented can be ensured from several aspects
including, but not limited to, a clear specification clarifying the pre-conditions,
transformation rules, and/or post-conditions of each refactoring; a verification
that argues the correctness of the specification, and most importantly a thorough
testing of the refactoring tool. A traditional way of testing refactoring tools is
to create test cases manually. Each test case contains an input program, a refac-
toring command, and the expected result, which could be either the refactored
version of the input program or the original input program (along with a fail-
ure message) depending on whether the side-conditions are satisfied. Then these
tested cases are usually run with a Unit testing tool, such as EUnit [3] for Erlang.
Writing test cases manually is tedious and hard to cover all possible refactoring
scenarios. Incomplete test suite potentially leaves bugs in refactoring tools.

We present the technique of using Quviq QuickCheck [15], a tool developed by
Quviq AB, to automate the testing of Wrangler. Instead of writing small test
programs, we use real-world available Erlang programs as our refactoring input
programs. For example, one of the Erlang programs we have used is Wrangler
itself, which currently contains 25 modules. Quviq QuickCheck tests running
code against formal specification, using controllable random test case generation
combined with automated test case simplification to assist error diagnosis. With
Quviq QuickCheck, we automate the generation of refactoring commands and the
checking of refactoring outputs. Refactoring commands are generated randomly
using the information stored in the annotated abstract syntax tree (AAST) of
the input program. Along with the development of each refactoring, we write a
collection of properties that the refactoring should satisfy. Failing to meet one
or more of these properties indicates bugs in the implementation or properties.
Each time the testing is run, it generates 100 random refactoring commands,
applies each command to the input program, and checks that the properties
being tested return true in every case. This way, we are able to integrate the
specification and testing of refactorings very naturally.

The rest of the paper is structured as follows. In sections 2 and 3, we give
introductions to Wrangler and Quviq QuickCheck. Section 4 gives an overview
of the different ways in which refactoring engines can be tested, and in section 5
we explain our approach to testing Wrangler with QuickCheck, including the
generation of refactoring commands, and the kind of general properties that we

56

use to test refactorings. In section 6, as an example, we illustrate the testing of
renaming a function. In section 7, we give an evaluation of our approach; related
work is presented in section 8, and conclusions are drawn in section 9.

2 Wrangler – An Erlang Refactorer

Wrangler [10, 11] is the tool that we are building to provide support for interac-
tive refactoring of Erlang programs. The current version supports a small number
of basic Erlang refactorings, including renaming variable, function and module
names and generalisation of a function definition. More advanced refactorings
are being added.

Wrangler is built on top of the Erlang syntax-tools package [13] which provides
a representation of the Erlang AST within Erlang. syntax-tools allows syntax
trees to be augmented with additional information as necessary. The Wrangler
AST representation is annotated with a variety of information:

– Comments in the source code are inserted as attachments to the nodes in
the AST at the appropriate place.

– Each function or variable name is associated with its actual source loca-
tion and the location of its defining occurrence, thus reflecting the binding
structure of the program.

– The start and end location of each syntactic entity in the source code is also
stored in the augmented AST, allowing entities to be located by means of
their position, as well as supporting pretty-printing facilities.

– Category information indicating the kind of syntax phrase the AST node
represents, such as expression, function, pattern and so on is also included
in the tree.

– Finally, free and bound variable information is also attached to the AST
representation of each syntax phrase in the source code.

Wrangler is embedded in the Emacs editing environment; to manage communica-
tion between the refactoring engine and Emacs we make use of the functionalities
provided by Distel [12], an Emacs-based user interface toolkit for Erlang,.

To perform a refactoring with Wrangler, the focus of refactoring interest has to
be selected in the editor first. For instance, an identifier is selected by placing the
cursor at any of its occurrences; an expression is selected by highlighting it with
the cursor. Next, the user chooses the refactoring command from the refactor
menu, and inputs the parameter(s) in the mini-buffer if required. The Wrangler
tool checks that the focus item is suitable for the refactoring selected, that the
parameters are valid, and that the refactoring’s side-conditions are satisfied.

If all these checks are successful, then Wrangler will perform the refactoring,
and update the program with the new result, otherwise it will give an error
message, and abort the refactoring with the input program unchanged. The undo
operation is supported by Wrangler; applying undo once will revert the program
back to its state immediatlely before the last refactoring was performed.

57

Snapshots of Wrangler are given in Figures 1-2 with a particular refactoring sce-
nario showing the generation of function repeat/1 on the expression io:format("Hello").

Fig. 1. A snapshot of Wrangler Fig. 2. A snapshot of Wrangler show-
ing the result of generalisation

3 Quviq QuickCheck

Quviq QuickCheck is a property-based testing tool, developed from Claessen
and Hughes’ earlier QuickCheck tool for Haskell [4] re-designed for Erlang with
a number of extensions, of which the most significant is an ability to simplify
failing test cases automatically [15].

Quviq QuickCheck provides an API in Erlang that allows users to write prop-
erties that are expected to hold of programs; these properties are themselves
expressed as Erlang source code. QuickCheck also defines a variety of generators
and combining forms for generators by means of which the user can generate
test data of the appropriate type and distribution for their needs..

As an example, consider the standard list reverse function. One property of this
function is expressed thus:

prop_reverse() -> ?FORALL(Xs, list(int()),
list:reverse(list:reverse(Xs))== Xs).

As an abstract property, this says that reversing a list of integers twice has the
result of returning the original list. In QuickCheck, the functions int/0 and
list/1 are both data generators: int/0 generates random integers, and list/1
generates a list of elements generated by its argument. ?FORALL is an Erlang
macro: ?FORALL(X, Gen, Prop) binds X to a value generated by Gen within
the property Prop. The example property will be said to hold in QuickCheck if
list:reverse(list:reverse(Xs))== Xs) holds for all values of Xs generated
by list(int()).

58

The property is checked by running 100 random test cases generated by the
generators, and reports success if all test pass. If any test case fails, the (first
such) failing case will be printed. A failing test case indicates bugs in either the
implementation under test or the written properties. For example, testing the
following property against the standard function lists:delete/2

prop_list_delete()->
?FORALL(I, int(),

?FORALL(List, List(int()),
not (lists:member(I, lists:delete(I, List)))))

against the standard function lists:delete/2 might report

Failed! After 37 tests.
-8
[5, -8, 12, -8, 9]

as lists:delete(I, List) only removes the first occurrence of I in List. Once a
counterexample has been found, the shrinking functionality provided by Quviq
QuickCheck will allows QuickCheck to minimize the failing case as much as
possible. For the above example, the length of the counterexample data will be
reduced, and the output above would be augmented by

Shrinking......(6 times)
-8
[-8,8]

By writing properties in this style, a QuickCheck user can build up a formal
specification, which is then checked against the implementation by QuickCheck.
The mutual testing of implementation and specification ensures the correctness
of both.

In comparison with traditional automated testing, as provided by systems such
as EUnit [3], which runs the same set of tests repeatedly, QuickCheck allows the
user to run many different test with little effort, therefore has the potential to
find more bugs. It is, of course, possible to re-run tests simply by re-using a seed
value within the random generation, and so to ensure that regression testing
takes place if required.

The API provided by QuickCheck contains functions for generating both simple
and complex test data, according to distributions described by the user, as well
as providing macros for writing and testing properties. In the following sections,
an explanation will be given when an API function or macro is used.

4 Validating Refactoring Engines

Refactorings and refactoring engines can be validated in a number of different
ways. In this section we present an overview of the various approaches and their
pros and cons, before explaining our approach in more detail in the next section.

59

In checking whether the result of a refactoring has preserved behaviour, the
result naturally needs to compile and run without errors; in the remainder of
this section we assume that the results are also checked for being compilable as
well as being tested in various ways we discuss.

4.1 Regression testing of refactored programs

The most popular means of validating refactorings in current use is to ensure
that refactored code meets all the tests that the original version met. As OO
refactoring has been identified as one of the central characteristics of an extreme
programming approach, it is reasonable to assume that the test data will already
be in place, and so the advantage of this approach is that cost of testing the
refactored code is small. This approach means that the refactored code has the
same warranty as the original code.

The approach has two limitations. First, the coverage of the code is necessarily
partial, and so it is possible that bugs have been introduced in the untested parts
of the code. Also, the testing cost can be higher in cases where the test cases
have themselves to be refactored: for instance, if a function is generalised, then
it is necessary to add an extra datum to the test data for each function call.

4.2 Testing the old and new programs

A variant of the previous approach tests the two versions of the program against
each other: on input data taken from an existing test suite, the outputs from
two versions of the program can be compared directly. This approach is lower
cost in the case where there is no pre-exisiting test data, since it is not necessary
explicitly to state the output values corresponding to the various input data. A
disadvantage is that any framework needs to accommodate the co-existance of
two versions of the code under testt.

4.3 Programs as data

In contrast to the earlier approaches, it is possible to see the refactoring as a
program, and so to supply it with a set of input programs and the corresponding
output programs that are expect to result. Two variants of the check are possible:

– It is possible to analyse the abstract syntax tree (AST) resulting from the
transformation, and to compare this with the expected result. This neglects
the layout of the refactored program.

– In contrast, it is possible to specify the source code to be expected, with a
given program layout. This is a stronger test than the former; since it not
only prescribes the AST but also its particular layout, but this approach is
appropriate when refactoring code is expected to be laid out in a way that
will make it recognisable to its author.

60

This was the approach that we used first, using the Haskell package HUnit for
testing HaRe (the Haskell refactorer) [9], and EUnit for testing Wrangler.

In our experience, the main disadvantage of writing test cases under this ap-
proach is that it is very tedious, and hard to cover all the refactoring scenarios
especially when both the implementation and the test cases are written by the
same people. Hence we did not gain sufficient assurance about the correctness
of the refactorings implemented.

Other variants of this approach involve a degree of random generation; we will
explore our particular approach in the next section, and discuss related work in
section 8.

4.4 Program verification

Rather than using testing, it is possible to write formal proofs of correctness for
refactoring engines. Two approaches suggest themselves:

– It is possible to produce, program by program, separate proofs of equivalence
between the original and the refactored programs. Such proofs might be
generated by tactic-based proof descriptions, or result from a proof planning
process.

– Alternatively, the formal theorem proved can itself contain a quantifier over
all programs of a certain form (which are the input to the refactoring in ques-
tion). Preliminary work under this approach is to be found in Li’s thesis [8]
and the forthcoming thesis of Sultana [14].

This section has summarised various approaches to validating refactoring en-
gines; we next look at our particular work.

5 Testing Wrangler with QuickCheck

Before adopting QuickCheck as the test engine of refactorings, we used the unit
testing approach, as discussed in the previous section. We concluded that this
mechanism was not ideal, and so to improve the testing of Wrangler, we have
experimented with the idea of using Quviq QuickCheck as the test engine.

Under this approach, a collection of properties are written along with the imple-
mentation of each refactoring. These properties specify the conditions that must
be met by the program after the refactoring, in order for the transformation
to be behaviour-preserving. From the formal specification point of view, these
properties can be viewed as the post-conditions of a refactoring. While there are
some general properties which apply to most of the refactorings, for example,
all the programs after a refactoring must compile successfully, some properties
are particular to individual refactorings, especially those involving structural
changes to the program. Writing properties along with the implementation of
refactorings, we were able to make testing an integral part of the refactoring
development process.

61

Properties are tested on the refactored version of the input program. While
occasionally we have written a few small input programs to test a particular
case, mostly we use real-world Erlang programs as the testing code base. Before
the testing of a specific refactoring, the code base should be carefully examined
to make sure that enough refactoring scenarios are covered in the program. For
example, to test a refactoring involving the communication between processes, we
should choose those programs that contain plenty use of process communications;
and to test a refactoring that transforms a tuple to a record, we need to make
sure that tuples and records are reasonably used in the test program.

Once the test program has been chosen, refactoring commands are automati-
cally generated using the information stored in the annotated abstract syntax
tree (AAST) of the test program. Each run of the testing generates 100 refactor-
ing commands. Both the generation of refactoring commands and the creation of
properties make use of the Wrangler infrastructure API, which provides program-
mer access to the infrastructure on which Wrangler is built. As the infrastructure
has been more thoroughly tested, we trust its robustness in this exercise. Alter-
natively, we can also test an API function exposed by the infrastructure using
the same approach.

More about the generation of refactoring commands and the creation of proper-
ties are discussed in the following two sub-sections. Following that, as an exam-
ple, testing the renaming a function refactoring is examined in more detail.

5.1 Generation of Refactoring Commands

In Wrangler, a refactoring command normally contains the refactoring name,
the name of the source file under refactoring, the focus of the refactoring which
can be a location/range in the program source code, and some user inputs. For
example, the refactoring renaming a function has the following interface:

rename_fun(FileName, SrcLoc={Line, Col}, NewName, SearchPaths)

where FileName is the name of the file containing the definition of the function
to be renamed; SrcLoc, which is a tuple containing a line and a column number,
represents the location of one of the occurrences of the function name in the
source; NewName is the new function name, and SearchPaths specifies where to
search for those files that could possibly use this function; this is needed when
the function to be renamed is exported the module in which it is defined.

As another example, the refactoring generalisation of a function definition has
the following interface:

generalise_fun(FileName, Range={StartLoc, EndLoc}, ParName)

where FileName is the name of the source file containing the definition of the
function to be generalised; Range represents the start and end location of the se-
lected expression in the source, and ParName is the new parameter name. A func-
tion can be generalised by making an identified sub-expression of its right-hand

62

side into a value passed into the function via a new formal parameter. In Wran-
gler, this refactoring only affects the current module, therefore the SearchPaths
is not needed.

Next, we return to the ‘renaming’ example to explain how refactoring com-
mands can be generated. If a specific file is used as the input program, then the
FileName is fixed, otherwise a file can be randomly chosen from a directory for
each refactoring command. Given a directory that contains some Erlang source
files, the following function serves to select an Erlang file from it.

gen_filename(Dir) ->
{ok,Files} = file:list_dir(Dir),
ErlFiles = [F|| F <-Files, filename:extension(F)==".erl"],
oneof(ErlFiles).

where the function oneof/1 is a QuickCheck API function which generates a
value using a randomly chosen element of a list of generators; in this example,
all the list elements are constant generators.

Instead of generating source locations using the integer generators provided by
Quviq QuickCheck, the value of SrcLoc is generated based on the location infor-
mation stored in the AAST representation of the chosen Erlang file. As discussed
earlier, in the AAST representation of an Erlang file, each occurrence of a func-
tion name is associated with its location in the source, the name of the module
in which it is defined, as well as its defining location in that module.

To generate a source location, we first collect all those locations which are associ-
ated with the occurrences of the function names defined in this file, then choose
one from the collection randomly. This way, we can make sure that selected lo-
cation points to a function name defined in the current module. In order to test
the case when the user deliberately points to a location in the source which does
not correspond to a function name defined in the module, we can always add a
fake location to the collection of real ones, or generate one at random. Again,
the QuickCheck API function oneof/1 is used.

Some refactorings ask the user to input a new name. For example, to rename
a function, the user needs to input the new function name; and to generalise a
function definition, the user has to input a new variable name. In order to cover
test cases in which name conflict/shadow occurs, identifier names are generated
from both pre-created names and those used in the program source.

The following function generates refactoring commands for renaming a function.

rename_fun_commands(Dir) ->
?LET(FileName, gen_filename(Dir),
{FileName,
oneof(collect_fun_locs(FileName)),
oneof(collect_names(FileName)),
Dir}).

63

In the above function, Dir specifies where to look for Erlang files to refactor;
?LET is a macro provided by Quviq QuickCheck (?LET(Pat, G1, G2) generates
a value from G1, binds it to Pat, then generates a value from G2 which may
refer to the variables bound in Pat); function collect fun locs/1 adds all the
locations where a locally defined function name occurs in the selected Erlang file
to a list of default locations; collect name/1 adds all the function names that
occur in the source to a list of pre-created identifiers, and as last, we assume that
Dir is the only directory to search for those files that would possibly affected by
the refactoring.

Suppose that the testing directory is "c:/wrangler-0.1/test", which has three
Erlang files, the following shows part of the refactoring commands generated by
the above function in one run of QuickCheck.

1% {"test.erl",{3,1},module,"c:/wrangler-0.1/test"}
1% {"refac_rename_fun.erl",{243,64},halt,"c:/wrangler-0.1/test"}
1% {"refac_qc.erl",{184,48},ordsets,"c:/wrangler-0.1/test"}
1% {"test.erl",{5,39},"DDD","c:/wrangler-0.1/test"}
1% {"refac_qc.erl",{366,30},get_pos,"c:/wrangler-0.1/test"}
1% {"refac_rename_fun.erl",{117,33},purge_module,"c:/wrangler-0.1/test"}

As an example, the first command should rename the function whose name
occurs at the location: {line: 3, column: 1} in file test.erl to the new name
module, and search the directory "c:/wrangler-0.01/test" for files in which
the function is used, if the function is exported. The percentage at the beginning
of each line shows the proportion of the total represented by the command.

5.2 Properties

Formally specified or not, each refactoring comes with a set of pre-conditions,
which embody when a refactoring can be applied to a program without chang-
ing its meaning; a set of transformation rules which states how the program
should be transformed to fulfil the refactoring while keeping the program’s se-
mantics unchanged; and a collection of post-conditions which articulate some
properties the program should hold after the refactoring has been done. While
the pre-condition checking and transformation rules are always explicitly imple-
mented, the checking of post-conditions are normally ignored by the developers
of refactoring tools as we assume that the pre-conditions and transformation
rules together should guarantee the post-conditions.

With the QuickCheck testing approach, we can test most of these post-conditions
explicitly. Ideally, one post-condition that applies to any refactoring is that the
input program and its refactored version should have the same semantics; how-
ever whether two programs have the same semantics is in general not decidable.
Furthermore, even the two programs do have the same semantics, the refactor
still might not have performed the anticipated change on the program correctly.
For example, a buggy refactoring could return the input program unchanged

64

without an error message. Therefore, instead of checking two programs having
the same semantics, we test a number of properties which are decidable.

There are a couple of basic properties that should hold by all the refactorings:

– first, the refactoring engine should not crash, i.e. the refactorer should not
terminate with an uncaught exception;

– second, if the refactoring has finished without giving an error message, then
the refactored version of the program should compile successfully (Wrangler
only refactors programs that compile).

Refactorings are normally bi-directional. Given a refactoring that transforms a
program from P to P ′, we can generally find another refactoring that transforms
program P ′ to P . For example, renaming an entity in a program from A to B,
then renaming it back to A, should produce the original program; as another
example, first generalising a function definition over an expression, then spe-
cialising the function on the newly added parameter with the expression should
always produce the original function. This feature of refactoring allows us to
write properties that embody mutual testing of refactorings.

During the implementation of Wrangler, we always try to separate the pre-
condition checking part from the transformation part. One of the benefits of
doing this is that it allows the mutual testing of condition-checking and trans-
formation. For example, performing the transformation with the knowledge that
some of necessary side-conditions are not satisfied should either make the refac-
toring engine crash or violate some post-conditions in the case that the trans-
formation (apparently) succeeds.

Apart from those general post-conditions that apply to most of refactorings, each
refactoring also has it own particular post-conditions, especially those concerning
structural change of the program, as different refactorings change the program
structure in different ways. For some refactorings, there may also be special con-
straints that should hold during the transformation. For example, some refac-
torings are supposed to keep the program’s module interface unchanged; while
others are supposed to keep some particular function interfaces unchanged. All
the constraints can be expressed as QuickCheck properties.

In the following section, we again take the renaming a function refactoring as
an example to illustrate how properties can be specified and tested.

6 An Example: Testing Renaming a Function

Renaming a function is one of the most basic, but very useful, refactorings,
supported by almost all the existing refactorers. This refactoring renames a
user-selected function name to a new name and updates all the references to
it. When the renamed function is exported by the module, this function could
potentially affect every module in the program. Suppose the old and new function
names (with arity) are bar/n and foo/n respectively, then the side-conditions
on renaming a function are as follows.

65

1. The new name should be a lexically valid function name, otherwise the trans-
formed program will not compile.

2. No binding for foo/n may exist in the same scope. This condition avoids
name conflict in the scope where bar/n is defined, and violating this condi-
tion will result in the transformed program failing to compile.

3. No binding for foo/n may intervene between the binding of bar/n and any
of its uses, and the binding to be renamed must not intervene between ex-
isting bindings and the uses of foo/n.
This condition avoids name capture, and violating this condition will lead to
the binding structure of the program being changed silently. (‘Binding struc-
ture’ here refers to the association of uses of identifiers with their definitions
in a program, and is determined by the scope of the identifiers).

4. Callback functions should not be renamed.

To check the correctness of the implementation, we focus on the defining prop-
erties depending on whether the refactoring succeeds or not. If the refactoring
completes without giving an error message, we then test the following properties.

– Renaming the new function back to its original name should affect the same
set of Erlang files in the application, and produce the original program. This
property also implies the condition that the refactored version of the program
should compile without errors.

– The function-level binding structure of the refactored version of the program
should be the same as, or isomorphic to, that of the original program.
Unlike some functional languages that allow nested function definitions, Er-
lang has a very straightforward function defining structure. In Erlang, all
named functions are top-level functions. The function-level binding struc-
ture of an Erlang program can be represented as a list of tuples:

B = [{{M1, Loc}, {M2, Id,A}}]

and {{M1, Loc}, {M2, Id,A} ∈ B if and only if the function name Id, which
occurs in module M1 at location Loc, refers to the function defined in M2

whose name is Id and arity is A.
Suppose the function bar/1 defined in module N is renamed to foo/1, and
the binding structures of the program before and after the refactoring are B
and B′ respectively, then replacing all the occurrences of {N, foo, 1} in B′

with {N, bar, 1} should produce B.
– The programs before and after the refactoring should have the same set of

callback functions if which functions are callback functions has been explic-
itly specified in the program.

If the refactoring fails because of one of the side-conditions fails, then the neces-
sity of the side-condition can be also be tested. For example

– Transforming the program when the side-condtion 1 or 2 does not hold should
produce a program that does not compile.

66

– Transforming the program when the side-condition 3 does not hold should
produce a program that compiles but has a different function-level binding
structure.

A simplified version of the top-level function for testing renaming a function
is given in figure 3. To make it easier to read, we have omitted the part that
handles client modules, however this should not affect the idea expressed by this
function.

7 Evaluation of Approach

A number of other refactorings have been tested using this approach, includ-
ing renaming a variable name, and generalisation of a function definition. We
actually started to use Quviq QuickCheck after the first preliminary release of
Wrangler, which was tested on a number of small test cases using EUnit, and
was also manually tested on a large code base.

Even so four bugs were found within the first release of Wrangler in a short time.
All these bugs escaped the pre-release testing due to the incomplete coverage of
the testing suite. Among these bugs, one silently changed the binding structure
of the program when the generalisation refactoring is applied, and was detected
by the reversibility property we wrote for this refactoring; the other three bugs
were all caught by the very basic properties, for example, one bug caused the
refactoring engine to crash because of an unmatched case clause; and another
caused the refactored code fail to compile because of the improper handling of
generalisation on operators.

From our experience so far, the advantages of the QuickCheck approach are as
follows:

– We are able to make the development of refactorings and their testing very
closely integrated. The meaning of each refactoring was further clarified by
the mutual testing of the implementation and the specification.

– Once properties have been written, many different test cases can be run
with very little effort, instead of repeating the same set of tests cases every
time. As any Erlang programs can serve as the test program, we can run the
testing on as many test programs, especially large programs, as possible.

– Because of the random generation of refactoring commands, and the large
amount of tests we can run, more refactoring scenarios will be covered, there-
fore increasing the possibility of finding more bugs. At this point, one might
think of the exhaustive testing of refactorings. While it is possible to enumer-
ate all the possible refactoring commands when the input program is very
small, it is not practical with large input programs due to the huge amount
of refactoring commands that could be generated.

While properties can be written separately from the implementation of refac-
torings, these properties normally make use of the infrastructure on which the
refactorings are built, therefore familiarity with the infrastructure is essential for
the testing using this approach.

67

qc_rename_fun(Dir) ->
F = ?FORALL(C, (rename_fun_commands(Dir)),
begin

[FileName, SrcLoc, NewName, SearchPaths] = C,
%% backup the current version of the program.

file:copy(FileName, "temp.erl"),
%% get the function name (with arity) to be renamed.

Mod, FunName, Arity = pos_to_fun_name(FileName, SrcLoc),
%% calculate the binding structure of the current program.

B1 = fun_binding_structure(FileName),
%% get the name of the callbacks functions if there is any.

CallBacks = get_callback_funs(FileName),
%% apply the refactoring command to the source.

Res = apply(refac_rename_fun, rename_fun, C),
case Res of

%% ChangeFiles contains the names of those files
%% that have been affected by this refactoring.

ok, ChangedFiles -> %% refactoring completed successfully.
B2 = fun_binding_structure(FileName), %% new binding structure.

%% get the name of the callback functions if there is any.
CallBacks1 = get_callback_funs(FileName),
C1 = [FileName,NewName, Arity, FunName, SearchPaths],

%% rename the function back to its original name.
%% we cannot use location as it might have been changed.

ok, ChangedFiles1 = apply(refac_rename_fun, rename_fun_1, C1),
%% property1: renaming in both directions affect the same set of files.

prop1 = ChangedFiles == ChangedFiles1,
%% property2: rename twice should returns to the original file.

Prop2 = pretty_print(FileName) == pretty_print("temp.erl"),
%% property 3: B1 and B2 are isomorphic.
%% rename/3 replaces Mod, FunName, Arity with Mod, NewName, Arity in B1

Prop3 = B2== rename(B1, Mod, FunName, Arity, Mod, NewName, Arity),
%% property 4: the same set of callback functions.

Prop4 = CallBacks == CallBacks1,
%% recover the original program for the next refactoring command.

file:copy("temp.erl", FileName),
Prop1 and Prop2 and Prop3 and Prop4;

error,ErrorMsg -> %% refactoring failed with an error message.
%% carry out the transformation even though the side-conditions
%% do not held; do_rename_fun/4 transforms the program.

_Res = apply(refac_rename_fun, do_rename_fun, C),
case ErrorMsg of

1, _R1 -> %% failed for side-condition 1;
%% the transformed program should not compile.

file:copy("temp.erl", FileName),
error, _Reason = get_AST(FileName), true;

2, _R2 -> %% failed for side-condition 2;
file:copy("temp.erl", FileName),
error, _Reason = get_AST(FileName), true;

3, _R3 -> %% failed for side-condition 3;
%% the transformed program should compile, but the new
%% binding structure is not isomorphic to the original one.

ok, _AST = get_AST(FileName),
B2 = fun_binding_structure(FileName),
file:copy("temp.erl", FileName),
B2 /= rename(B1, Mod,FunName, Arity,Mod, NewName, Arity)

end end end),
qc:quickcheck(F).

Fig. 3. The top-level function for testing renaming a function

68

8 Related Work

A number of case studies regarding to using Quviq QuickCheck or its predecessor
as the test engine have been done and reported, among which one to test an
industrial implementation of the Megaco protocol, and faults that have not been
detected by other testing techniques were found [2]. This case study also shows
the power of shrinking provided by Quviq QuickCheck, and one example is that
a test case consisting of a sequence of 160 commands was reduced to just seven.
Because of the simplicity of the refactoring commands in our case, we have not
exploited the benefit of shrinking so far.

The most closely related work on the automated testing of refactorings is the
approach of Daniel et. al. [5]. The core of this approach is ASTGen, a library
for generating abstract syntax trees (ASTs) for Java programs. ASTGen allows
the developer to write imperative generators whose executions produce abstract
syntax trees(ASTs) for refactoring engines. To test a refactoring, a developer
writes a generator whose execution produces thousands of programs with struc-
tural properties that are relevant for the specific refactoring being tested. Several
kinds of properties (oracles) have also been created to automatically check that
the refactoring engine transformed the generated program correctly. Compared
with approach, our approach is more lightweight, however a developer does need
to make sure that the testing code base covers enough structure features and
refactoring scenarios for the refactoring under testing.

9 Conclusion

Refactoring tools ought to allow program developers to quickly and safely refac-
tor their program, especially large programs. However, a robust and safe refac-
toring tool is hard to develop, and most refactoring tools still contain bugs even
after extensive testing. While unit testing does help to find bugs in refactoring
tools, it is tedious to manually write test programs, and the coverage of the test
cases is hard to guarantee, and it is even harder to test refactoring tools on large
systems.

We have explored the idea of using Quviq QuickCheck to automate the testing
of refactorings. In this approach, the correctness of refactorings is tested against
specifications written in Erlang. Once a test program has been chosen, we auto-
mated the generation of refactorings commands and the checking of refactoring
outputs. Within a short time, a number of bugs were found in the first release
of Wrangler using this approach.

We envisage exploring a number of further ideas for automated testing of refac-
torings using QuickCheck.

– One of the options followed by Daniel et. al. in [5] is to compare the effect
of two refactoring engines, namely Eclipse and NetBeans for Java. We will
explore this option for Wrangler and the refactoring engine built by the
group at Eötvös Loránd University, Budapest [11].

69

– We have not addressed the behaviour checking of programs; it would nev-
ertheless be possible to extend our work to check the results of refactorings
against their original version using randomly-generated input values.

– We have assumed the correctness of our infrastructure library; it would be
instructive to express and then to test crucial properties of the functions in
this library.

We also intend to provide an API to help the specification of properties in the
context of refactorings, and we would also like to adopt this approach to test
our Haskell refactoring tool, HaRe.

References

1. Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Concurrent
Programming in Erlang. Prentice-Hall, second edition, 1996.

2. Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. Testing Telecoms
Software with Quviq QuickCheck. In Phil Trinder, editor, Proceedings of the Fifth
ACM SIGPLAN Erlang Workshop. ACM Press, 2006.

3. Richard Carlsson and Mickaël Rémond. Eunit: a lightweight unit testing framework
for erlang. In ERLANG ’06: Proceedings of the 2006 ACM SIGPLAN workshop
on Erlang, pages 1–1, New York, NY, USA, 2006. ACM Press.

4. Koen Claessen and John Hughes. QuickCheck: a Lightweight Tool for Random
Testing of Haskell Programs.

5. Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated testing
of refactoring engines. In ESEC/FSE 2007: Proceedings of the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, New York, NY, USA,
September 2007. ACM Press.

6. FORSE. Formally-Based Tool Support for Erlang Development.
http://www.cs.kent.ac.uk/projects/forse/.

7. Martin Fowler. Refactoring Home Page. http://www.refactoring.com.
8. Huiqing Li. Refactoring Haskell Programs. PhD thesis, Computing Laboratory,

University of Kent, Canterbury, Kent, UK, September 2006.
9. Huiqing Li, Claus Reinke, and Simon Thompson. Tool Support for Refactoring

Functional Programs. In Johan Jeuring, editor, ACM SIGPLAN Haskell Work-
shop, Uppsala, Sweden, August 2003.

10. Huiqing Li and Simon Thompson. A Comparative Study of Refactoring Haskell
and Erlang Programs. In Massimiliano Di Penta and Leon Moonen, editors, Sixth
IEEE International Workshop on Source Code Analysis and Manipulation (SCAM
2006), pages 197–206. IEEE, September 2006.

11. Huiqing Li, Simon Thompson, László Lövei, Zoltán Horváth, Tamás Kozsik, Anikó
Vı́g, and Tamás Nagy. Refactoring Erlang Programs. In The Proceedings of 12th
International Erlang/OTP User Conference, Stockholm, Sweden, November 2006.

12. Luke Gorrie. Distel: Distributed Emacs Lisp (for Erlang).
13. Richard Carlsson. Erlang Syntax Tools. http://www.erlang.org/doc/doc-

5.4.12/lib/syntax tools-1.4.3.
14. Nik Sultana. Verification of Refactorings in Isabelle/HOL. Master’s thesis, Com-

puting Laboratory, University of Kent, UK, September 2007.
15. Thomas Arts and John Hughes. Erlang/Quickcheck. In Ninth International Er-

lang/OTP User Conference.

70

Call Graphs, Dominator Trees, and

Lambda Lifting

Marco T. Morazán and Ulrik P. Schultz

Seton Hall University, South Orange, NJ, USA
morazanm@shu.edu

University of Southern Denmark, Odense, Denmark
ups@mmmi.sdu.dk

Abstract. The process of lambda lifting flattens a program by lifting all
local function definitions to the global level. Optimal lambda lifting com-
putes the minimal set of extraneous parameters needed by each function
as is done by the O(n3) equation-based algorithm proposed by Johns-
son. In contrast, modern lambda lifting algorithms have used a graph-
based approach to compute the set of extraneous parameters needed by
each function. Danvy and Schultz proposed an algorithm that reduced
the complexity of lambda lifting from O(n3) to O(n2). Their algorithm,
however, is an approximation of optimal lambda lifting. Morazán and
Mucha proposed an optimal graph-based algorithm at the expense of
raising the complexity to O(n3). Their algorithm, however, suggested
that dominator trees might be used to develop an O(n2) algorithm. This
article explores the relationship between the call graph of a program, its
dominator tree, and lambda lifting by developing algorithms for succes-
sively richer sets of programs. The result of this exploration is an O(n2)
optimal lambda lifting algorithm.

1 Introduction

The process of lambda lifting flattens a program by lifting all local function
definitions to the global level. In order to perform this program transformation
the free variables of a function, f , and a subset of the free variables transitively
needed by its callees, must be added as formal parameters to f before it can
be lifted to the global level. That is, f must be made scope insensitive before it
can be moved to the global level. Free variables must be explicitly passed to f ,
because at runtime the lifted version of f does not have the benefit of a closure
to store the bindings of the free variables.

This program transformation technique is important for restructuring func-
tional programs written for the web [7], for partial evaluators [1], and for efficient
compilation [10]. Lambda lifting and its inverse lambda dropping [2] are also im-
portant for improving the performance of compiled programs by providing a
mechanism through which the number of parameters of a function can be op-
timized for the target machine. For example, functions with a large number of
parameters (which are handled poorly by most compilers) can be transformed to

71

have fewer parameters [2]. Danvy and Schultz also point out that in the context
of teaching lambda lifting and lambda dropping are useful by offering differ-
ent views of programs that help students understand lexical scoping and block
structure [2].

The computation of the set of free variables needed by a lifted function makes
lambda lifting difficult. Modern graph-based approaches [3, 9] tackle the problem
by transforming the call graph of a program into a directed acyclic graph that
is used to propagate free variables. The algorithm developed by Danvy and
Schultz [3] improves the complexity of Johnsson’s [8] lambda lifting algorithm
from O(n3) to O(n2). Their algorithm, however, is not optimal because it may
unnecessarily increase the arity of lifted functions. The algorithm developed by
Morazán and Mucha [9] makes graph-based lambda lifting optimal at the cost
of increasing its complexity to O(n3).

In this article, we first review Johnsson’s (J), Danvy’s and Schultz’s (DS),
and Morazán’s and Mucha’s (MM) lambda lifting algorithms. At the end of this
review, we present a new insight that simplifies the presentation and the imple-
mentation of graph-based lambda lifting by using a depth-first traversal instead
of a breadth-first traversal to propagate free variables. The article then explores
the relationship between call graphs, dominator trees, and lambda lifting. The
result of this exploration is an optimal O(n2) lambda lifting algorithm. Although
the discussion is technically intricate at some points, the resulting algorithm is
simple and elegant. The presentation of all algorithms assumes that all variable
names are unique. Programs for which this does not hold can easily be trans-
formed by generating a fresh identifier for repeated identifiers [4]. The article
ends with some concluding remarks and directions of future work.

2 Lambda Lifting Algorithms

In this section, we first describe previous lambda lifting algorithms. We then
present a new insight that simplifies the implementation of graph-based lambda
lifting by using a depth-first traversal instead of a breadth-first traversal. The
section ends with an illustrative example.

2.1 Johnsson’s Algorithm

In the J-algorithm, the source program is traversed top-down to compute the
required (i.e. minimal) set of extraneous parameters needed by each function.
For any given function, f , the equation for the required set of free variables of
f , Rf , is given by:

Rf = FVf ∪ ((∪g∈FFf
Rg) ∩ SVf)

where FVf is the set of free variables directly referenced by f , FFf is the set of
functions referenced by f , and SVf is the set of variables defined in f ’s enclosing
scope. Mutually recursive functions give rise to a system of mutually recursive
equations which is solved by traversing down the parse tree. Once Rf is known

72

it is used to compute the minimal set of free variables for functions declared
further down the program’s parse tree.

2.2 Danvy’s and Schultz’s Graph-Based Lambda Lifting

To perform lambda lifting in quadratic time, a program is represented as a call
graph. Each node in this graph represents a function. An edge from f to g means
that there is a reference to g in the body of f . Mutually recursive functions give
rise to strongly connected components (akin to Johnsson’s mutually recursive
equations). Danvy and Schultz observed that a function, f , in a strongly con-
nected component can be given as extraneous parameters the set of free variables
lexically visible to f found in the union of the free variables of the functions that
constitute the component. Therefore, strongly connected components can be co-
alesced in the call graph of a program to yield a directed acyclic graph that is
traversed to propagate free variables between nodes.

2.3 Morazán’s and Mucha’s Graph-Based Algorithm

Morazán and Mucha observed that using strongly connected components to
propagate free variables may result in an approximation of the required set of
extraneous parameters needed by lifted functions. Unnecessary extraneous pa-
rameters may be added to lifted functions for two reasons. The first reason is
that functions can be members of a strongly connected component that contains
nested strongly connected components and that also contains functions defined
at different levels in the program. Suppose f is defined at level n in the parse
tree of a program and that there are m disjoint sets of functions (modulo f),
D1...m, defined at any level greater than n (i.e. in the parse tree of the program f

is an ancestor of these functions) such that f dominates all paths from functions
in Di to functions in Dj , i 6= j. In such a scenario, f may declare variables that
are free1 for functions in Di that are not needed as extraneous parameters by
functions in Dj and viceversa. This may occur, for example, when f is contained
in two independent loops (modulo f).

The second reason is that a variable, x, declared by f that is free in Di

may not be needed as an extraneous parameter by all the functions in Di. For
example, let f and g be members of the same loop such that x is known to be free
in g and is declared by f . The variable x only needs to be carried by successors
of g if there is a path, that does not contain f , from g to another function where
x is directly referenced. This follows from the observation that the successors of
g do not need to make x available to any other function if such a path does not
exist. Thus, these successors do not require x as an extraneous parameter.

The MM-algorithm is an improvement of the DS-algorithm that reduces the
arity of lifted functions by computing the minimal set of extraneous parameters
needed by each lifted function, as is done by the J-algorithm, based on the ob-
servations above. Extraneous parameters are reduced by splitting the strongly

1 We call such free variables local to the strongly connected component.

73

(define (f x)
(define (g . . .) (. . . (i. . .). . .))
(define (h . . .) (. . .x. . .))
(define (i . . .(h. . .). . .))
(. . .(g. . .). . .(h. . .). . .))

Fig. 1. Sample Scheme-like Code.

fx

g hx

i

Fig. 2. Call Graph for Figure 1.

connected components of a call graph that contain functions defined at different
levels in the program’s parse tree into multiple components based on its nested
strongly connected components and by ignoring edges into a dominating func-
tion that are internal to any such component after the split. Splitting strongly
connected components into multiple components guarantees that free variables
local to a component (e.g. declared by the dominating function) do not prop-
agate between nested strongly connected components. Ignoring internal edges
into the dominating function of a nested strongly connected component guar-
antees that a free variable local to a component is not propagated beyond the
last function that references it in a loop. This occurs, because the removal of
such edges eliminates the loop and, therefore, these functions no longer consti-
tute a strongly connected component and do not have to receive the same set of
extraneous parameters.

2.4 A Simplifying Insight

The graph-based lambda lifting algorithms developed to date use the reversed
breadth-first ordering of the nodes of an acyclic graph to ensure that a node is
only processed once all of its successors in the call graph have been processed.
Successor nodes must be processed first, because the required set of free vari-
ables of predecessor nodes depends on them. The use of this ordering, however,
requires that special attention be paid to calls from functions appearing late
in the breadth-first ordering to functions appearing early in the breadth-first
ordering.

To illustrate the problem consider the Scheme-like code in Figure 1 and its
diamond-shaped call graph in Figure 2. In this graph the function f declares
x (noted as right superscript) and x is free in h (noted as a right subscript).
The breadth-first ordering of the nodes is: {f, g, h, i}2. There are no strongly
connected components and, thus, nothing to coalesce. Having an acyclic graph
means that free variables ought to be propagated from callees to callers in a
reversed breadth-first order. For our example that order is: {i, h, g, f}. If free
variables are simply propagated from callees to callers nothing propagates from
i to g, from h the free variable x propagates to i and nothing propagates to f ,
and nothing propagates from g to f . The end result would be that x is identified
as a free variable for h and i, but not for g which also needs x as a free variable.

2 The breadth-first ordering could also be {f, h, g, i}, but this is irrelevant for our
purposes.

74

fx,y

gx hy

i

Fig. 3. Strongly Connected Component Functions Require Different Free Variables.

To avoid this pitfall, the DS-algorithm unifies local free variables with those of
the immediate successors in the graph. Thus, x propagates from i to g when g

is processed.

We observe that if the graph is acyclic, as is always the case after coalescing
strongly connected components, then a depth-first traversal of the graph can be
used to propagate free variables: every time the process pops back from a node
to its antecessor free variables are propagated. This ensures that all successors
are processed before a caller is processed. For the call graph in Figure 2, a
depth-first traversal follows the path f → g → i → h. The free variable x is
propagated back through this path from h to i and finally to g. The depth-
first traversal then proceeds down the path f → h and nothing is propagated
from h to f before terminating. Although the result is the same as using the
reversed breadth-first ordering, this process is more elegant and simplifies the
implementation of lambda lifting.

Propagation using a depth-first traversal instead of a reversed breadth-first
ordering is still proportional to the number of function calls and the number
of declared variables in the program. Therefore, the DS-algorithm is still O(n2)
when using a depth-first traversal for propagation.

2.5 An Illustrative Example

Consider the call graph displayed in Figure 3 in which each node is labeled with
the name of a function. As before, the superscript at the right of each function
is the set of variables declared by the function and the subscript at the right of
each function is the set of free variables referenced by the function. Assume that
g, h, and i are local to f .

J-Algorithm The free variables of each function are computed as the lambda
lifting process descends down the parse tree of the program. First, at the top-
most level of the parse tree, the free variables of f are computed by solving the
following equation:

Rf = FVf ∪ ((∪gǫF Ff
Rg)

⋂
SVf)

Since FVf = SVf = ∅, we may conclude that Rf = ∅.
At the next level of the parse tree, the free variables equations to solve are:

75

Rg = FVg ∪ ((∪jǫF FgRj) ∩ SVg)
= {x} ∪ {Ri ∩ {x, y}}
= {x} ∪ {{FVi ∪ ((∪jǫF Fi

Rj) ∩ SVi)} ∩ {x, y}}
= {x} ∪ {{∅ ∪ {Rf ∩ {x, y}}} ∩ {x, y}}
= {x} ∪ {∅ ∪ {∅ ∩ {x, y}} ∩ {x, y}}
= {x}

Rh = FVh ∪ ((∪jǫF Fh
Rj) ∩ SVH)

= {y} ∪ {Rf ∩ {x, y}}
= {y} ∪ {∅ ∩ {x, y}}
= {y} ∪ ∅
= {y}

Ri = FVi ∪ ((∪jǫF Fi
Rj) ∩ SVi)

= ∅ ∪ {FVf ∩ {x, y}}
= ∅ ∪ {∅ ∩ {x, y}
= ∅ ∪ ∅

= ∅

Notice that x is not identified as an extraneous parameter for h and that y

is not identified as an extraneous parameter for g and i. Furthermore, x is not
identified as an extraneous parameter for i. This occurs, because the extraneous
parameters needed by f , an ancestor of g, h, and i in the program’s parse tree,
are computed before the extraneous parameters needed by g, h, and i. Thus, the
members of FFf are not explored during the computation of Rg, Rh, and Ri

and do not contribute extraneous parameters to g, h, and i.

DS-Algorithm The DS-algorithm coalesces the strongly connected components
in the call graph of a program. For the call graph in Figure 3 this means that
all the functions are coalesced into one node. The union of all the free variables
of the functions in the node (i.e. f , g, h, and i) is taken. For each function, the
lexically visible variables in this union become parameters to the lifted functions.
That is, {x, y} are identified as extraneous parameters for g, h, and i.

In contrast with the results obtained with the J-algorithm, notice that more
extraneous parameters are identified for g, h, and i. This occurs because the
coalesced strongly connected component has a function (i.e. f) that declares
variables that are free in other functions in the strongly connected component
and that dominates all the paths between mutually exclusive subsets of func-
tions (i.e. {g, i} and {h}). Coalescing such a strongly connected component is
equivalent to not computing the extraneous parameters of ancestor functions in
the parse tree before computing the extraneous parameters of any descendants
as is done in the J-algorithm. Thus, the descendants of an an ancestor function
can all unnecessarily contribute extraneous parameters to each other.

MM-Algorithm If a strongly connected component contains functions defined
at different levels in the parse tree, the MM-algorithm splits strongly connected
components based on nested strongly connected components and ignores edges
to the dominating function of the strongly connected component. The call graph
in Figure 3 is split into two components displayed in Figure 4.

76

fx,y gx i fx,y hy

Fig. 4. MM-algorithm components for the call graph in Figure 3.

This disconnected graph is used to propagate free variables. Notice that the
dominating ancestor function, f , is a member of two components, thus, prevent-
ing its descendants from unnecessarily contributing free variables to each other.
By ignoring the edges into f in Figure 3, the nested strongly connected compo-
nents cease themselves to be strongly connected. During the depth-first traversal
for the propagation of free variables, y is not unnecessarily propagated to g and
i, and x is not unnecessarily propagated to h and i. Notice that within the loop
formed by {f, g, i} only g requires and receives x as an extraneous parameter.
This algorithm yields the same results as the J-algorithm.

3 Call Graphs and Dominator Trees

The key lessons that must be highlighted from the previous section are:

1. J-algorithm: The set of extraneous parameters for an ancestor function in
a parse tree must be known before finalizing the computation of the set of
extraneous parameters for any descendant function.

2. DS-algorithm: Lambda lifting can be done using a graph-based approach.
Furthermore, functions in a strongly connected component of a call graph
that do not have references to any free variables local to the component
can be coalesced. These functions all require the same set of extraneous
parameters.

3. MM-algorithm: Strongly connected components of a call graph that have
an ancestor function that dominates the paths between disjoint sets of func-
tions in the component must be split in order to avoid descendant functions
from unnecessarily contributing free variables to each other. Furthermore,
simple loops on a dominating function must be dissolved in order to avoid
unnecessary propagation of free variables.

4. New Observation: Once an acyclic graph is obtained for a graph-based
approach a depth-first traversal can be used to simplify the process of prop-
agating free variables.

The MM-algorithm repeatedly computes strongly connected components in
order to avoid the unnecessary propagation of local free variables. The splitting
of a strongly connected component is always done around an ancestor function
that dominates all paths between disjoint sets of functions within the strongly
connected component when the strongly connected component contains func-
tions defined at different levels in the parse tree of the program. This observation
suggests that dominator trees can be used to perform lambda lifting.

77

(define (f x y z)
(define (g a b)

(define (h c d)
(define (i e) (. . .(h e e). . .(g e e). . .))

(. . .(i (+ c d)). . .))
(. . .(h a b). . .))

(. . .(g (* x y) z). . .))

Fig. 5. Code Fragment to Illustrate Lowest Upward Dependence

A defining property of a dominator tree is that an ancestor function always
appears before its descendants. Thus, a dominator tree tells us for which func-
tions the complete set of free variables must be computed first. For our purposes,
an interesting feature of the dominator tree of a call graph is that independent
loops dominated by a function are represented as different branches out of the
dominating function which precludes the need to dissolve simple loops. Dom-
inator trees, therefore, can be used as the basis of a graph used to propagate
free variables. Since dominator trees can be computed in linear time [11], the
need to repeatedly compute strongly connected subcomponents, which makes
the MM-algorithm cubic, can be eliminated to reduce the complexity of lambda
lifting.

The dominator tree, however, does not capture all dependencies between
functions needed for lambda lifting. We classify these missing dependencies as
vertical and horizontal dependencies, described in Sections 4 and 5 respectively.
Vertical dependencies capture dependencies arising due to recursion between an-
cestors and descendants in the dominator tree. Horizontal dependencies capture
dependencies arising between functions that do not have a vertical dependence
in the dominator tree. Vertical dependencies are annotated on the dominator
tree and are used to drive the propagation of free variables throughout the tree.
Horizontal dependencies are added to the dominator tree, which necessitates co-
alescing the strongly connected components to obtain a directed acyclic graph.
The resulting coalesced graph is used to make all functions scope insensitive by
propagating free variables using a depth-first traversal.

4 Vertical Function Dependencies

We define a downward vertical dependence as the dependence that exists be-
tween a function and a descendant. A call to any local function, g, must be
preceded, at some point during the computation, by a call to g’s ancestors in the
dominator tree of the program. Any extraneous parameters that g contributes
to its ancestors can be propagated up the dominator tree.

We define an upward vertical dependence as the dependence that exists be-
tween a function, g, and a function, f , which is an ancestor of g. The function
g may depend on several of its ancestors in the dominator tree of which we are
interested in the one that has the maximum depth. We define the lowest upward

78

iz gx fx,y,z hy

(a) Call graph with declared and free variables.

iz fgx fx,y,z
fhy

(b) Dominator Tree.

giz fgx,z fx,y,z
fhy

(c) DT After Upward Propagation.

gix,z fgx,z fx,y,z
fhy

(d) DT After Downward Propagation.

Fig. 6. Call Graph, Dominator Tree, and Propagation Steps.

vertical dependence of g, LDg, as the function with the maximum depth in the
dominator tree that g depends on. LDg, if it exists, is the ancestor of g with
the maximum depth that is either called by g or is reachable from any of g’s
descendants in the dominator tree. For example, consider the fragment of code in
Figure 5. The dominator tree for this code is simply the chain: f → g → h → i.
Observe that i calls two of its ancestors, g and h, in the dominator tree. Since
h has the maximum depth, we have that LDi = h. The function h does not call
any of its ancestors, but it depends on its ancestor g which is called from i. Since
g is the only ancestor of h that is reachable from the subtree rooted at h (i.e.
h → i), we have that LDh = g. Finally, LDg = LDf = ∅ because none of the
ancestors of g or f are reachable from the subtrees of the dominator tree rooted
at these functions.

To start exploring lambda lifting algorithms let us restrict our observations
to the class of programs in which all dependencies are vertical (this restriction
will be removed in the next section). Upward vertical dependence is not cap-
tured by a dominator tree, but can be computed, for example, as free variables
are propagated up the dominator tree to identify the extraneous parameters con-
tributed by downward vertical dependence. Along with free variables, the set of
reachable ancestor functions can be propagated up the dominator tree.

Clearly, all extraneous parameters for g contributed by its descendants will
reach g during an upward propagation. The following theorem establishes that
LDg, if it exists, contains all the extraneous parameters needed by g that are
contributed by its ancestors in the dominator tree.

79

Theorem 1. The set of extraneous parameters needed by LDg contains all the
extraneous parameters needed by g from its ancestors.

Proof. Let DT be the dominator tree for a call graph, CG, and let h be LDg.
Assume x is an ancestor-contributed extraneous parameter needed by g that is
not a member of the set of extraneous parameters needed by h. If x is defined by
an ancestor of h, then x must be a member of the set of extraneous parameters
needed by h which contradicts our assumption. This follows from observing that
h must carry x in order to make it available to g. If x is defined by h or a
descendant of h, then there must exist a path in CG from g to a function where
x is a known free variable that does not contain the function that declares x. All
the functions on this path must be descendants of h which means that LDg 6= h.
This contradicts our assumption and completes the proof that x must be a member
of the set of extraneous parameters needed by h. Q.E.D

To illustrate how vertical dependencies can be used in lambda lifting con-
sider Figure 6. Figure 6(a) displays a call graph annotated with variable decla-
rations and free variable references and Figure 6(b) displays its dominator tree.
Free variables needed by functions due to downward vertical dependence can
be propagated up the dominator tree using a depth-first traversal. After this is
done, the variable z has been propagated from i to g. In addition during this
propagation step, the LDi of each function i is computed by also propagating
relevant upward vertical dependencies. LDi is g and LDh is f , because these
are leaves with no successors and their LD is simply the ancestor that they di-
rectly reference. Nodes pass the set of reachable ancestors back up the tree along
with their free variables. In this manner, LDg becomes f as it is the ancestor
of g with the largest depth that is reachable form the subtree rooted at g. The
result of this step is displayed in Figure 6(c) in which the subscript to the left
of each function name is its lowest dependence function. Finally, free variables
need to be propagated down the dominator tree to satisfy upward vertical de-
pendencies. This propagation proceeds in a breadth-first order propagating to
function i the free variables needed by LDi. A breadth-first order propagation is
required to guarantee that the extraneous parameters of ancestor functions are
known before the extraneous parameters of any descendant function are com-
puted (which satisfies the key lesson highlighted from the J-algorithm). During
this step the variable x is propagated from g to i. The result of this propagation
step is displayed in Figure 6(d).

5 Horizontal Function Dependencies

A function may not only depend on functions that are its ancestors and its
descendants in the dominator tree. For example, siblings in the dominator tree
may call each other. We define a horizontal dependence as a reference to a
function that is not an ancestor or a descendant in the dominator tree. The free
variables of a horizontal dependence must also be propagated from the callee
to the caller. Horizontal dependencies are not captured by the dominator tree

80

of a call graph and, thus, a dominator tree must be augmented into a graph to
capture horizontal dependencies.

To convert a dominator tree into a graph that captures horizontal depen-
dencies, the dominator tree is augmented with the edges between functions in
the call graph that do not have a vertical dependence. We call this graph an
EDT (Extended Dominator Tree) graph and the new edges are called lateral
edges. If the resulting EDT graph does not contain any cycles then it only has
simple horizontal dependencies. Otherwise, it has complex horizontal dependen-
cies. Clearly, the EDT graph for a program that only has functions with vertical
dependencies is its dominator tree.

First, we highlight some important properties of EDT graphs. Second, we
extend our lambda lifting algorithm to handle the class of programs that have
simple horizontal dependencies. Finally, we extend our lambda lifting algorithm
to handle arbitrary programs that may contain complex horizontal dependencies.

5.1 Important Properties of EDT Graphs

Formally, the set of lateral edges, El, in an EDT graph formed from the domi-
nator tree, DT , is defined as:

El = {(f, g)|f is not the parent of g in DT ∧ g is not an ancestor of f in DT}.

The set El endows the EDT graph with important properties outlined by the
following theorems. After establishing the validity of these properties we will
point out their significance for lambda lifting.

Theorem 2. If (f,g) ∈ El, then the parent of g, pg, in the dominator tree, DT ,
dominates f .

Proof. Let G be the EDT graph obtained by only extending DT with the lateral
edge from f to g and let r be the root function of DT . If there is a path in G from
r to g that contains f and that does not contain pg, then pg does not dominate
all paths from r to g. This means that DT can not be the dominator tree which
contradicts our assumption. Q.E.D.

Having established that the parent of the called function for a lateral edge in
the EDT graph dominates the caller, we can now establish that all the ancestors
of the called function dominate the caller. The proof simply exploits the fact
that domination is a transitive property.

Theorem 3. If (f,g) ∈ El, then all ancestors of g in the dominator tree, DT ,
dominate f .

Proof. Theorem 2 establishes that the parent of g dominates f . All other ances-
tors of g dominate its parent. Therefore, all of g’s ancestors dominate f . Q.E.D.

The significance of Theorems 2 and 3 for lambda lifting is that the existence
of a lateral edge from f to g in an EDT graph means that LDg, if it exists,
dominates f . Therefore, LDg may also be LDf . This occurs when none of the
nodes in the dominator tree path from the parent of g to f are LDf . This means
that in addition to free variables, LD information must be propagated from
callees to callers across lateral edges.

81

fx gx

a b c d

(a) Call Graph.

fx

gx

a b gc d

(b) Dominator Tree.

fx gx

ga gb gc d

(c) EDT After Depth-First Propagation.

fx gx

gax gbx gcx d

(d) EDT After Breadth-First Propagation.

Fig. 7. Call Graph and Dominator Tree with Simple Horizontal Dependence

5.2 Simple Horizontal Dependencies

When an EDT graph has only simple horizontal dependencies it suffices to first
propagate free variables and lowest dependence information between functions
using a depth-first traversal (akin to propagating up the dominator tree) and
then to propagate free variables in breadth-first order exploiting lowest depen-
dence information (akin to propagating down the dominator tree). The cor-
rectness of the first propagation follows from observing that free variables are
propagated from callees to callers and from Theorem 3 that guarantees lowest
dependence information can safely be propagated across lateral edges.

To illustrate the use of horizontal dependence information in the absence of
strongly connected components consider the call graph in Figure 7(a). The dom-
inator tree for this graph is displayed in Figure 7(b). Extending the dominator
tree with edges between functions that do not have a vertical dependence results
in the original call graph without the edge from c to g. Figure 7(c) displays
the results of propagating free variables and LD information after a depth-first

82

fx,y
∅hx ∅i f jy

(a) EDT Graph

fx,y
∅Zx f jy

(b) Coalesced EDT Graph

Fig. 8. EDT with a Strongly Connected Component Formed by Simple Lateral Edges.

traversal. No free variables propagate between the functions in this step, but
LDc, g, propagates to become LDb and LDa. Figure 7(d) displays the results of
propagating free variables in a breadth-first order by exploiting LD information.
Each function receives the free variables of its LD function.

5.3 Complex Horizontal Dependencies

The augmentation of the dominator tree, however, may lead to an EDT graph
that is no longer acyclic. That is, the resulting graph may contain strongly con-
nected components. This occurs, for example, when two siblings in the dominator
tree are mutually recursive. In the presence of strongly connected components,
it no longer suffices to simply propagate free variables and LD information using
a depth-first traversal. The problem is that such a traversal does not guarantee
that all successors of a node are processed first.

Strongly connected components must be coalesced, but as learned from the
MM-algorithm sets of functions that include a dominating function and the
functions it dominates should not be coalesced. That is, functions that have
a vertical dependence should not be coalesced. This observation suggests that
within a strongly connected component only functions at the same level in the
dominator tree can be coalesced together. Notice that a function at level n in the
dominator tree can not declare any variables that are free in other functions at
level n. This means that it is safe to coalesce these functions together, because
none of these functions will unnecessarily contribute free variables to each other.

The goal, therefore, is to coalesce strongly connected components in an EDT
graph without loosing vertical dependence information. To achieve this it is help-
ful to distinguish between two types of edges in an EDT graph. The first kind of
edge is a simple lateral edge which occurs between functions at the same level of
the dominator tree. These edges can only occur between siblings. Any strongly
connected components formed solely by simple lateral edges can be coalesced in
the EDT graph, because among the siblings in each component there is no domi-
nating function. If an EDT graph is created by solely adding simple lateral edges
to the dominator tree, then after coalescing strongly connected components the
EDT graph is acyclic. Thus, lambda lifting can proceed as described in section
5.2 by making a coalesced node’s free variables the union of the free variables

83

of the functions in the strongly connected component and by making the node’s
LD function be the maxf (LDg), where g is a function in the strongly connected
component. To illustrate this concept consider the EDT graph displayed in Fig-
ure 8(a). The functions i and h have no known upward vertical dependencies at
this time, LDj is f , and x is free in h. The strongly connected component formed
by {h, i} can be coalesced into a node, say, Z. The set of free variables of Z is {x}
and LDZ is ∅. The result of this transformation is displayed in Figure 8(b). The
computation of required free variables can now proceed as described in section
5.2. After the depth-first propagation the set of free variables of Z is {x, y} and
LDZ = f . Nothing propagates during the breadth-first propagation (because f

has no free variables). After the propagation steps, we have that {x, y} are the
required free variables for h and i which is precisely what is needed.

The second kind of edge is an upward lateral edge which exists between
functions at different levels of the dominator tree. These edges always occur
from a function, g, at level n to a function, f , at level n− i, where i ≥ 1, such
that f is not an ancestor of g in the dominator tree3. The existence of such an
edge, means that g needs the free variables of f . Notice, however, that f may
not need all of g’s free variables despite being in the same strongly connected
component. The free variables of g not needed by f are those that are local to the
strongly connected component and that are not lexically visible nor declared by
f . All of these variables must be declared by a function with a depth greater than
or equal to the depth of f in the dominator tree. Notice that this set of functions
may include siblings of f in the dominator tree. There is no dominating function
between siblings. An incoming upward lateral edge means that these siblings
need the same free variables. This follows from observing that they all need as
free variables the variables declared by common ancestors in the dominator tree
that are free in the strongly connected component. Therefore, we have that the
siblings of a function in the dominator tree, like f that has an incoming upward
lateral edge, that are in the same strongly connected component can be coalesced
with f without local free variables being unnecessarily propagated during lambda
lifting. Coalescing these strongly connected components in this manner preserves
vertical dependence information and provides a directed acyclic graph that can
be used to compute the free variables needed by each function in an arbitrary
program.

To illustrate the use of horizontal dependence information in the presence of
strongly connected components created by upward lateral edges consider the call
graph in Figure 9(a). Its dominator tree is displayed in Figure 9(b). The first
step is to extend the dominator tree with simple lateral edges. The resulting
graph is displayed in Figure 10(a). Five simple lateral edges have been added to
extend the dominator tree. These additions have formed a strongly connected
component that contains the functions j and k. These functions are coalesced
to form a new node S. The set of free variables for S is obtained from the union
of the free variables of j and k. The set of variables declared by S is obtained
from the union of the declarations of j and k. The resulting graph is displayed

3 There can not exist any edges in the other (i.e. downward) direction from f to g.

84

fx g hc i

jc ka,b

l mx na ob

(a) Call Graph

fx g hc i

jc ka,b

l mx na ob

(b) Dominator Tree

Fig. 9. Call Graph and Dominator Tree to Illustrate the Creation of an EDT Graph.

in Figure 10(b). The graph in Figure 10(b) is now extended with upward lateral
edges. If a function on either side of an edge has been coalesced then the coalesced
node replaces the function. The result of this extension adds edges from l to g

and from o to i. The result is displayed in Figure 10(c). This graph now has a
strongly connected component formed by {g, h, i, S, l, n, o}. Function g has an
incoming upward lateral edge and, therefore, it is coalesced with its siblings h

and i that are also members of the strongly connected component. Given that i,
a function with an incoming lateral edge, has been coalesced there is no need for
further action with it. No other functions have an incoming upward lateral edge
which means the graph is now acyclic. The finalized EDT graph is displayed in
Figure 10(d) in which Q represents the coalesced functions {g, h, i}. This graph
can now be used to propagate free variables and LD information as done in
section 5.2.

6 The Algorithm, Complexity, and Correctness

6.1 The New Lambda Lifting Algorithm

The new lambda lifting algorithm builds a directed acyclic EDT graph from
the call graph of a program. Propagation of free variables then proceeds in two
steps: the first using a depth-first traversal and the second using a breadth-first
traversal. The steps in the algorithm can be outlined as follows:

85

fx g hc i

jc ka,b

l mx na ob

(a) Dominator Tree Extended with Simple Lateral Edges.

fx g hc i

l mx Sa,b
c

na ob

(b) EDT Graph After First Coalescing Step.

fx g hc i

l mx Sa,b
c

na ob

(c) EDT Graph Extended with Upward Lateral Edges.

fx Qc
Sa,b

c l mx na ob

(d) Completed EDT Graph.

Fig. 10. EDT Graph Creation Steps.

1. Build the call graph, CG, of the program from its parse tree.
2. Build the dominator tree, DT , for CG.
3. Extend DT with simple lateral edges and coalesce strongly connected com-

ponents to obtain an acyclic graph EDT ′.
4. Extend EDT ′ with upward lateral edges and compute strongly connected

components. Coalesce functions that have an incoming upward lateral edge
with their dominator tree siblings that are members of the same component.
The resulting graph is the directed acyclic EDT ′′ graph.

5. Use EDT ′′ to propagate free variables and LD information using a depth-
first traversal.

6. Use EDT ′′ to propagate free variables using LD information using a breadth-
first traversal.

7. For each function, f , make f scope insensitive by adding its complete set of
free variables as parameters to f and as arguments to each reference to f .

8. Remove block structure by floating each function to the global level.

86

6.2 Complexity and Correctness

For a program P , let i be the number of functions, let e be the number of
function calls, let v be the number of variables declared, and let n be the size of
the program (i.e. i + e + v). Step 1 is proportional to O(e + i) or simply O(n).
Step 2 is O(n) [11]. For steps 3 and 4 extending a graph with edges is O(e+ i) or
simply O(n). The computation of strongly connected components is O(n) [5, 6]
and their coalescing is O(n2). For step 5, the propagation of free variables and
LD information is O(e∗ (i+ v)), or simply O(n2), assuming the union operation
is done in linear time. A similar line of reasoning holds for step 6. Step 7 is
O(v + i + e) or simply O(n). Finally, step 8 is O(n). This means that optimal
lambda lifting is done in O(n2). Since lambda lifting can generate an output
program of size O(n2), the time complexity of this algorithm is optimal [3].

The correctness of the algorithm hinges on correctly computing the set of
required variables for each function. The required set of free variables for a
function, f , depends on the free variables f directly references and on a subset
of the free variables transitively needed by the functions f calls. The computation
of the latter subset is achieved by never coalescing a dominating function with
any functions it dominates. This leads to a graph in which the breadth-first
propagation in Step 6 completes the computation of the required free variables
of any ancestor function in the parse tree before any successor function as done
the J-algorithm. Thus, preventing free variables local to a strongly connected
component to be unnecessarily propagated. The required set of free variables
computed for each function is complete, because all functional dependencies
are captured by the EDT graph. Lateral and downward vertical dependencies
are captured by edges and upward vertical dependencies are captured by LD

information.

7 Concluding Remarks

This article presents an optimal graph-based O(n2) lambda lifting algorithm.
The algorithm is optimal in the sense that it computes the minimal set of free
variables required by each function to make them scope insensitive. The new
algorithm is superior to Johnsson’s and to Morazán’s and Mucha’s algorithms
by reducing the complexity of optimal lambda lifting from O(n3) to O(n2) and
it is superior to Danvy’s and Schultz’s algorithm by being optimal. Nonetheless,
this new algorithm owes a great deal of its creation to these predecessors. Con-
sidering that Johnsson’s original algorithm first appeared in 1985, this newest
algorithm has been over 20 years in the making. It is, indeed, a tribute to all
these algorithms and to the work of the cited authors from whom we borrowed
ideas and inspiration.

Future work includes the implementation of a closureless functional language
that uses applicative-order evaluation. The main idea behind the design of this
new langauge is to dynamically generate functions that are specialized based on
the bindings of its free variables instead of allocating closures. Lambda lifting
identifies for us the variables that are used to specialize functions.

87

8 Acknowledgements

The authors thank Olivier Danvy, Sven-Bodo Scholz, and Barbara Mucha for the
discussions during and after IFL 2005 that initiated us down the path that lead to
the new algorithm presented in this article. Marco T. Morazán also thanks TLTC
at Seton Hall University for the support received through a Faculty Innovation
Grant.

References

1. C. Consel. A Tour of Schism: A Partial Evaluation System for Higher-Order Ap-
plicative Languages. In Proc. of the Symp. on Partial Evaluation and Semantics-

Based Program Manipulation, pages 145–154. ACM Press, June 1993.
2. Olivier Danvy and Ulrik P. Schultz. Lambda-Dropping: Transforming Recursive

Equations into Programs with Block Structure. Theoretical Computer Science,
248(1–2):243–287, 2000.

3. Olivier Danvy and Ulrik P. Schultz. Lambda-Lifting in Quadratic Time. Journal

of Functional and Logic Programming, 2004(1), July 2004.
4. Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials of

Programming Languages. The MIT Press, 2001.
5. Alan Gibbons. Algorithmic Graph Theory. Cambridge University Press, 1985.
6. Ronald Gould. Graph Theory. The Benjamin/Cummings Publishing Company,

Inc., 1988.
7. J. Matthews, R. Findler, P. Graunke, S. Krishnamurthi, and M. Felleisen. Auto-

matically Restructuring Programs for the Web. Automated Software Engineering,
11(4):337–364, 2004.

8. Thomas Johnsson. Lambda Lifting: Transforming Programs to Recursive Equa-
tions. In Proc. of a Conf. on Functional Prog. Lang. and Comp. Arch., pages
190–203. Springer-Verlag New York, Inc., 1985.

9. Marco T. Morazán and Barbara Mucha. Improved Graph-Based Lambda Lifting.
In Hamid Arabnia, editor, Proc. of the Int. Conf. on Prog. Lang. and Compilers,
pages 896–902. CSREA Press, June 2006.

10. Dino P. Oliva, John D. Ramsdell, and Mitchell Wand. The VLISP Verified
PreScheme Compiler. Lisp and Symbolic Computation, 8(1-2):111–182, 1995.

11. Stephen Alstrup and Dov Harel and Peter W. Lauridsen and Mikkel Thorup.
Dominators in Linear Time. SIAM Journal on Computing, 28(6):2117–2132, 1999.

88

To be or not to be. . . lazy⋆

Mercedes Hidalgo-Herrero1 and Yolanda Ortega-Mallén2

1 Dept. Didáctica de las Matemáticas
Facultad de Educación, Universidad Complutense de Madrid, Spain

mhidalgo@edu.ucm.es
2 Dept. Sistemas Informáticos y Computación

Facultad CC.Matemáticas, Universidad Complutense de Madrid, Spain
yolanda@sip.ucm.es

Abstract. Laziness restricts the exploitation of parallelism because ex-
pressions are evaluated only under demand. Thus, parallel extensions of
lazy functional languages, like Haskell, usually override laziness to some
extent. The purpose of the present work is to analyze how and to which
extent strictness should be introduced in a lazy language to design a
parallel extension of it. Towards this end, we have considered different
evaluation strategies mixing laziness and eagerness for the language Eden
—a parallel extension of Haskell—, we have given formal definitions for
each, and we have implemented them in an interpreter to be able to run
examples with alternative evaluation models.
Although the study is based on Eden, the concepts involved and the
conclusions that we have obtained can be transferred to other parallel
and functional languages.

1 Introduction

Referential transparency permits the implementation of alternative orders of
execution while retaining the functionality of a program. This property, inherent
to pure functional languages, is a key factor for the exploitation of parallelism
in the functional paradigm, ranging from a completely implicit parallelism —
like for instance automatic parallelization— to an explicit parallelism where
the programmer distributes the computation among a set of communicating
processes that even may be located by the programmer himself at designated
processors. In [13] an excellent classification of functional parallel approaches by
level of control of parallelism can be found. Many of these approaches are parallel
extensions of sequential functional languages. For instance, the lazy functional
language Haskell [16] has been used as the basis of a large and various set
of parallel and distributed languages (see [21] for a comprehensive survey of
these). One of these parallel extensions of Haskell is the language Eden [2,14]
that includes a set of coordination features to control the parallel evaluation of
processes while keeping the high-level nature of the declarative paradigm.

⋆ Work partially supported by the Spanish projects TIN2006-15578-C02-01, TIN2006-
15660-C02-01 and PAC06-0008.

89

As a lazy language, Haskell adopts normal order evaluation, avoiding re-
peated computations by sharing reductions. This lazy approach restricts the ex-
ploitation of parallelism because expressions are evaluated only under demand.
Thus, parallel versions of Haskell usually override laziness in some points:

Speculative work Some languages allow for the evaluation of parts of the code
that have not been demanded yet. This does not necessarily change the un-
derlying sequential lazy semantics, because the overall result of the program
can be obtained even if some speculative task gets stuck; this is achieved by
guaranteeing that the scheduler always prefers to evaluate the computations
of the main process. In this case, speculation only influences the efficiency
of the system.
Examples of this kind of speculative computation are the par operator de-
fined in GpH [20], and the eager process creation in Eden.

Introducing strictness A more drastic way of overriding laziness is to force
the evaluation of some portions of the code before the result is really needed.
Thus, the underlying lazy semantics is modified.
Examples of this second form are the strict operator (seq) introduced in
GpH [20,19], or forcing the reduction to normal form of the values that are
to be transmitted through channels in Eden. Similarly, the transmission of
lists in Caliban [11,18] is head-strict, and data-parallel versions of Haskell
introduce strictness in the use of some predefined data types (mainly lists).

Mixed (lazy and strict) evaluation has already been analyzed in a sequential
context (see [3,4] for a discussion on advantages and risks of this combination),
but few work has been done to carefully analyze how and to which extent strict-
ness should be introduced in a lazy language to design a parallel extension of
it.

Towards this end, in [8,9] we have considered a few alternative evaluation
models for the language Eden, and we have implemented an interpreter capable
of dealing with all of them. We have then used this environment to analyze the
influence of the evaluation strategies in the performance of some chosen parallel
skeletons implemented in Eden. The purpose of the present paper is to achieve
a more rigorous and complete comparative analysis, by extending the spectrum
of evaluation strategies mixing laziness and strictness, and by presenting formal
definitions for each evaluation model. Although the study is based on Eden —or
more exactly on a simple calculus that includes the main coordination features
of Eden—, the concepts involved and the conclusions that we have obtained can
be transferred to other parallel and functional languages.

The paper is organized as follows: We start with a very brief introduction to
Eden’s coordination features, and we describe the calculus that we are going to
use for our analysis. In Section 3 we discuss on the possible evaluation strategies,
and we give a classification of these around three concepts. Then in Section 4 we
present a distributed operational semantics for the calculus, and we formalize
the evaluation strategies given before. In Section 5 we present a collection of

90

E ::= x variable
| \x.E λ-abstraction
| x1x2 application
| x1 #x2 process instantiation
| let {xi = Ei}

n
i=1 in x local declaration

Fig. 1. Eden’s restricted core syntax

examples that shows how the evaluation strategies may affect issues like termi-
nation or deadlock. We conclude with a summary discussion on the lazy-eager
combinations.

2 Eden’s coordination features

Coordination in Eden is based on two principal concepts: explicit definition of
processes and implicit stream-based communication [10]. In the same way as
there is a distinction between function definition and function application, Eden
includes process abstractions, i.e. abstract schemes for process behavior, and
process instantiations for the actual creation of processes. Additionally, non-
determinism is explicitly introduced and encapsulated within processes by means
of a predefined process abstraction which is used to instantiate non-deterministic
processes that fairly merge several input streams into a single output stream.

Figure 1 shows the restricted3 (abstract) syntax of an untyped λ-calculus
extended with recursive lets and process instantiation. This simple calculus cap-
tures the essence of Eden and proves to be sufficient for our purposes.

In the syntax description x ∈ Var denotes variables and E ∈ Exp represents
expressions. The expression let {xi = Ei}

n
i=1

in x is an abbreviation of let x1 =
E1, . . . , xn = En in x.

For simplicity we have identified process abstractions with one-argument
functions, so that new processes are created with only one input and one output
channels. When evaluating an expression x1 # x2 inside a process p, a new child
process q is created. When process q receives from its parent p the value of x2

through its input channel, it evaluates x1 x2 and returns to its parent the result
via its output channel. The diagram in Figure 2 illustrates this behavior.

Apart from the process creation involved, a key difference between applica-
tion and instantiation is the non-strictness of the former versus the eagerness of
the latter.

3 Mixed evaluation strategies

Eden has been designed for distributed environments without shared memory
between processes; therefore, bindings have to be copied from one heap to the

3 Restricted syntax is considered to simplify the semantic rules, as in [12,1].

91

P x1 # x2−→

P

Q

ch
o
∼

x
1
x

2ch
i
∼

x
2

Fig. 2. Process creation in Eden

other when creating new processes or when communicating values. In this context
the following questions can be stated:

– In the expression x1 # x2, it is clear that x2 has to be evaluated in the in-
stantiating process. But what about x1? Should the parent evaluate the
expression before copying it in the child’s heap?

– How should the free variables in a newly instantiated process be handled?

– What about the values communicated through the channels? To what extent
should they be evaluated before being communicated? It is advisable to send
the extra work related to the free variables —with an unknown degree of
evaluation— to the receiver?

– Should an instantiation expression be copied from one heap to the another?
Or it is more advisable to suspend the corresponding communication or
instantiation?

All these questions are related to the computation distribution between pro-
cesses: How much work should do the parent/producer of a process/value, and
how much work is left for the child/consumer? This is a crucial point in any
parallel language, and not particular to Eden, although the features of Eden
maybe offer more possibilities for discussion.

It turns out that the alternatives can be expressed as different mixtures of
lazy and eager evaluation. In fact, neither pure laziness nor eagerness are optimal,
in the sense that, for each proposal, examples can be found showing that the
opposite view would be much more efficient. Therefore, we want to keep the
discussion under a methodological point of view. In other words, we seek that
programs should be efficient, but also clear, safe and easy to write and verify.

3.1 Keystones of the evaluation strategies

We can organize the evaluation strategies around three concepts:

92

Process Abstraction Evaluation (PAE) In the case of a process instantia-
tion the evaluation of the process abstraction can be done either by the par-
ent process, or by the child. In the first case process instantiation could be
more costly for the instantiating process, but the programmer has a greater
control of the sharing of work between parent and child, that leads to the
possibility of designing libraries of process abstractions to create “slaves” to
get the “hard work” done. The performance of the processes created from
these libraries is guaranteed, because it will not depend on the context were
processes are created.

Evaluation Before Copy (EBC) When copying bindings from a heap pro-
cess to another it may be required that every needed binding —corresponding
to free variables in process/lambda abstractions— is previously evaluated.
This corresponds to a strict semantics as can be found for ML [15], although
there free variables in a λ-abstraction would have been evaluated before re-
ducing the embedding expression to normal form. This option applies to two
situations: (1) when creating the initial heap of a new process (EBCp); (2)
when communicating a value through a channel (EBCv).

Instantiation Copy (IC) represents the copy of bindings —from one heap to
another— corresponding to pending process instantiations. If the copy of
instantiations is not permitted, then the action is blocked until the instan-
tiation is resolved. Again this applies to process creation (ICp) as well as to
value communication (ICv).

Therefore we have five issues (PAE,EBCp,EBCv,ICp and ICv), each with two
options: parent/child for PAE, yes/no for the rest. This gives a total of 25 = 32
combinations. Some of these can be discarded; for instance, if it is required that
every needed binding should be evaluated before its copy (EBC = yes), this
should imply the evaluation of pending instantiations too (i.e. IC = no), then
the list is reduced to 18 options. Moreover, if it is required that the parent
evaluates the process abstraction (PAE = parent) then it is reasonable that also
the parent evaluates the needed bindings before they are copied to the heap
of a new child (EBCp = yes). This then reduces the set to 12 strategies. By
separating the discussion relating to process creation from the options relative
to communication, we can organize the strategies in a table with four entries
(see table 1). For each entry we have to consider the three options permitted for
communication.

4 A semantic distributed model

The semantic model that we will consider here has already been used to give
a formal semantics for Eden [5,6,7]. As it is usual for parallel and concurrent
languages [1,17], the model embodies two levels of transition systems: one lower
level to handle the local behavior of processes, and an upper level to describe
global effects on the system, namely process creation and communication.

The evaluation of an expression in the calculus presented before in general
will require the creation of several parallel processes in the system. Each process

93

PAE EBCp ICp

(1) parent yes no

(2) child yes no

(3) child no yes

(4) child no no

EBCv ICv

(a) yes no

(b) no yes

(c) no no

Table 1. Evaluation strategies

will, in turn, encompass a set of independently executing threads, each devoted
to the production of one output of the process.

The semantics evolves through global steps. The tasks to be done comprises
local parallel evolution of all the processes in the system, process creation, inter-
process communication and thread state management (like for instance, thread
unblocking and deactivation).

In our model the evaluation state of a process is represented by its heap of
closures, i.e. the set of bindings of variables to expressions. Following [1], each
binding is considered a potential thread, and has associated a label indicating
its state: x

α
7→ E where α ::= I|A|B corresponds, respectively, to Inactive (ei-

ther not yet demanded or already completely evaluated), Active (or demanded
and in execution), and Blocked (demanded but waiting for the value of another
binding).

The set dom(H) contains the left-side variables of a heap H. Besides, notation

H + {x
α
7→ E} (and also {x

α
7→ E}+H) means that the heap H is extended with

the binding x
α
7→ E, and it is assumed that x /∈ dom(H). If x

α
7→ E ∈ H then

H(x) = E.
In the following, we will use x, y as program variables, while ch denotes a

channel; sometimes we distinguish between input channels (from parent to child)
chi and output channels (from child to parent) cho. We will use θ for referring
to program variables as well as channels, and η will stand for a fresh renaming.

To evaluate a main expression E, the initial system consists only of a main

process with an initial heap H0 = {main
A
7→ E}, where it is assumed that main

is a fresh variable.
For the purpose of the present work we only need to describe here the (global)

semantic rules for process creation and communication. The interested reader is
referred to [6,7], where the whole set of semantic rules can be found.

4.1 Process creation

New processes are created when evaluating # -expressions, by applying the rule
given in Figure 3.

In our calculus processes are eagerly created when instantiations are found at
the top-level, i.e. when an variable in a heap is directly bound to a # -expression,
even if that binding is not active (i.e. demanded).

94

S

H1

Hn

...

H1

p

+
θ 7→ x # y

Hp

S
′

H1

Hn

...

H1

p

−−−−−
θ 7→ cho

+
chi 7→ y

η(nh(x, Hp))
+

cho 7→ η(x) y′

+
y′ 7→ chi

H
′
p Hq

pdfv(x, Hp) = ∅

Fig. 3. Process creation

When creating a process, the thread evaluating the instantiation (at the
parent side) is blocked on a fresh output channel, cho, corresponding to the
initial thread in the new child process q. Correspondingly, the child process gets
a thread which is blocked on a new input channel chi, that is served by a new
thread in the parent (communication from parent to child).

As it has been mentioned before, the absence of a common shared heap
requires that every binding needed for the evaluation of the free variables in the
child process body is copied from the parent to the child heap, using for this
purpose the function nh (needed heap), whose definition is independent of the
semantic option:

nh(E, ∅) = ∅

nh(x,H) = ∅ if x /∈ dom(H)

nh(x, {x
α
7→ E}+ H) = {x

I
7→ E}+ nh(E,H)

nh(\x.E,H) = nh(E,H)

nh(x1 x2,H) = nh(x1,H) ∪ nh(x2,H)

nh(x1 # x2,H) = nh(x1,H) ∪ nh(x2,H)

nh(let {xi = Ei}
n
i=1

in x,H) = nh(x,H) ∪ (
n⋃

i=1

nh(Ei,H))

Function nh(E,H) collects all the bindings in H that are reachable from E.
Moreover, in order to keep all the names distinct, even if they belong to different
heaps, we rename —by means of η— the copied closures.

However, when the evaluation of the process body depends on a value to be
communicated from some other process, the process creation is suspended until
the necessary communications have taken place. Depending on the semantics
option, a process creation may be further delayed because of other reasons which
are detected by function dfv (demand of free variables), that will be explained
in Section 4.3.

95

S

H1

Hn

...

H1

p

+
ch 7→ \x.E

Hp

H1

c

+
θ 7→ ch

Hc

S
′

H1

Hn

...

H1

p H1

c

−−−−−
η(nh(\x.E, Hp))

+
θ 7→ η(\x.E)

H
′
p H

′
c

dfv(E, Hp) = ∅

Fig. 4. Value communication

4.2 Communication

The rule for communication is given in Figure 4. When communicating a value
—a λ-abstraction in our calculus—, every binding needed for the evaluation
of the free variables in the value are to be copied from the producer’s to the
consumer’s heap. Similarly to the case of process creation, this copy can take
place only if there is no dependency on pending communications. The renaming
(η) used for the heap is applied to the passed value too. A fresh renaming of the
bound variables in the abstraction is also needed. Notice that the binding of the
channel disappears when the communication has been completed.

Likewise to process creation, a communication can be suspended depending
on the semantic option used. This is expressed again by function dfv described
in Section 4.3.

4.3 Formalization of semantic options

Function dfv checks the circumstances that cause a process creation (or a com-
munication) to be suspended:

– A pending communication.

– A pending process creation.

– A free variable not bound to a λ-abstraction.

However, whereas all the evaluation strategies take into account pending com-
munications, pending process creations are only considered when IC=no, and
the last condition only when EBC=yes. Consequently, three different versions of
dfv are needed to express the evaluation strategies considered in table 1.

In order to take into account option PAE, in the process creation rule, func-
tion pdfv (previous to demand of free variables) is applied before proceeding with
dfv :

96

pdfv(x,H) = ∅ if x /∈ dom(H)

pdfv(x, {x
α
7→ \x.E}+ H) = dfv(E,H) if PAE=parent

pdfv(x, {x
α
7→ E}+ H) = {x

α
7→ E} if PAE=parent ∧ E 6= \x.E′

pdfv(x, {x
α
7→ E}+ H) = dfv(E,H) if PAE=child

If PAE=parent then the process abstraction x1 —for an instantiation ex-
pression x1 # x2— must be evaluated before proceeding with the creation. In
this case, and only if the corresponding expression is still unevaluated, i.e. it is
not a λ-abstraction, pdfv returns a heap with a unique binding for x1. Otherwise,
pdfv just calls the function dfv .

I. EBC=yes (⇒ IC=no)

dfv I(E, ∅) = ∅

dfv I(x,H) = ∅ if x /∈ dom(H)

dfv I(x, {x
α
7→ \x.E′}+ H) = dfv I(E′,H)

dfv I(x, {x
α
7→ E}+ H) = {x

α
7→ E} if E 6= \x.E′ ∧ α 6= B

dfv I(x, {x
B
7→ y}+ H) = {x

B
7→ y} ∪ dfv I(y,H)

dfv I(x, {x
B
7→ x1 x2}+ H) = {x

B
7→ x1 x2} ∪ dfv I(x1,H)

dfv I(x, {x
B
7→ x1 # x2}+ H) = {x

B
7→ x1 # x2} ∪ dfv I(x1,H)

dfv I(x, {x
B
7→ ch}+ H) = {x

B
7→ ch}

dfv I(\x.E,H) = dfv I(E,H)

dfv I(x1 x2,H) = dfv I(x1,H) ∪ dfv I(x2,H)

dfv I(x1 # x2,H) = dfv I(x1,H) ∪ dfv I(x2,H)

dfv I(let {xi = Ei}
n
i=1

in x,H) = dfv I(x,H) ∪ (
n⋃

i=1

dfv I(Ei,H))

When expression E is an variable x, it may be one of the following cases:

1. x is already bound to an abstraction: then dfv I must gather the free variables
corresponding to this value.

2. x is bound to another expression: then the binding for x is collected, but if
this binding is blocked, then the following cases must be considered:

(a) If it is blocked on another variable, then dfv I continues with the binding
for this second variable.

(b) If it is blocked either on an instantiation or an application, then dfv I

continues checking the abstraction.

Notice that if the binding is blocked on a channel, then dfv I is not further
invoked because this channel variable cannot appear in the left-hand-side of
a binding inside the heap under consideration.

If the expression is not an variable, then dfv I is invoked with its subexpressions.

97

II. EBC=no, IC=no
In this case dfv II just detects dependencies on instantiation expressions and

channels (communications).

dfv II(E, ∅) = ∅

dfv II(x,H) = ∅ if x /∈ dom(H)

dfv II(x, {x
α
7→ x1 # x2}+ H) = {x

α
7→ x1 # x2} if α 6= B

dfv II(x, {x
B
7→ x1 # x2}+ x1

I
7→ E + H) = {x

B
7→ x1 # x2, x1

I
7→ E}

dfv II(x, {x
B
7→ x1 # x2}+ x1

AB
7→ E + H) = {x

B
7→ x1 # x2}

dfv II(x, {x
B
7→ x1 # x2}+ H) = {x

B
7→ x1 # x2} if x1 /∈ dom(H)

dfv II(x, {x
B
7→ ch}+ H) = {x

B
7→ ch}

dfv II(x, {x
α
7→ E}+ H) = dfv II(E,H) if E 6= x1 # x2 ∧ E 6= ch

dfv II(\x.E,H) = dfv II(E,H)

dfv II(x1 x2,H) = dfv II(x1,H) ∪ dfv II(x2,H)

dfv II(x1 # x2,H) = dfv II(x1,H) ∪ dfv II(x2,H)

dfv II(let {xi = Ei}
n
i=1

in x,H) = dfv II(x,H) ∪ (
n⋃

i=1

dfv II(Ei,H))

III. EBC=no, IC=yes
With this combination, the only reason to suspend a communication or a

creation is a dependency on a channel (communication).

dfv III(E, ∅) = ∅

dfv III(x,H) = ∅ if x /∈ dom(H)

dfv III(x, {x
B
7→ ch}+ H) = {x

B
7→ ch}

dfv III(x, {x
α
7→ E}+ H) = dfv III(E,H) if E 6= ch

dfv III(\x.E,H) = dfv III(E,H)

dfv III(x1 x2,H) = dfv III(x1,H) ∪ dfv III(x2,H)

dfv III(x1 # x2,H) = dfv III(x1,H) ∪ dfv III(x2,H)

dfv III(let {xi = Ei}
n
i=1

in x,H) = dfv III(x,H) ∪ (
n⋃

i=1

dfv III(Ei,H))

The versions of dfv corresponding to the evaluation strategies given in Table 1
are expressed in Table 2.

5 Case study

In this section we include some examples that show to what extent the evaluation
strategy may affect the behavior of a program.

98

Global Rules

Process Creation Communication

(1)(a) dfvI dfvI

(1)(b) dfvI dfvIII

(1)(c) dfvI dfvII

(2)(a) dfvI dfvI

(2)(b) dfvI dfvIII

(2)(c) dfvI dfvII

(3)(a) dfvIII dfvI

(3)(b) dfvIII dfvIII

(3)(c) dfvIII dfvII

(4)(a) dfvII dfvI

(4)(b) dfvII dfvIII

(4)(c) dfvII dfvII

Table 2. Definition of dfv for each evaluation strategy

5.1 Termination

Example 1. Let us consider the following expression:

let x1 = x2 # x3,
x2 = \x7.x7,
x3 = \x8.x4,
x4 = \x9.x5,
x5 = x6 x2,
x6 = \x10.x10 x10

in x1

With an evaluation strategy that requires that free variables are to be eval-
uated to whnf before being copied (EBC=yes), the evaluation never terminates.
During the evaluation, the following system4 is reached, and from then on each
global step returns the same system:

4 The systems shown for the examples have been obtained with an interpreter. The
implemented generation of free variables returns names in the style xn, where n is
an increasing integer.

99

main (N. Children: 1)

chi
I
7→ \x8.x4

main
B
7→ x1

x1
B
7→ cho

x2
I
7→ \x7.x7

x3
I
7→ \x8.x4

x4
I
7→ \x9.x5

x5
A
7→ x6 x6

x6
I
7→ \x10.x10 x10

main.1 (N. Children: 0)

cho
B
7→ x11

x11
B
7→ chi

x13
I
7→ \x12.x12

It can be observed how the main variable is blocked and bound to another
variable (x1) which is, in turn, blocked on the output channel for the child
process, while the unique active thread (x5 in the main process) is bound to a
self-application. As the parent cannot send the input data to its child, the latter
remains blocked and cannot produce the expected result.

By contrast, if free variables are allowed to be copied unevaluated (EBC=no),
then the evaluation comes to an end, and the obtained final system is:

main (N. Children: 1)

main
I
7→ \x20.x23

x1
I
7→ \x20.x23

x2
I
7→ \x7.x7

x3
I
7→ \x8.x4

x4
I
7→ \x9.x5

x5
I
7→ x10 x10

x6
I
7→ \x10. x10 x10

x23
I
7→ \x21.x24

x24
I
7→ x25 x25

x25
I
7→ \x22.x22 x22

main.1 (N. Children: 0)

x11
I
7→ \x14.x17

x13
I
7→ \x12.x12

x17
I
7→ \x15.x18

x18
I
7→ x19 x19

x19
I
7→ \x16.x16 x16

Notice that in this case the main variable is bound to a λ-abstraction, and
all the threads in the final system are inactive.

5.2 Deadlock

In some contexts, and depending on the option chosen for IC, a deadlock is
produced or not.

Example 2. Let us consider the following expression:

let x1 = x1 # x1,
x2 = x3 # x4,
x3 = \x5.x5,
x4 = \x6.\x7.x1

in x2

100

When IC=no, the communication from the parent to the child cannot take
place. Consequently, the system gets deadlocked:

main (N. Children: 1)

chi

I
7→\x6.(\x7. x1)

main
B
7→ x2

x1
B
7→ x1 #x1

x2
B
7→ cho

x3
I
7→\x5. x5

x4
I
7→\x6.(\x7. x1)

main.1 (N. Children: 0)

cho

B
7→ x8

x8
B
7→ chi

x16
I
7→\x9. x9

Nevertheless, when IC=yes, the communication from the parent to the child
is done successfully. The evaluation ends with a whnf value bound to the main
variable:

main (N. Children: 1)

main
I
7→ \x13.(\x14. x12)

x1
B
7→ x1 # x1

x2
I
7→ \x13.(\x14. x12)

x3
I
7→\x5. x5

x4
I
7→\x6.(\x7. x1)

x12
B
7→ x12 # x12

main.1 (N. Children: 0)

x8
I
7→ \x11.(\x19. x10)

x16
I
7→\x9. x9

x10
B
7→ x10 # x10

Although three process instantiations remain (self)blocked, these are unimpor-
tant because the variables are not needed (speculative work).

5.3 Too costly children

Creating a new child process may not be profitable for the parent process. The
following example illustrates this situation when EBCv=yes.

Example 3. Let us consider the following expression:

let x1 = x3x2,
x2 = \x6.x6,
x3 = x2x2,
x4 = \x7.\x8.x1x2,
x5 = x2 # x4

in x5

The new process is created in the first global step:

main (N. Children: 1)

chi
A
7→ x4

main
A
7→ x5

x1
I
7→ x3x2

x2
I
7→\x6.x6

x3
I
7→ x2x2

x4
I
7→\x7.\x8.x1x2

x5
B
7→ cho

main.1 (N. Children: 0)

cho
A
7→ x11x9

x9
B
7→ chi

x11
I
7→\x10.x10

101

However, before the communication from the parent to the child takes place
variables x1 and x3 must be evaluated. Afterwards, communication is carried
out.

main (N. Children: 1)

main
B
7→ x5

x1
A
7→\x6.x6

x2
I
7→\x6.x6

x3
I
7→\x6.x6

x4
I
7→\x7.\x8.x1x2

x5
B
7→ cho

main.1 (N. Children: 0)

cho
B
7→ x9

x9
A
7→\x12.\x13.x16x17

x11
I
7→\x10.x10

x16
I
7→\x14.x14

x17
I
7→\x15.x15

Therefore, the parent has to do all the work to send to the child everything
already evaluated, and the activity of the child is reduced to return to the parent
the same value that it has received from it!

When EBCv=no, a child process may result unworthy as well. For instance
if the value communicated by the child has many free unevaluated variables that
are used by the parent.

Example 4. Let us consider the following expression:

let x1 = x3x2,
x2 = \x8.x8,
x3 = x2x2,
x4 = \x9.\x10.x1x2,
x5 = x2 # x4,
x6 = x5x3,
x7 = x6x3

in x7

After the three first global steps, input/output communications between par-
ent and child have been accomplished, and the following system is obtained:

main (N. Children: 1)

main
B
7→ x7

x1
I
7→ x3x2

x2
I
7→\x8.x8

x3
I
7→ x2x2

x4
I
7→\x9.\x10.x1x2

x5
A
7→\x20.\x21.x24x25

x6
A
7→ x5x3

x7
B
7→ x6x3

x23
I
7→ x25x25

x24
I
7→ x23x25

x25
I
7→\x22.x22

main.1 (N. Children: 0)

x11
I
7→\x14.\x15.x18x19

x13
I
7→\x12.x12

x17
I
7→ x19x19

x18
I
7→ x17x19

x19
I
7→\x16.x16

102

but still many global steps (twelve steps to be precise) are needed for finishing the
evaluation. And these steps do only involve computations in the parent process.

The last example shows a situation where a process creation is not profitable
because PAE=parent.

Example 5. Let us consider the following expression:

let x1 = x2 # x3,
x2 = x3x4,
x3 = \x7.x7,
x4 = x3x5,
x5 = x3x6,
x6 = x3x3

in x1

After evaluating the let-expression we obtain:

main (No Hijos: 0)

main
A
7→ x1

x1
I
7→ x2 # x3

x2
I
7→ x3x4

x3
I
7→\x7. x7

x4
I
7→ x3x5

x5
I
7→ x3x6

x6
I
7→ x3x3

The process creation is delayed until its abstraction is evaluated. This work is
carried out by the parent and costs eleven global steps.

main (No Hijos: 1)

chi
A
7→ x3

main
B
7→ x1

x1
B
7→ cho

x2
A
7→\x7.x7

x3
I
7→\x7.x7

x4
I
7→\x7.x7

x5
I
7→\x7.x7

x6
I
7→\x7.x7

main.1 (No Hijos: 0)

cho
A
7→ x18x8

x8
B
7→ chi

x18
I
7→\x9.x9

Afterwards, the evaluation developed by the child process only takes two further
steps. Once again, the child has not carried out much work whereas the parent
has done most of the computation.

6 Conclusions and future work

We could consider the combination PAE=parent, EBCp=yes and EBCv=yes
(ICp=no and ICv=no), i.e. entry (1)(a) in Table 1, the most eager approach.

103

This evaluation strategies tends to be more efficient, because in many cases
duplication of work is avoided, and the size of transmitted data is much smaller.
It also benefits of a greater control of load balancing and of communications, as
the size of the transmissions depends exclusively on the type of the value to be
communicated; while in a context with EBCv=no there is no way to determine
the expected size of a transmission, as the “current state” of the free variables
for the communicated value must be packed and sent to the consumer, and the
evaluation of these may depend on very large objects.

The main argument against this eager strategy is that, as we have seen in the
first example in Section 5, the evaluation of free variables in advance to creating
a child may lead to a loss of the normal order, and this is a critical matter. As a
consequence, we cannot replace equals by equals, as any functional programmer
would expect.

As eagerness may lead to spend a lot of energy on useless work or even to
endless loops, we can look for a way to provide the programmer with a mean
to pass, when desired, unevaluated definitions as subexpressions of the process
abstraction, in order to be (or not to be) evaluated by the child process. A natural
way to do it is to encapsulate them within λ-abstractions. For example, if the
programmer is interested in the child process —instead of the parent process— to
evaluate a subexpression ey bound to y, a free variable of the process abstraction,
it can be encapsulated, λdummy .ey, and bound to y′; besides, the variable y must
be substituted by y′(λx.x) in the abstraction. Thus, although the option EBCp

is yes, the parent will not evaluate ey.

At the other extreme, we could consider the combination PAE=child, EBCp=no,
EBCv=no, ICp=yes, and ICv=yes, i.e. entry (3)(b) in Table 1, the laziest one.

In the cases where a parent process does not share variables with its children,
and the children themselves do not share variables between them, then the load
balancing could be better under this strategy, as the parent has not to do all
the work, but can divide it among its children. Moreover, as the parent does
not need to evaluate the free variables, less time should be needed to create
each child, although the real gain depends on some factors such as the work
necessary to evaluate the free variables, the amount of graph to be packed, etc.
We wonder how often this kind of situation occurs. We think that this problem
can be solved methodologically if the programmer tries not to use free variables
or, at least, free variables that do not require a big amount of work. In such
cases, the performance is nearly the same for both options of EBCp.

To gain efficiency in this approach, we can provide the programmer with some
means of eagerly evaluating the free variables in the parent side. This would allow
to have sharing and also to send less work and/or data when packing the closures
for the child.

There are two ways of introducing eagerness:

– Sending free variables through channels.

– Using the functions nf (evaluation of an expression to normal form) and seq

(strict sequential composition).

104

The problem with the first approach is that currying is lost. The second alter-
native is not as elegant as the former, but it preserves currying. The programmer
only needs to force the evaluation of each free variable that it is desired to be
evaluated before the creation of the process.

Acknowledgements This work is much indebted to the veteran members of
the Eden Group at Madrid around the year 1999, and a lively and long-forgotten
discussion on eagerness vs. laziness. We are also grateful to Fernando Rubio for
contribute with the title, some ideas, and invaluable support.

References

1. C. Baker-Finch, D. King, and P. W. Trinder. An operational semantics for par-
allel lazy evaluation. In ACM-SIGPLAN International Conference on Functional
Programming (ICFP’00), pages 162–173, Montreal, Canada, September 2000.

2. S. Breitinger, R. Loogen, Y. Ortega-Mallén, and R. Peña. Eden: Lan-
guage definition and operational semantics. Technical Report 96/10, Reihe
Informatik, FB Mathematik, Philipps-Universität Marburg, Germany, URL
http://www.mathematik.uni-marburg.de/∼eden/, 1996.

3. M. van Eekelen and M. de Mol. Reasoning about explicit strictness in a lazy
language using mixed lazy/strict semantics. In Draft Proceedings of the 14th In-
ternational Workshop on Implementation of Functional Languages, IFL’02, pages
357–373. Dept. Sistemas Informáticos y Programación, Universidad Complutense
de Madrid, 2002.

4. M. van Eekelen and M. de Mol. Proof tool support for explicit strictness. In
Proceedings of the 17th International Workshop on Implementation and Applica-
tion of Functional Languages, (IFL’05 selected papers), pages 37–54. LNCS 4015,
Springer, 2006.

5. A. de la Encina, L. Llana, F. Rubio, and M. Hidalgo-Herrero. Observing inter-
mediate structures in a parallel lazy functional language. In 9th International
ACM-SIGPLAN Symposium on Principles and Practice of Declarative Program-
ming, PPDP’07, pages 111–120. ACM Press, 2007.

6. M. Hidalgo-Herrero. Semánticas formales para un lenguaje funcional paralelo. PhD
thesis, Dept. Sistemas Informáticos y Programación, Universidad Complutense de
Madrid, 2004.

7. M. Hidalgo-Herrero and Y. Ortega-Mallén. An operational semantics for the par-
allel language Eden. Parallel Processing Letters (World Scientific Publishing Com-
pany), 12(2):211–228, 2002.

8. M. Hidalgo-Herrero, Y. Ortega-Mallén, and F. Rubio. Analyzing the influence
of mixed evaluation on the performance of Eden skeletons. Parallel Computing,
32(7-8):523–538, 2006.

9. M. Hidalgo-Herrero, Y. Ortega-Mallén, and F. Rubio. Comparing alternative eval-
uation strategies for stream-based parallel functional languages. In Proceedings
of the 18th International Workshop on Implementation of Functional Languages,
(IFL’06 selected papers), pages 55–72. LNCS 4449, Springer, 2007.

10. G. Kahn and D. MacQueen. Coroutines and networks of parallel processes. In
IFIP’77, pages 993–998. Eds. B. Gilchrist. North-Holland, 1977.

11. P. Kelly. Functional Programming for Loosely-Coupled Multiprocessors. Pitman,
1989.

105

12. J. Launchbury. A natural semantics for lazy evaluation. In ACM Symposium
on Principles of Programming Languages, POPL’93, pages 144–154. ACM Press,
1993.

13. R. Loogen. Research Directions in Parallel Functional Programming, chapter 3:
Programming Language Constructs, pages 63–92. Eds. K. Hammond and G.
Michaelson. Springer, 1999.

14. R. Loogen, Y. Ortega-Mallén, and R. Peña. Parallel functional programming in
Eden. Journal of Functional Programming, 15(3):431–475, 2005.

15. R. Milner, M. Tofte, and R. Harper. The definition of Standard ML. MIT Press,
1990.

16. S. L. Peyton Jones. Haskell 98 language and libraries: the Revised Report. Cam-
bridge University Press, 2003.

17. J. H. Reppy. Concurrent ML: Design, application and semantics. In Proceedings
of Functional Programming, Concurrency, Simulation and Automated Reasoning,
pages 165–198. LNCS 693, Springer, 1993.

18. F. S. Taylor. Parallel Functional Programming by Partitioning. PhD thesis, Impe-
rial College, 1997.

19. P. W. Trinder, K. Hammond, H. W. Loidl, and S. L. Peyton Jones. Algorithm +
Strategy = Parallelism. Journal of Funcional Programming, 8(1):23–60, 1998.

20. P. W. Trinder, K. Hammond, J. Mattson Jr., A. Partridge, and S. L. Peyton
Jones. GUM: a portable implementation of Haskell. In Proceedings of Programming
Language Design and Implementation, PLDI’96, pages 78–88, Philadephia, USA,
1996. ACM Press.

21. P. W. Trinder, H. W. Loidl, and R. F. Pointon. Parallel and Distributed Haskells.
Journal of Functional Programming, 12(4+5):469–510, 2003.

106

The Structure of the Essential Haskell Compiler,
or Coping with Compiler Complexity

Atze Dijkstra, Jeroen Fokker and S. Doaitse Swierstra

Department of Information and Computing Sciences,
Universiteit Utrecht,

P.O.Box 80.089,
Padualaan 14, Utrecht, Netherlands,
{atze,jeroen,doaitse}@cs.uu.nl,

WWW home page: http://www.cs.uu.nl

Abstract. In this paper we describe the structure of the Essential Haskell
Compiler (EHC) and how we manage its complexity, despite its growth
from essentials to a full Haskell compiler. Our approach splits both lan-
guage and implementation into smaller, manageable steps, and uses spe-
cific tools to generate parts of the compiler from higher level descriptions.

1 Introduction

Haskell is a perfect example of a programming language which offers many fea-
tures improving programming efficiency by offering a sophisticated type system.
As such it is an answer for the programmer looking for a programming language
which does as much as possible of the programmer’s job, while at the same
time guaranteeing program properties like “well-typed programs don’t crash”.
However, the consequence is that a programming language implementation is
burdened by these responsibilities, and consequently becomes quite complex.
Haskell thus also is a perfect example of a programming language for which
compilers are complex. Testimony to this observation is the Glasgow Haskell
Compiler (GHC) [15, 16, 18, 20], which simultaneously incorporates many novel
features, is used as a reliable workhorse for many a functional programmer, and
offers a research platform for language designers. As a result, modifying GHC
requires much knowledge of GHC’s internals.
In this paper we show how we deal with the complexity of compiling Haskell in
the the Essential Haskell (EH) Compiler (EHC) [7, 8]. EH intends

– to compile full Haskell (the H in EH)
– to offer an implementation in terms of the essential, or desugared, core lan-

guage constructs of Haskell (the E in EH)
– to provide a solid framework for research (i.e., extendable for experimenta-

tion) and education (another interpretation of the E in EH)

In particular the following areas require attention:

107

– Implementation complexity (Section 2) The amount of work a compiler
has to do is a source of complexity. We organise the work as a series of smaller
transformation steps [18, 22] between various internal representations.

– Description complexity (Section 3) The specification of parts of the im-
plementation itself can become complex because low-level details are visible.
We use domain specific languages which factor out such low-level details, so
they are dealt with automatically.

– Design complexity (Section 4) Experiments with language features are
usually done in isolation. We describe their implementation in isolation, as
a sequence of language variants, building on top of each other.

– Maintenance complexity (Section 5) Actual compiler source, its docu-
mentation, and its specification tend to become inconsistent over time. We
fight such inconsistencies by avoiding their main cause: duplication. When-
ever two artefacts have to be consistent, we generate them from a common
description.

In the next sections we explain how we deal with each of these complexities.

2 Coping with implementation complexity: transform

EHC is organised as a sequence of transformations between internal representa-
tions of the program being compiled. In order to keep the compiler understand-
able, we keep the transformations simple, and consequently, there are many.
This approach is similar to the one taken in GHC [18, 19, 21]. All our transfor-
mations are expressed as a full tree walk over the data structure, using a tool for
easily defining tree walks (see Section 3.1). At each step in which the representa-
tion changes drastically we introduce a separate data structure (or “language”).
Fig. 1 shows these languages and the transformations between them:

– HS (Haskell) is a representation of the program text as parsed. It is used
for desugaring, name and dependency analysis, and making binding groups
explicit.

– EH (Essential Haskell) is a simplified and desugared representation. It is
used for type analysis and code expansion of class system related constructs.

– Core is a representation in an untyped λ-calculus.
– Grin (Graph reduction intermediate notation) is a representation proposed

by Boquist [5, 6] in which local definitions have been made sequential and
the need for evaluation has been made explicit.

– Silly (Simple imperative little language) is a simple abstraction of an im-
perative language with an explicit stack and heap, and functions which can
be called and tail-called.

– C is used here as a universal back-end, hiding the details of the underlying
machine. Primitive functions are implemented here.

– LLVM (Low level virtual machine) is an imperative language which, other
than C, is intended to be a universal back-end [14]. We have it under con-
sideration as an alternative route to attain executable code.

108

HS EH Core Grin

Silly

C

LLVM

exe
interpreter

Fig. 1. Intermediate languages and transformations in the EHC pipeline

As can be seen from the figure, the compilation pipeline branches after the Grin
stage, offering different modes of compilation:

– Grin code can be interpreted directly by a simple (and thus slow) interpreter.
– Grin code can be translated to C directly. In this mode, the program is

represented in a custom bytecode format, stored in arrays, and executed by
an interpreter written in C. Its speed is comparable to that of Hugs [1].

– Grin code can be translated to executable code via transformations which
perform global program analysis, and generate optimized Silly code, which
can be further processed through either the C or LLVM route.

The transformations between the languages mentioned above bring the program
stepwise to a lower level of representation, until it can be executed directly. Most
of the simplification work however is done by the transformations that are indi-
cated by a loop in Fig. 1, i.e., for which the source and target language are the
same. We strive to have many small transformations rather than a few compli-
cated ones. To give an idea, we list a short description of the more important
of these transformations. Some of these are necessary simplifications, others are
optimisations that can be left out.

– Transformations on the Core language include:
• Cleanup transformations: Eta-reduction, Eliminating trivial applications,

Inline let alias, Remove unnecessary letrec mutual recursion
• Constant propagation and Rename identifiers to unique names
• Lambda lifting, split up in: Full lazyness of subexpressions, Lambda/CAF

globals passed as argument, Float lambda expressions to global level
– Transformations on the Grin language include:

• Transformations on separate modules: Alias elimination, Unused name
elimination, Eval elimination, Unboxing, Local inlining

• Transformations based on a global abstract interpretation that deter-
mines possible constructors of actual parameters: Inline eval operation,
Remove dead case alternatives and unused functions, Global inlining

• Transformations that remove higher-level constructs, such as splitting
complete nodes into their constituent fields.

– Transformations on the Silly language include:
• Shortcut : avoid unnecessary copying of local variables
• Embed : map local variables to stack positions

109

.cag

.rul

.cag .chs

.hs

.exe

ruler

uuagc

ghc

source

intermediate

output

tool

shuffle

.lib

ghc

.ag.ag.ag
.ag.ag.ag

.hs.hs.hs
.hs.hs.hs

.hs.hs.hs

.lib.lib.lib

.exe.exe

Fig. 2. Chain of tools used to build EHC

3 Coping with description complexity: use tools

Haskell is well suited as an implementation language for compilers, among others
because of the ease of manipulating tree structures. Still, if one needs to write
many tree walks, especially if these involve multiple passes over complicated
syntax trees, the necessary mutually recursive functions tend to become hard to
understand, and contain large pieces of boilerplate code. In the implementation
of EHC we therefore use a chain of preprocessing tools, depicted in Fig. 2.
We use the following preprocessing tools:

– UUAGC (Utrecht University Attribute Grammar Compiler), which enables
us to specify abstract syntax trees and tree walks over them using an at-
tribute grammar (AG) formalism [2, 8, 9, 25].

– Ruler, a translator for an even more specialized language than AG, which
enables a high-level specification of type inferencing, generating both AG
code and LATEX documentation [10].

– Shuffle, which deals with the compiler organisation and logistics of many
different language features, and provides a form of literate programming.

In the remainder of this section we elaborate on the rationale of UUAGC (Sec-
tion 3.1) and Ruler (Section 3.2). We illustrate their use with example code,
which implements part of a Hindley-Milner type checker. In the section on
UUAGC this is idealized toy code, but in the section on Ruler we show ac-
tual code taken from EHC for the same example. In Section 4 and 5 we continue
with the rationale and use of Shuffle.

110

3.1 UUAGC, a system for specifying tree walks

Higer-order functional languages are famous for their ability to parameterize
functions not only with numbers and data structures, but also with functions
and operators. The standard textbook example involves the functions sum and
product , which can be defined separately by tedious inductive definitions:

sum [] = 0
sum (x : xs) = x + sum xs
product [] = 1
product (x : xs) = x ∗ product xs

This pattern can be generalized in a function foldr that takes as additional
parameters the operator to apply in the inductive case and the base value:

foldr op e [] = e
foldr op e (x : xs) = x ‘op‘ foldr op e xs

Once we have this generalized function, we can partially parameterize it to obtain
simpler definitions for sum and product , and many other functions as well:

sum = foldr (+) 0
product = foldr (∗) 1
concat = foldr (++) []
sort = foldr insert []
transpose = foldr (zipWith (:)) (repeat [])

The idea that underlies the definition of foldr (capturing the pattern of an in-
ductive definition by adding a function parameter for each constructor of the
data structure), can also be used for other data types, and even for multiple
mutually recursive data types. Functions that can be expressed in this way are
called catamorphisms by Bird, and the collective extra parameters to foldr -like
functions algebras [3, 4]. Thus, ((+), 0) is an algebra for lists, and ((++), []) is
another. In fact, every algebra defines a semantics of the data structure.
Outside circles of functional programmers and category theorists, an algebra is
simply known as a “tree walk”. In compiler construction, algebras could be very
useful to define a semantics of a language, or bluntly said to define tree walks
over the parse tree. This is not widely done, due to the following problems:

1. Unlike lists, which have a standard function foldr , in a compiler we deal
with (many) custom data structures to describe the abstract syntax of a
language, so we have to invest in writing a custom fold function first. More-
over, whenever we change the abstract syntax, we need to change the fold
function, and every algebra.

2. Generated code can be described as a semantics of the language, but often
we need additional semantices: pretty-printed listings, warning messages,
and various derived structures for internal use (symbol tables etc.). This can
be done in one pass by having the semantic functions in the algebra return
tuples, but this makes them hard to handle.

111

3. Data structures for abstract syntax tend to have many alternatives, so alge-
bras end up to be clumsy tuples containing dozens of functions.

4. In practice, information not only flows bottom-up in the parse tree, but also
top-down. E.g., symbol tables with global definitions need to be distributed
to the leaves of the parse tree to be able to evaluate them. This can be done
by making the semantic functions in the algebra higher order functions, but
this pushes the handling of algebras beyond human control.

5. Much of the work is just passing values up and down the tree. The essence
of a semantics in the algebra is obscured by lots of boilerplate.

In short: the concepts of catamorphism and algebra apply here, but their encod-
ing in Haskell is cumbersome and becomes prohibitively complex. Many compiler
writers thus end up writing ad hoc recursive functions instead of defining the se-
mantics by an algebra, or even resort to non-functional techniques. Others try to
capture the pattern using monads [17]. Some succeed in giving a concise defini-
tion of a semantics, often using proof rules of some kind, but loose executability.
For the implementation they still need conventional techniques, and the issue
arises whether the program soundly implements the specified semantics.
To save the nice idea of using an algebra for defining a semantics, we use a
preprocessor for Haskell [25] that overcomes the mentioned problems. It is not a
separate language; we can still write auxiliary Haskell functions, and use all ab-
straction techniques and libraries. The preprocessor just allows a few additional
constructs, which are translated into custom fold -like functions and algebras.
We describe the main features of the preprocessor here, and explain why they
overcome the five problems mentioned above. For a start, the grammar of the
abstract syntax of the language is defined in data declarations, which are like a
Haskell data declaration with named fields, except that we do not have to write
braces and commas and that constructor function names need not be unique.
As an example, we show a fragment of EHC that represents a lambda calculus:

data Expr
= Var name :: Name
| Let decl :: Decl body :: Expr
| App func :: Expr arg :: Expr
| Lam arg :: Pat body :: Expr

data Decl
= Val pat :: Pat expr :: Expr

data Pat
= Var name :: Name
| App func :: Expr arg :: Expr

The preprocessor generates corresponding Haskell data declarations (making
the constructors unique by prepending the type name, like Expr Var), and more
importantly, generates a custom fold function. This overcomes problem 1.
For any desired value we wish to compute from a tree, we can declare a “synthe-
sized attribute” (the terminology goes back to Knuth [12]). Attributes can be

112

defined for one or more data types. For example, we can define that for all three
datatypes we wish to synthesize a pretty-printed listing, and that expressions in
addition synthesize a type and a variable substitution map:

attr Expr Decl Pat syn listing :: String
attr Expr syn typ :: Type

varmap :: [(Name,Type)]

In the presence of multiple synthesized attributes, the preprocessor ensures that
the semantic functions combine them in tuples, but in our program we can simply
refer to the attributes by name. The attribute declarations of a single datatype
can even be distributed over the program. This overcomes problem 2.
The value of each attribute needs to be defined for every constructor of every data
type which has the attribute. These definitions of the semantics of the language
are known as “semantic rules”, and start with keyword sem. An example is:

sem Expr | Let
lhs.listing = "let " ++ @decl .listing ++ " in " ++ @body .listing

This states that the synthesized listing attribute of a Let expression can be
constructed by combining the listing attributes of its decl and body children and
some fixed strings. The @ symbol in this context should be read as “attribute”,
not to be confused with Haskell “as-patterns”. The keyword lhs refers to the
parent of the children @decl and @body , i.e., the nameless Expr at the left hand
side of the grammar rule. At the left of the = symbol, the attribute to be defined
is mentioned (here the @ symbol may be omitted); at the right, any Haskell
expression can be given. The example below shows the use of a case expression
and an auxiliary function substit , applied to occurrences of child attributes. Also,
it shows how to use the value of leaves (@name in the example), and how to
group multiple semantic rules under a single sem header:

sem Expr
| Var lhs.listing = @name
| Lam lhs.typ = Type Arrow (substit @body .varmap @arg .typ) @body .typ
| App lhs.typ = case @func.typ of

(Type Arrow p b) → substit @arg .varmap b

The preprocessor collects and orders all definitions into a single algebra, replacing
the attribute references by suitable selections from the results of the recursive
tree walk on the children. This overcomes problem 3.
To be able to pass information downward during a tree walk, we can define
“inherited” attributes. As an example, it can serve to pass an environment (a
lookup table that associates variables to types), which can be consulted when
we need to determine the type of a variable:

attr Expr inh env :: [(Name,Type)]
sem Expr

| Var lhs.typ = fromJust (lookup @name @lhs.env)

113

The value to use for the inherited attributes can be defined in semantic rules
higher up the tree. In the example, Let expressions extend the environment
which they inherited themselves with the new environment synthesized by the
declaration, in order to define the environment to be used in the body:

sem Expr
| Let body .env = @decl .newenv ++ @lhs.env

The preprocessor translates inherited attributes into extra parameters for the
semantic functions in the algebra. This overcomes problem 4.
In practice, there are many situations where inherited attributes are passed
unchanged as inherited attributes for the children. For example, the environment
is passed down unchanged at App expressions. This can be quite tedious to do:

sem Expr
| App func.env = @lhs.env

arg .env = @lhs.env

Since the code above is trivial, the preprocessor has a convention that, unless
stated otherwise, attributes with the same name are automatically copied. So,
the attribute env that an App expression inherited from its parent, is automati-
cally copied to the children which also inherit an env , and the tedious rules above
can be omitted. This captures a pattern that is often addressed by introducing
a Reader monad [11]. Similar automated copying is performed for synthesized
attributes, so if they need to be passed unchanged up the tree, this does not
need an explicit encoding, nor a Writer monad.
It is allowed to declare both an inherited and a synthesized attribute with the
same name. In combination with the copying mechanisms, this enables us to
silently thread a value through the entire tree, updating it when necessary. Such
a pair of attributes can be declared as if it were a single “threaded” attribute.
A useful application is to thread an integer value as a source for fresh variable
names, incrementing it whenever a fresh name is needed during the tree walk.
This captures a pattern for which otherwise a State monad would be needed.
The preprocessor automatically generates semantic rules in the standard situa-
tions described, and this overcomes problem 5.

3.2 Ruler, a system for specifying type rule implementations

With the AG language we can describe the part of a compiler related to tree
walks concisely and efficiently. However, this does not give us any means of
looking at such an implementation in a more formal setting. Currently a formal
description of Haskell, suitable for both the generation of an implementation and
use in formal proofs, does not exist. For EH we make a step in that direction
with Ruler , which allows us to have both an implementation and a type rule
presentation with the guarantee that these are mutually consistent.

114

With Ruler we describe type rules in such a way that both a LATEX rendering
and an AG implementation can be generated from such a common type rule
description. We demonstrate the use of Ruler by showing Ruler code for the
Hindley-Milner type inferencing of function application App (see previous section
for this and other names for expression terms). We omit a thorough explanation
of the meaning of these fragments, as our purpose here is to demonstrate how we
can describe these fragments with one common piece of Ruler source text. Also
we do not intend to be complete in our description; we point out those parts
corresponding to the distinguishing features of the Ruler system.
From a single source, to be discussed below, Ruler can both generate a LATEX
rendering for human use in technical writing:

v fresh
Γ ; Ck ; v → σk `e e1 : σa → σ Cf

Γ ; Cf ;σa `e e2 : Ca
Γ ; Ck ;σk `e e1 e2 : Caσ Ca

(e.appHM)

and its corresponding AG implementation, for further processing by UUAGC:
sem Expr

| App (func.gUniq , loc.uniq1)
= mkNewLevUID @lhs.gUniq

func.knTy = [mkTyVar @uniq1] ‘mkArrow ‘ @lhs.knTy
(loc.ty a , loc.ty)

= tyArrowArgRes @func.ty
arg .knTy = @ty a
loc .ty = @arg .tyVarMp ⊕ @ty

The given rule describes the algorithmic typing of a function application in a
standard lambda calculus with the Hindley-Milner type system. The rule in-
volves four judgements: three premises and a conclusion. All judgements but the
one involving the freshness of a type variable have the same structure as these
all relate various properties of expressions: the conclusion about the function
application e1 e2, the premises about the function e1 and argument e2.
Ruler exploits this commonality by means of the scheme of a judgement, which
can be thought of as the type of a judgement:

scheme expr =
holes [node e : Expr , inh valGam : ValGam, inh knTy : Ty

, thread tyVarMp : C, syn ty : Ty]
judgeuse tex valGam; tyVarMp.inh; knTy ` .."e" e : ty tyVarMp.syn
judgespec valGam; tyVarMp.inh; knTy ` e : ty tyVarMp.syn

The scheme declaration for expressions expr defines a common framework for
the judgements of each expr term, such as App and Lam (lambda expression):

115

– holes: names, types and modifiers of placeholders (or holes) for various
properties, such as e and valGam

– judgeuse tex (unparsing): LATEX pretty printing in terms of holes and other
symbols, such as ` and

– judgespec (parsing): concrete syntax for specifying a complete judgement.

Modifiers node, inh, syn, and thread are required when generating an AG
implementation, to be able to turn a rule into an algorithm. The thread modifier
introduces two holes with suffix .inh and .syn, corresponding to an AG threaded
attribute. For a LATEX rendering these modifiers are ignored, but additional
formatting is required to map identifiers to LATEX symbols, for example:

valGam 7→ Γ
ty 7→ σ

knTy 7→ σk

tyVarMp.inh 7→ Ck

We omit further discussion of lexical issues.
The rule for function application App now is defined by judgements introduced
with the keyword judge:

rule e.app =
judge tvarvFresh
judge expr = tyVarMp.inh; tyVarMp; (v → knTy)

` eFun : (ty .a → ty) tyVarMp.fun
judge expr = tyVarMp.fun; valGam; ty .a

` eArg : ty .a tyVarMp.arg
−
judge expr = tyVarMp.inh; valGam; knTy

` (eFun eArg) : (tyVarMp.arg ty) tyVarMp.arg

For each judgement its scheme is specified (expr in the example). The judgespec
of the corresponding scheme is used to check the concrete syntax and to bind
the holes of the judgement to the concrete values specified by the judgement.
From this rule definition a LATEX rendering can straightforwardly be generated.
For the generation of an AG implementation we need information as specified
by hole modifiers. In an AG implementation the structure of the tree drives the
choice of which rule to apply. One of the holes needs to correspond to a node
of such a tree; the modifier node specifies which. Other holes correspond to
attributes, which have a direction: top-down (inherited, indicated by modifier
inh) bottom-up (synthesized, indicated by syn) or both (indicated by thread).
The judgement with scheme tvarvFresh is an example of a judgement which
does not fit into a tree structure as required by AG: it does not refer to a node
hole. For such schemes, called relations, an explicit AG implementation must be
provided. We omit further discussion of relations.
Finally, Ruler also provides support for incremental language specification, which
we discuss in Section 4.

116

Haskell extensions

1 λ-calculus, type checking
2 type inferencing
3 polymorphism
4 higher ranked types, existentials
5 data types
6 kind inferencing kind signatures
7 records tuples as records
8 code generation GRIN
9 class system
10 extensible records
11 type synonyms
12 explicit parameter passing

for implicit parameters *
13 higher order predicates *
14–19 reserved for other extensions *
20 module system
95 class instance deriving *
96 exception handling
97 numbers: Integer, Float, Double *
98 IO *
99 the rest for full Haskell *

Fig. 3. EH language variants (work in progress is marked by an asterisk ‘*’)

4 Coping with design complexity: grow stepwise

To cope with the many features of Haskell, EHC is constructed as a sequence of
compilers, each of which adds new features. This enables us to experiment with
non-standard features. Fig. 3 shows the standard and experimental features cur-
rently introduced in each language variant. The sequence is a didactical choice of
increasingly complex features; it is not the development history. Every compiler
in the sequence can actually be built out of the repository.

Each language variant in the sequence is described as a delta with respect to the
previous language. Usually this delta is a pure addition, but other combinations
are possible when:

– language features interact
– the overall implementation and individual increments interact: an increment

is described in the context of the implementation of preceding variants,
whereas such a context must anticipate later changes.

Conventional compiler building tools are neither aware of partitioning into in-
crements nor aware of their interaction. We use a separate tool, called Shuffle,
to take care of such issues. We describe Shuffle in the next section.

117

For each language variant in the sequence, various artefacts are created, such
as example programs, a definition of the semantics, an implementation, and
documentation. Fig. 4 shows some of these artefacts for some language variants.
The first row shows an example program for each language variant. The second
row shows a description of part of the semantics of the language variants (the
type rule for functional application), by way of the LATEX rendering of the type
rule generated by Ruler . The third row shows the implementation of this type
rule in the compiler, by way of the AG output generated by Ruler (from the
same source). Example language variants shown in the columns of Fig. 4 are EH1
(simply explicitly typed λ-calculus), EH3 (adding polymorphic type inference),
and EH4 (adding higher-ranked types).

5 Coping with maintenance complexity:
generate, generate and generate

For any large programming project the greatest challenge is not to make the
first version, but to be able to make subsequent versions. In order to facilitate
change, the object of change should be isolated and encapsulated. Although
many programming languages support encapsulation, this is not sufficient for
the construction of a compiler, because each language feature influences not
only various parts of the compiler (parser, structure of abstract syntax tree,
type system, code generation, runtime system) but also other artefacts such
as specification, documentation, and test suites. Encapsulation of a language
feature in a compiler therefore is difficult, if not impossible, to achieve.
We mitigate the above problems by using Shuffle, a separate preprocessor. In
all source files, we annotate to which language variants the text is relevant.
Shuffle preprocesses all source files by selecting and reordering those fragments
(called chunks) that are needed for a particular language variant. Source code
for a particular Haskell module is stored in a single “chunked Haskell” (.chs)
file, from which Shuffle can generate the Haskell (.hs) file for any desired variant
(see Fig. 2, where the stacks of intermediate files denote various variants of a
module). Source files can be chunked Haskell code, chunked AG code, but also
chunked LATEX text and code in other languages we use.
Shuffle behaves similar to literate programming tools [13] in that it generates
program source code. The key difference is that with the literate programming
style program source code is generated out of a file containing program text
plus documentation, whereas Shuffle combines chunks for different variants from
different files into either program source code or documentation.
Shuffle offers a different functionality than version management tools: these offer
historical versions, whereas Shuffle offers the simultaneous handling of different
variants from a single source.
For example, for language variant 2 and 3 (on top of 2) a different wrapper
function mkTyVar for the construction of the internal representation of a type
variable is required. In variant 2, mkTyVar is equal to the constructor Ty Var :

118

↓ Simply typed λ calculus (EH1)

↓ Polymorphic type inference (EH3)

↓ Higher ranked types (EH4)

Implementation →

Semantics →

Example → let id :: a → a
id = λx → x
f :: (∀ a.a → a) → ...
f = λi → (i 3, i ’x’)

in f id
let id = λx → x
in let (a, b) = (id 3, id ’x’)

in a
let i :: Int

i = 5
in i

v fresh

ostr; Γ ; Ck ; v → σk `e e1 : → σ Cf

oinst−lr; Γ ; Cf ; v `e e2 : Ca

o; Γ ; Ck ; σk `e e1 e2 : σk Ca

(e.appI1)

v fresh

Γ ; Ck ; v → σk `e e1 : σa → σ Cf

Γ ; Cf ; σa `e e2 : Ca

Γ ; Ck ; σk `e e1 e2 : Caσ Ca

(e.appHM)

Γ ;�→ σk `e e1 : σa → σ
Γ ; σa `e e2 :

Γ ; σk `e e1 e2 : σ
(e.appK)

sem Expr
| App (func.gUniq , loc.uniq1)

= mkNewLevUID @lhs.gUniq
loc .tvarv = mkTyVar @uniq1
func.fiOpts = ostr

.knTy = [@tvarv] ‘mkArrow ‘ @lhs.knTy
(, loc.ty) = tyArrowArgRes @func.ty
arg .fiOpts = oinst−lr

.knTy = @tvarv
loc .ty = @lhs.knTy

sem Expr
| App (func.gUniq , loc.uniq1)

= mkNewLevUID @lhs.gUniq
func.knTy = [mkTyVar @uniq1] ‘mkArrow ‘ @lhs.knTy
(loc.ty a , loc.ty)

= tyArrowArgRes @func.ty
arg .knTy = @ty a
loc .ty = @arg .tyVarMp ⊕ @ty

sem Expr
| App func.knTy = [Ty Any] ‘mkArrow ‘ @lhs.knTy

(loc.ty a , loc.ty)
= tyArrowArgRes @func.ty

arg .knTy = @ty a
loc .ty = @ty

Fig. 4. Examples of created artefacts (rows) for various language variants (columns)

119

mkTyVar :: TyVarId → Ty
mkTyVar tv = Ty Var tv

However, version 3 introduces polymorphism as a language variant, which re-
quires additional information for a type variable, which defaults to TyVarCateg Plain
(we do not further explain this):

mkTyVar :: TyVarId → Ty
mkTyVar tv = Ty Var tv TyVarCateg Plain

These two Haskell fragments are generated from the following Shuffle source:

%%[2.mkTyVar

mkTyVar :: TyVarId -> Ty

mkTyVar tv = Ty_Var tv

%%]

%%[3.mkTyVar -2.mkTyVar

mkTyVar :: TyVarId -> Ty

mkTyVar tv = Ty_Var tv TyVarCateg_Plain

%%]

The notation %%[2.mkTyVar begins a chunk for variant 2 with name mkTyVar ,
ended by %%]. The chunk for 3.mkTyVar explicitly specifies to override 2.mkTyVar
for variant 3. Although the type signature can be factored out, we refrain from
doing so for small definitions.

In summary, Shuffle:

– uses notation %%[. . . %%] to delimit and name text chunks
– names chunks by a variant number and (optional) additional naming
– allows overriding of chunks based on their name
– combines chunks upto an externally specified variant, using an also externally

specified variant ordering.

6 Experiences

Development and debugging. The partitioning into variants is helpful for both
development and debugging. It is always clear to which variant code contributes,
and if a problem arises one can use a previous variant in order to isolate the
problem. Experimentation also benefits because one can pick a suitable variant
to build upon, without being hindered by subsequent variants.

However, on the downside, there are builtin system wide assumptions, for exam-
ple about how type checking is done. We are currently investigating this issue
in the context of Ruler .

120

Use in research and education. EHC is constructed as a library and a toplevel
compiler driver (see Fig. 2), facilitating the use of the implementation of EHC
by other programs.
We intend to use the first three language variants (Fig. 3) in our basic course on
compiler construction, thus providing students with a realistic integrated intro-
duction to language design, compiler implementation, and software engineering.
This approach is similar to that in Pierce’s textbook [23], however, in contrast we
focus on a realistic implementation of full Haskell instead of small independent
implementations of isolated type systems.

Improvements. Although our approach to cope with complexity indeed leads to
the advocated benefits, there is room for improvement:

– Ruler and type rules With Ruler we generate both AG and LATEX. Ruler
notation, AG, and LATEX have a similar structure. Consequently Ruler does
not hide as much of the implementation as we would like. We are investigat-
ing a more declarative notation for Ruler .

– Loss of information while transforming With a transformational ap-
proach to different intermediate representations, the relation of later stages
to earlier available information becomes unclear. For example, by desugaring
to a simpler representation, source code of the user program is reordered and
the original source location has to be propagated as part of the AST. Such
information flow patterns are not yet automated.

– High level description and efficiency Using a high level description
usually also provides opportunities to optimise at a low level. For attribute
grammars a large body of optimisations are available [24], some of which are
finding their way into our AG system.

– Stepwise approach vs. aspectwise approach EH’s stepwise approach
imposes a fixed order in which language constructs are implemented on top
of each other. Ideally one should be able to arbitrarily combine separate lan-
guage constructs as aspects (independent implementation fragments), but
interaction between language constructs hinders this flexibility. We are in-
vestigating the use of aspects in the context of Ruler .

Status and plans. We are working towards a release of EHC as a Haskell compiler:
variant 99 in the sequence. At the moment, we can compile a prelude and run
programs with a bytecode interpreter. We intend to work on AG optimisations,
on using LLVM [14] as a backend, and on GRIN global transformations.

References

1. Hugs 98. http://www.haskell.org/hugs/, 2003.
2. Arthur Baars. Attribute Grammar System.

http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem, 2004.
3. R. Bird and O. de Moor. The algebra of programming. Prentice Hall, 1996.

121

4. Richard S. Bird. Using Circular Programs to Eliminate Multiple Traversals of
Data. Acta Informatica, 21:239–250, 1984.

5. Urban Boquist. Code Optimisation Techniques for Lazy Functional Languages,
PhD Thesis. Chalmers University of Technology, 1999.

6. Urban Boquist and Thomas Johnsson. The GRIN Project: A Highly Optimising
Back End For Lazy Functional Languages. In Selected papers from the 8th
International Workshop on Implementation of Functional Languages, 1996.

7. Atze Dijkstra. EHC Web. http://www.cs.uu.nl/wiki/Ehc/WebHome, 2004.
8. Atze Dijkstra. Stepping through Haskell. PhD thesis, Utrecht University,

Department of Information and Computing Sciences, 2005.
9. Atze Dijkstra and S. Doaitse Swierstra. Typing Haskell with an Attribute

Grammar. In Advanced Functional Programming Summerschool, number 3622 in
LNCS. Springer-Verlag, 2004.

10. Atze Dijkstra and S. Doaitse Swierstra. Ruler: Programming Type Rules. In
Functional and Logic Programming: 8th International Symposium, FLOPS 2006,
Fuji-Susono, Japan, April 24-26, 2006, number 3945 in LNCS, pages 30–46.
Springer-Verlag, 2006.

11. Mark P. Jones. Typing Haskell in Haskell. In Haskell Workshop, 1999.
12. D.E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,

2(2):127–145, 1968.
13. D.E. Knuth. Literate Programming. Journal of the ACM, (42):97–111, 1984.
14. Chris Lattner. The LLVM Compiler Infrastructure Project. http://llvm.org/,

2007.
15. Simon Marlow. The Glasgow Haskell Compiler. http://www.haskell.org/ghc/,

2004.
16. Simon Marlow and Simon Peyton Jones. The New GHC/Hugs Runtime System.

http://citeseer.ist.psu.edu/marlow98new.html, 1998.
17. Erik Meijer and Johan Jeuring. Merging monads and folds for functional

programming. In First International Spring School on Advanced Functional
Programming Techniques, B̊astad, Sweden, number 925 in LNCS.
Springer-Verlag, May 1995.

18. Simon Peyton Jones. Compiling Haskell by program transformation: a report
from the trenches. In European Symposium On Programming, pages 18–44, 1996.

19. Simon Peyton Jones, Cordy Hall, Kevin Hammond, Will Partain, and Phil
Wadler. The Glasgow Haskell compiler: a technical overview. In Proc. UK Joint
Framework for Information Technology (JFIT) Technical Conference, 1992.

20. Simon Peyton Jones and Simon Marlow. Secrets of the Glasgow Haskell Compiler
inliner. Journal of Functional Programming, pages 393–434, 2002.

21. Simon Peyton Jones and Andre Santos. Compilation by Transformation in the
Glasgow Haskell Compiler.
http://citeseer.ist.psu.edu/peytonjones94compilation.html, 1994.

22. Simon Peyton Jones and Andre Santos. A transformation-based optimiser for
Haskell. Science of Computer Programming, 32(1-3), 3-47 1998.

23. Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
24. Joao Saraiva. Purely Functional Implementation of Attribute Grammars. PhD

thesis, Utrecht University, 1999.
25. S. Doaitse Swierstra, P.R. Azero Alocer, and J. Saraiava. Designing and

Implementing Combinator Languages. In Doaitse Swierstra, Pedro Henriques,
and José Oliveira, editors, Advanced Functional Programming, Third
International School, AFP’98, number 1608 in LNCS, pages 150–206.
Springer-Verlag, 1999.

122

XHaskell – Adding Regular Expression Types to

Haskell

Martin Sulzmann and Kenny Zhuo Ming Lu

School of Computing, National University of Singapore
S16 Level 5, 3 Science Drive 2, Singapore 117543

{sulzmann,luzm}@comp.nus.edu.sg

Abstract. We present an extension of Haskell, baptized XHaskell, which
combines parametric polymorphism, algebraic data types and type classes
found in Haskell with regular expression types, subtyping and regular ex-
pression pattern matching found in XDuce. Such an extension proves in
particular useful for the type-safe processing of XML data. For example,
we can express XQuery and XPath style features via XHaskell combina-
tors. We have implemented the system which can be used in combination
with the Glasgow Haskell Compiler.

1 Introduction

Functional programming and XML processing should be a good match. Higher-
order functions and parametric polymorphism equip the programmer with pow-
erful abstraction facilities while pattern matching over algebraic data types al-
lows for a convenient notation to specify XML transformations. In the Haskell
context, there are a number of tools, for example see [WR99,Sch07], which pro-
vide support for parsing, generating and transforming XML documents.

Unfortunately, XML processing in Haskell does not provide the same static
guarantees compared to XML processing in domain specific languages such as
XDuce [HP00] and variants such as CDuce [BCF03]. These languages natively
support regular expression types and (semantic) subtype polymorphism [HVP05]
and can thus give much stronger static guarantees about the well-formedness of
programs. In combination with regular expression pattern matching [HP01], we
can write sophisticated and concise XML transformations.

Previous work attempts to close the gap between XDuce and Haskell but
some limitations remain. For example, the work in [BFS04] introduces a pre-
processor to provide for regular expression pattern matching. On the down side,
the approach is untyped and only supports lists. The combinator library to
generate XML values introduced in [Thi02] makes use of the Haskell type class
system to check for correctness of constructed values. But neither destruction
(pattern matching) nor subtyping among XML values is supported. There are a
number of further examples [KL05,Kis07,LS04] where Haskell’s type extensions
are used to encode domain-specific language extensions. While these works are
impressive, they often lead to less natural programs compared to writing the
same in XDuce. Another important point is that a language extension comes with

123

a new compiler which not only enables more optimizations but also allows for
better (type) error messages compared to providing the extension via a library.

In this paper, we introduce an extension of Haskell, baptized XHaskell, which
integrates XDuce features such as regular expression types, subtyping and reg-
ular expression pattern matching into Haskell. Closely related to our work is
XMLambda [MS99,SM01]. However, our approach is more powerful because we
can express more subtyping relations involving complex types such as (a∗ | b∗).
In addition, we also support the combination of regular expression types and
type classes which to the best of our knowledge has not been studied before.

Specifically, our contributions are:

– We introduce XHaskell via examples and demonstrate that the combination
of regular expression types with algebraic data types (Section 2), paramet-
ric polymorphism (Section 3) and type classes (Section 4) yields a highly
expressive system. For example, we can express XQuery and XPath style
features via XHaskell combinators.

– We establish sufficient conditions which guarantee that type checking of
XHaskell remains decidable (Section 5).

– We have fully implemented the system which can be used in combination
with the Glasgow Haskell Compiler. We have taken care to provide mean-
ingful type error messages in case the static checking of programs fails. Our
system also allows to defer some static checks until run-time (Section 6.1).

– We make use of GHC-as-a-library so that the XHaskell programmer can
easily integrate her programs into existing applications and take advantage of
the many libraries available in GHC. We also provide a convenient interface
to the HaXML parser (Section 6.2).

A complete description of XHaskell’s static semantics, described in terms of
a type-directed type-preserving translation from XHaskell to a System F style
target language, can be found in an accompanying technical report [SL07b]. A
sketch of the key ideas is given in Section 5. Further related work in the context
of Java, C#, ML and XDuce is discussed in Section 7. Section 8 concludes.

2 Regular Expression and Data Types

In XHaskell we can mix algebraic data types and regular expression types. Thus,
we can give a recast of the classic XDuce example also found in [HP00]. First,
we provide some type definitions.

data Person = Person Name (Tel?) (Email*)

data Name = Name String

data Tel = Tel String

data Email = Email String

data Entry = Entry (Name,Tel)

The above extend data type definitions as found in Haskell. The novelty is
the use of regular expression notation on the right-hand sides. Thus, we can
for example describe that an address book consists of an arbitrary sequence of
persons. Each person is described by a name, an optional telephone number and
an arbitrary sequence of email addresses and so on.

124

Like in Haskell, we can now write functions which pattern match over the
above data types. The following function (possibly) turns a single person into a
phone book entry.

pToE :: Person -> Entry?

pToE (Person (n:: Name) (t::Tel) (es :: Email*)) = Entry (n,t)

pToE (Person (n:: Name) (t::()) (es :: Email*)) = ()

In the first clause we use the combination of Haskell style patterns and XDuce
style type-based regular expression patterns to check whether a person has a
telephone number. In the body of the second clause, we use semantic subtyping.
The empty sequence value () of type () is a subtype of (Entry?) because the
language denoted by () is a subset of the language denoted by (Entry?). Hence,
we can conclude that the above program is type correct.

XHaskell programs are translated by using a structured representation of val-
ues of regular expression types. For example, we use lists to represent sequences
and sum types such as data Or a b = L a | R b to represent the regular ex-
pression choice operator. Thus, the source definition

data Person = Person Name (Tel?) (Email*)

translates to the target definition

data Person = Person Name (Or Tel ()) [Email]

Some readers may argue why not use the target definition in the first place.
That is, use Haskell instead of XHaskell from the start. The problem is that we
loose the convenience of having subtyping and regular expression pattern match-
ing. Concretely, in the body of function pToE we must insert some explicit tags,
here L for the first clause and R for the second clause, to ensure that the pro-
gram type checks in Haskell. These tags effectively represent (up-cast) coercions
and are automatically inserted by the XHaskell compiler. Similarly, the Haskell
programmer must explicitly translate regular expression pattern matching into
plain Haskell pattern matching. The XHaskell compiler will automatically insert
the (down-cast) coercions, representing the regular expression pattern match,
for the programmer. We believe that this is highly useful when writing more
complex programs. The XHaskell programs will be more concise and readable
compared to writing an equivalent program in Haskell.

To disambiguate the outcome of matching, we employ the longest match pol-
icy. For instance, the following program removes the longest sequence of spaces
from the beginning of a sequence of spaces and texts.

data Space = Space

data Text = Text String

longestMatch :: (Space|Text)* -> (Space|Text)*

longestMatch (s :: Space*, r :: (Space|Text)*) = r

The sub-pattern (s :: Space*) is potentially ambiguous because it matches
an arbitrary number of spaces. However, in XHaskell we follow the longest match
policy which enforces that sub-pattern (s :: Space*) will consume the longest
sequence of spaces. For example, application of longestMatch to the value
(Space, Space, Text ‘‘Hello’’, Space) yields (Text ‘‘Hello’’, Space).

XHaskell also provides support for XML-style attributes.

125

data Book = Book {{author :: Author?, year :: Year}}

type Author = String

type Year = Int

findBooks :: Year -> Book* -> Book*

findBooks yr (b@Book{{year = yr’}},bs :: Book*) =

if (yr == yr’)

then (b, findBooks yr bs)

else (findBooks yr bs)

findBooks yr (bs :: ()) = ()

The above program filters out all books published in a specified year. The
advantage of attributes author and year is that we can access the fields within a
data type by name rather than by position. For example, the pattern Book{{year
= yr’}} extracts the year out of a book whereas the pattern b@ allows us to use
b to refer to this book.

Attributes in XHaskell resemble labeled data types in Haskell. But there are
some differences, therefore, we use a different syntax. The essential difference is
that attributes may be optional. For example, Book {{year = 1997}} defines
an author-less book published in 1997. This is possible because the attribute
author has the optional type Author?. In case of

findGoethe :: Book* -> Book*

findGoethe (b@Book{{author = "Goethe", year = _}},bs :: Book*) =

(b, findGoethe bs)

findGoethe _ = ()

the first clause applies if the author is present and the author is Goethe. In
all other cases, i.e. the author is not Goethe, the book does not have an author at
all or the sequence of books is empty, the second clause applies. Another (minor)
difference between attributes in XHaskell and labeled data types in Haskell is
that in XHaskell a attribute name can be used in more than one data type.

data MyBook = MyBook {{author :: Author?, year :: Year, price :: Int}}

This is more a matter of convenience and relies on the assumption that we
use the attribute in a non-polymorphic context only.

3 Regular Expression Types and Parametric
Polymorphism

We can also mix parametric polymorphism with regular expressions. Thus, we
can write a polymorphic traversal function for sequences similar to the map
function in Haskell.

mapStar :: (a -> b) -> a* -> b*

mapStar f (x :: ()) = x

mapStar f (x :: a, xs :: a*) = (f x, mapStar f xs)

In the above, we assume that type annotations are lexically scoped. For
example, variable a in the pattern x::a refers to mapStar’s annotation.

We can now straightforwardly specify a function which turns an address into
a phone book by mapping function pToE over the sequence of Persons.

126

data Book a = Book a*

type Addrbook = Book Person

type Phonebook = Book Entry

addrbook :: Addrbook -> Phonebook

addrbook (Book (x :: Person*)) = Book (mapStar pToE x)

Notice the we also support the combination of regular expressions and para-
metric data types.

Once we have mapStar it is not too difficult to define filterStar and thus
we can express star-comprehension similar to the way list-comprehension are ex-
pressed via map and filter in Haskell. Star-comprehension provide for a handy
notation to write XQuery style programs.

Here is re-formulation of the findBooks function using star-comprehension.

findBooks’ :: Year -> Book* -> Book*

findBooks’ yr (bs :: Book*) = [b | b@Book{{year = yr’}} <- bs, yr == yr’]

Like list-comprehensions, a star-comprehension consists of a sequence of
statements. Concretely, the above star-comprehension has two essential state-
ments. The first statement b@Book{{year = yr’}} <- bs is a generator. For
each book element b in bs, we extract the year of publication attribute and bind
it to yr’. Via the next statement, we then check whether yr is equal to yr’. If
this is the case we return b. In XQuery, the above could be written as follows

declare function findbooks’ ($yr, $bs) {

for $b in $bs

where $b/@year = $yr

return $b

}

where the for-clause iterates through a sequence of books, and the where-
clause filters out those books were published in year $yr.

Parametric polymorphism also poses some challenges. One issue is inference
of type instances of polymorphic functions. For example, consider the following
foldStar function for sequences.

foldStar :: (a -> b -> a)-> a -> b* -> a

foldStar f x (y::()) = x

foldStar f x (y::b, ys::b*) = foldStar f (f x y) ys

We infer the missing pattern annotations, which are f::a->b->a and x::a,
using well-established techniques [HP01,Hos03]. Thus, we can straightforwardly
infer that foldStar is used at type instance (a -> b -> a)-> a -> b* -> a

by applying standard local inference methods [PT00]. Similar methods are also
applied in other languages such as GenericJava and C] 2.0. What makes things
slightly more complicated for us is the presence of subtyping.

Let’s consider an example to explain this point in more detail. Suppose we
use foldStar to build more complex transformations. For example, we want to
transform a sequence of alternate occurrences of a’s and b’s such that all a’s
occur before the b’s. We can specify this transformation via foldStar as follows

transform :: (a|b)* -> (a*,b*)

127

transform xs = foldStar ((\x -> \y -> case y of

(z::a) -> (z,x)

(z::b) -> (x,z)

) :: (a*,b*) -> (a|b) -> (a*,b*))

() xs

We assume that the types of lambda-bound variables are explicitly provided.
See the type annotation in the function body. The challenge here is to infer that
foldStar is used at type instance

((a*,b*)->(a|b)->(a*,b*))->(a*,b*)->(a|b)*->(a*,b*)

From the types of the arguments and the result type of transform’s annotation
we infer the type

((a*,b*)->(a|b)->(a*,b*))->()->(a|b)*->(a*,b*)

But this type does not exactly match the above type. The mismatch occurs at
the second argument position. Our solution is to take into account subtyping
when checking for type instances. We find that ` () ≤ (a∗, b∗) and therefore
the above program is accepted.

A second issue when combining parametric polymorphism and regular ex-
pressions is to guarantee that the meaning of programs remains unambiguous.
The following function filters out all a’s out of squence of a’s or b’s.

filter :: (a|b)* -> b*

filter (x :: b, xs :: (a|b)*) = (x, filter xs)

filter (x :: a, xs :: (a|b)*) = filter xs

filter () = ()

The question is what happens if we use filter at type instance (C|C)* ->
C* where C is some arbitrary type? XHaskell functions are type-checked and
translated independently from any specific use site. This is clearly important to
ensure modularity. The consquence is that we unexpectedly may filter out all C’s
if we apply filter to a sequence of C’s. On the other hand, the monomorphized
version

filterCC :: (C|C)* -> C*

filterCC (x :: C, xs :: (C|C)*) = (x, filterCC xs)

filterCC (x :: C, xs :: (C|C)*) = filterCC xs

filterCC () = ()

will not filter out any C’s at all. To summarize. The issue is that that poly-
morphic function used at a monomorphic instance may behave differently com-
pared to the monomorphized function. The solution is to reject ambiguous uses
of filter by checking the instantiation sites. The instance (C|C)* -> C* is
ambiguous whereas the instance (A|B)* -> B* is clearly fine (that is unam-
biguous). The exact details of the unambiguity check are beyond the scope of
this paper. For a comprehensive treatment of this subject, we refer the interested
to [SL07a].

4 Regular Expression Types and Type Classes

XHaskell also supports the combination of type classes and regular expression
types. For example, we can define (*) to be an instance of the Functor class.

128

instance Functor (*) where

fmap = mapStar

In our next example we define an instance for equality among a sequence of
types.

instance Eq a => Eq a* where

(==) (xs::()) (ys::()) = True

(==) (x::a, xs::a*) (y::a, ys::a*) = (x==y)&&(xs==ys)

(==) _ _ = False

In our third example, we show how to express a generic set of XPath opera-
tions in XHaskell.

class XPath a b where

(//) :: a -> b -> b*

instance XPath a () where

(//) _ _ = ()

instance XPath a t => XPath a* t where

(//) xs t = mapStar (\x -> x // t) xs

instance (XPath a t, XPath b t) => XPath (a|b) t where

(//) (x::a) t = x // t

(//) (x::b) t = x // t

The operation e1 // e2 extracts all “descendants” of e1 whose type is equiv-
alent to e2’s type.

In our last example, we show that it is very simple to write a pretty-printer
for XML data in XHaskell using type classes and regular expression types.

class Pretty a where

pretty :: a -> [Char]

instance Pretty a => Pretty a* where

pretty xs = foldl (++) [] (mapStar pretty xs)

instance (Pretty a, Pretty b) => Pretty (a|b) where

pretty (x :: a) = pretty x

pretty (x :: b) = pretty x

instance (Pretty a, Pretty b) => Pretty (a,b) where

pretty ((x :: a), (y :: b)) = (pretty x) ++ (pretty y)

instance Pretty () where

pretty _ = ""

instance Pretty [Char] where

pretty x = x

instance Pretty Person where

pretty (Person (n:: Name) (t::Tel?) (es :: Email*)) =

129

"<person>" ++ pretty n ++ pretty t ++ pretty es ++ "</person>"

instance Pretty Name where

pretty (Name (s :: [Char])) = "<name>" ++ s ++ "</name>"

instance Pretty Tel where

pretty (Tel (s :: [Char])) = "<tel>" ++ s ++ "</tel>"

instance Pretty Email where

pretty (Email (s :: [Char])) = "<email>" ++ s ++ "</email>"

5 Properties

The meaning of XHaskell is explained via a type-preserving translation scheme
to a System F style target language. The translation of programs is driven by
the type checking process which boils down to checking subtyping among types.
For each pattern we need to check that the pattern type is a subtype of the
incoming type. We also need to check that the type of the function body is a
subtype of the function’s result type.

For concreteness, we give the translation of the earlier filter function. See
Figure 1. We first list the subtype proof obligations which guarantee that the pro-
gram is well-typed. The first function clause gives rise to ` (b, (a|b)∗) ≤d1

(a|b)∗

because of the pattern match and ` (b, b∗) ≤u1 b∗ because of the function body.
The remaining proof obligations resulting from the second and third function
clause should be clear.

The idea behind our translation scheme is to extract out of each subtype proof
among a proof term (coercion).Specifically, we use up-cast coercions u for the
translation of subtyping and down-cast coercions d for the translation of pattern
matching among parametric regular expression types. A source expression of type
a∗ translates to a target expression of type [a] and (a|b) translates to Or a b. 1

Thus, down-cast coercion d1 emulates the regular expression pattern match in
the first clause and up-cast coercion u3 injects the empty sequence (represented
via the unit type in the target program) into the source type b∗. The full details
of the translation process are described in [SL07b].

To obtain decidable type checking, we must impose the following two restric-
tions:

– We only support non-nested data types.
– Subtyping does not extend to type classes.

We explain both points in more detail below.
We say that a data type (definition) is non-nested iff

1 In fact, we use our “own” list type for the translation of the Kleene star. Otherwise,
we may possibly encounter overlapping instances in the translated program (though
there were none in the source program). For example, the target instance Pretty

[a] resulting from the source instance Pretty a* overlaps with the instance Pretty

[Char]. We can easily avoid such issues by declaring newtype XhsList a = XhsList

[a] and use XhsList a instead of [a]. For convenience, we will stick to standard
Haskell lists in the main text.

130

Source program:

filter :: (a|b)* -> b*

filter (x :: b, xs :: (a|b)*) = (x, filter xs)

filter (x :: a, xs :: (a|b)*) = filter xs

filter () = ()

Proof obligations resulting from type checking:

1. ` (b, (a|b)∗) ≤d1
(a|b)∗, ` (b, b∗) ≤u1 b∗

2. ` (a, (a|b)∗) ≤d2
(a|b)∗, ` b∗ ≤u2 b∗

3. ` () ≤d3
(a|b)∗, ` () ≤u3 b∗

Target program:

filter :: [Or a b] -> [b]

filter v =

case (d1 v) of

Just (x,xs) = u1 (x, filter xs)

Nothing ->

case (d2 v) of

Just (x,xs) = u2 (filter xs)

Nothing ->

case (d3 v) of

Just () -> u3 ()

Nothing -> error "non-exhaustive

pattern"

Up-/Down-cast coercions:

d1 :: [Or a b] -> Maybe (b,[Or a b])

d1 [] = Nothing

d1 (x:xs) = case x of

(R y) -> Just (y,xs)

-> Nothing

...

u3 :: () -> [b]

u3 () = []

Fig. 1. Translation of filter

data T a1 ... an = K t1 ... tm | ...

and each occurrence of some data type T ′ in ti, whose associated declaration
T’ a1’ ... ak’ = ... is in a strongly connected component with the above
declaration, is of the form T ′ b1...bk where {b1, ..., bk} ⊆ {a1, ..., an}. We say a
type t is non-nested if it is not composed of any nested data types. For example,
the non-nested definition

data T a = Leaf (Maybe [a]) | Internal (T a) (Maybe Int) (T a)

131

is accepted but we reject the nested definition

data T2 a = K (T2 [a])

Nested definitions are problematic because they may lead to non-termination
when checking for subtyping. For example, the subtype proof obligation ` T 2 a ≤
T 2 b reduces to ` T 2 [a] ≤ T 2 [b] and so on.

For similar reasons, we impose the restriction that subtyping does not extend
to type classes. Recall the declarations

class Eq a where

(==) :: a -> a -> Bool

instance Eq a => Eq a* where ...

Suppose some program text gives rise to Eq (a,a). In our subtype proof
system, we find that

` a∗ → a∗ → Bool ≤u (a, a) → (a, a) → Bool

We apply here the co-/contra-variant subtyping rule for functions which leads to
` (a, a) ≤ a∗. The last statement holds. Hence, we can argue that the dictionary
E for Eq (a, a) can be expressed in terms of the dictionary E′ for Eq a∗ where
E = u E′.

This suggests to refine the type class resolution (also known as context reduc-
tion) strategy. Instead of looking for exact matches when resolving type classes
with respect to instances, we look for subtype matches. Then, resolution of Eq

(a,a) with respect to the above instance yields Eq a. The trouble is that type
class resolution becomes easily non-terminating. For example, Eq a resolves to Eq
a and so on because of ` a ≤ a∗. We have not found (yet) any simple conditions
which guarantees termination under a “subtype match” type class resolution
strategy. Therefore, we employ a “exact match” type class resolution strategy
which in our experience is sufficient. Thus, we can guarantee decidability of type
checking.

XHaskell supports type inference in the sense that we exploit local type infor-
mation, for example provided in the form of user annotations, to infer the type
bindings for pattern variables and the type instance at the use site of a polymor-
phic function. We briefly touched on this issue in Section 3. In XHaskell, we use
standard local inference methods [HP01,Hos03,PT00] A complete description of
our methods is beyond the scope of this paper and therefore described elsewhere
[SL07b].

6 Implementation

We have fully implemented the system as described so far. The XHaskell compiler
consists of a type checker and translator. We apply the type-directed transla-
tion scheme (sketched in the previous section) and generate Haskell code which
compiles under GHC. In the future, we may want to directly compile to GHC’s
internal GHC’s Core language which is a variant of System F. In the following,
we discuss a number of topics which concern the practicality of our system.

132

6.1 Type Error Support

A challenge for any compiler system is to provide meaningful type error mes-
sages. This is in particular important in case the expressiveness of the type
system increases. The XHaskell compiler is built on top of the Chameleon sys-
tem [SW] and thus we can take advantage of Chameleon’s type debugging in-
frastructure [SSW03,SSW06] to provide concise location and explanation infor-
mation in case of a type error.

The following program has a type error in the function body because the
value x of type (B|A)* is not a subtype of the return type (B|C)*.

data A = A

data B = B

data C = C

f :: (B|A)* -> (B|C)*

f (x :: (B|A)*) = x

The compiler reports the following error.

ERROR: XHaskell Type Error

Expression at:

f (x :: (B|A)*) = x

has an inferred type (B|A)* which is not a subtype of (B|C)*.

Trivial inconsistencies probably arise at:

f :: (B|A)* -> (B|C)*

f (x :: (B|A)*) = x

The error report contains two parts. The first part says that a subtyping error
is arising from the body of function f, namely the expression x. The second part
points out the cause of the type error. We found literal A in x’s inferred type,
which is not part of the expected type. This is a very simple example but shows
that we can provide fairly detailed information about the possible cause of a
type error. Instead of highlighting the entire expression we only highlight sub-
expressions which are involved in the error.

As an extra feature we allow to post-pone certain type checks till run-time.
Let’s consider the above program again. The program contains a static type
error because the value x of type (B|A)* is not a subtype of (B|C)*. In terms of
our translation scheme, we cannot derive the up-cast coercion among the target
expression because the subtype proof obligation ` A ≤ C cannot be satisfied.
But if x only carries values of type B* the subtype relation holds. Hence, there
is the option not to immediately issue a static type error here. For each failed
subtype proof obligation such ` A ≤ C we simply generate an “error” case
which then yields for our example the following up-cast coercion.

u :: [Or B A] -> [Or B C]

u (L b:xs) = (L b):(u xs)

u (R a:xs) = error "run-time failure: A found where B or C is expected"

The program type checks now but the translated program will raise a run-
time error if the sequence of values passed to function f consists of an A.

The option of mixing static with dynamic type checking by “fixing” coercions
is quite useful in case the programmer provides imprecise type information. In

133

case of imprecise pattern annotations we can apply pattern inference to infer
a more precise type. The trouble is that the standard pattern inference strat-
egy [HP01] may fail to infer a more precise type as shown by the following
contrived example.

g :: (A,B)|(B,A) -> (A,B)|(B,A)

g (x :: (A|B), y :: (A|B)) = (x,y)

It is clear that either (1) x holds a value of type A and y holds a value of type
B, or (2) x holds a B and y an A. Therefore, the above program ought to type
check. The problem is that pattern inference computes a type binding for each
pattern variable. The best we can do here is to infer the pattern binding {(x :
(A|B)), (y : (A|B))}. But then (x,y) in the function body has type (A|B,A|B)

which is not a subtype of (A,B)|(B,A). Therefore, the above programs fails to
type check.

The problem of imprecise pattern inference is well-known [HP01]. We can
offer a solution by mixing static with dynamic type checking. Like in the example
above, we generate an up-cast coercion u2 out of the subtype proof obligation
` (A|B, A|B) ≤u2 (A, B)|(B, A) where we use “error” cases to fix failed subtype
proofs. This means that application of coercion u2 potentially leads to a run-
time failure. In fact, for our example we know there will not be any run-time
failure because either case (1) or (2) applies.

For the above example, we additionally need to fix the subtype proof `
(A|B, A|B) ≤ (A, B)|(B, A) resulting from the pattern match check. This check
guarantees that the pattern type is a subtype of the incoming type. Out of each
such subtype proof we compute a down-cast coercion to perfrom the pattern
match. In case of ` A ≤ B the pattern match should clearly fail. We can apply
the same method for fixing up-cast coercions to also fix down-cast coercions.
Each failed subtype proof is simply replaced by an “error” case. The pattern
match belonging to the failed subtype proof ` A ≤ B is fixed by generating

\x -> error "run-time failure: we can’t pattern match A against B"

In our case, we fix ` (A|B, A|B) ≤ (A, B)|(B, A) by generating

d2 :: Or (A,B) (B,A) -> Maybe (Or A B, Or A B)

d2 (L (a,b)) = Just (L a, R b)

d2 (R (b,a)) = Just (R b, L a)

Notice that there are no “error” and not even any “Nothing” cases because
each of the two components of the incoming type (A, B)|(B, A) fits into the
pattern type (A|B, A|B).

6.2 Integration of XHaskell with GHC and HaXML

One of the critical factor for the acceptance of any language extension is the
availability of library support and how much of the existing code base can be
re-used. XHaskell supports a module system and makes use of GHC-as-a-library
to process Haskell modules which are imported by a XHaskell program. We make
use of these features in the application below.

134

module RSStoXHTML where

import IO -- Haskell IO module

import RSS -- RSS XHaskell module generated by dtdToxhs rss.dtd

import XHTML -- XHTML module genereated by dtdToxhs xhtml.dtd

import XConversion -- XHaskell module defining parseXml and writeXml etc

filepath1 = "rss1.xml"

filepath2 = "rss2.xml"

row :: (Link, Title) -> Div

row (Link link, Title title) =

Div ("RSS Item", B title, "is located at", B link)

filter_rss :: Rss -> Div*

filter_rss rss = [(row (l,t)) | (Item ((t :: Title)

, (ts :: (Title|Description)*)

, (l :: Link)

, rs)) <- rss/Channel/Item]

main :: IO ()

main = do (rss1 :: Rss) <- parseXml filepath1

(rss2 :: Rss) <- parseXml filepath2

let filter_rss1 = filter_rss rss1

filter_rss2 = filter_rss rss2

html = Html (Body

(I ("This document is generated by RSStoXHTML convertor, \

a program written in XHaskell.")

, Hr, filter_rss1, filter_rss2))

writeXml "myrss.xhtml" html

Our implementation comes with a tool called dtdToxhs which we use here
to automatically generate XHaskell datatypes from the RSS and XHTML DTD
specifications, for example RSS, Link, Title, Div etc. We can then import these
data types into our main application. Another XHaskell module XConversion

provides two functions parseXml :: String -> IO Rss to read and validate
the RSS (XML) document and writeXml :: Xhtml -> IO () to store the XHTML
values into a (XML) file. We read and print from standard I/O. Therefore, we
import the Haskell module IO. We make use of GHC-as-a-library to extract type
information out of the imported Haskell module IO. We use this information to
type check and translate the XHaskell program parts.

Function filter rss extracts all Item elements out of the RSS document.
For each Item element we call function row to generate an XHTML Div element
which has the title and the link of this item. We make use of XQuery and
XPath-style combinators to extract the immediate child elements of type t in
expression e. As discussed earlier, we can de-sugar these combinators in terms
of plain XHaskell. The main function finally generates an XHTML document
in which part of the body content is generated using function filter rss. For
instance, given the input file rss1.xml as follows,

<rss>

<channel>

135

<item>

<title>XHaskell</title>

<link>http://www.comp.nus.edu.sg/~luzm/xhaskell</link>

</item>

</channel>

</rss>

and rss2.xml as follows,

<rss>

<channel>

<item>

<title>Haskell</title>

<link>http://www.haskell.org/</link>

</item>

</channel>

</rss>

executing the program RSStoXHTML yields the following XHTML docu-
ment,

<html>

<body>

<i>This document is generated by RSStoXHTML convertor,

a program written in XHaskell.</i>

<hr/>

<div> RSS Item

XHaskell is located at http://www.comp.nus.edu.sg/~luzm/xhaskell

</div>

<div> RSS Item

Haskell is located at http://www.haskell.org

</div>

</body>

</html>

To allow for easier integration of XHaskell with HaXML legacy code, we
provide two XHaskell library functions toHaXml and fromHaXml to convert data
from its XHaskell type representation to HaXml type representation and vice
versa. Suppose that haxml row is HaXml legacy function which generates a Div
element out of a Link element and a Title element. Then we can redefine the
function row from above as follows.

import MyHaXmlLib (haxml_row)

row’ :: (Link, Title) -> Div

row’ x = fromHaXml (haxml_row (toHaXml x))

7 Related Work

In the introduction we have already discussed related work in the context of
Haskell. In the context of ML, the work in [Fri06] introduces OCamlDuce which
is a merger of OCaml and XDuce. The focus of OCamlDuce is to develop a type
inference algorithm to infer types for the OCaml components and most of the

136

XDuce components in a global flow analysis style. The system does not support
the combination of parametric polymorphism and regular expression types.

There are a number of works [GP03,KL03,KMS04] which extend Java and
C# to guarantee type-safety of XML transformations. One of the main aspects of
these works is the integration of regular expressions types with the object model
in Java and C#. Close to our work is Cω [BMS05], a language extension of C#
to provide first-class support for the manipulation of semi-structured data. Cω is
defined in terms of a type-preserving translation scheme to C# and only allows
for more limited subtyping relation among semi-structured data compared to
our system.

A novel feature of our work is the integration of parametric polymorphism
and regular expression. The only prior work we are aware of are in the context
of XDuce [HFC05,Vou06]. Our system can support a richer set of parametric
polymorphic types involving regular expressions. See the examples in Section 3.
A detailed study of the issues involved in combining parametric polymorphism
and regular expressions is beyond the scope of this paper. We refer the interested
to [SL07a] where we also discuss in the detail the above mentioned works.

The study of improved type error support in the context of regular expres-
sion types has only attracted little attention. We are only aware of the work in
[GCF05] which proposes a static analysis to check for unused regular expression
patterns. This appears to be orthogonal to our type error diagnosis methods.
It would be interesting to extend the work in [GCF05] to the combination of
regular expressions and data types.

8 Conclusion

We have presented an extension of Haskell which combines parametric polymo-
prhism, algebraic datatype, type class, regular expression types, semantic sub-
typing and regular expression pattern matching. We have fully implemented the
system which can be used in combination of GHC. Our experience so far shows
that the system is highly useful in practice. We also provide for an interface to
GHC and HaXml to make use of existing libraries and legacy code.

References

[BCF03] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-centric general-
purpose language. In Proc. of ICFP ’03, pages 51–63. ACM Press, 2003.

[BFS04] N. Broberg, A. Farre, and J. Svenningsson. Regular expression patterns. In
Proc. of ICFP’04, pages 67–78. ACM Press, 2004.

[BMS05] G. Bierman, E. Meijer, and W. Schulte. The essence of data access in cω. In
Proc. of ECOOP 05, pages 287–311. Spring-Verlag, 2005.

[Fri06] A. Frisch. OCaml + XDuce. In Proc. of ICFP’06, pages 192–200. ACM Press,
2006.

[GCF05] D. Colazzo G. Castagna and A. Frisch. Error mining for regular expression
patterns. In the 9th Italian Conference On Theoretical Computer Science,
pages 160–172. Springer-Verlag, 2005.

[GP03] V. Gapeyev and B. C. Pierce. Regular object types. In ECOOP ’03, volume
2743 of LNCS, pages 151–175. Springer, 2003. A preliminary version was
presented at FOOL ’03.

137

[HFC05] H. Hosoya, A. Frisch, and G. Castagna. Parametric polymorphism for XML.
In Proc. of POPL’05, pages 50–62. ACM Press, 2005.

[Hos03] H. Hosoya. Regular expressions pattern matching: a simpler design, 2003.
[HP00] H. Hosoya and B. C. Pierce. XDuce: A typed XML processing language

(preliminary report). In Proc. of Third International Workshop on the Web
and Databases (WebDB2000), volume 1997, pages 226–244, 2000.

[HP01] H. Hosoya and B. C. Pierce. Regular expression pattern matching for XML.
In Proc. of POPL’01, pages 67–80. ACM Press, 2001.

[HVP05] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for XML.
ACM Trans. Program. Lang. Syst., 27(1):46–90, 2005.

[Kis07] O. Kiselyov. HSXML: Typed SXML.
http://okmij.org/ftp/Scheme/xml.html#typed-SXML, 2007.

[KL03] M. Kempa and V. Linnemann. Type checking in XOBE. In Proc. Daten-
banksysteme fur Business, Technologie und Web, BTW ’03, LNI, pages 227–
246. GI, 2003.

[KL05] O. Kiselyov and R. Lämmel. Haskell’s overlooked object system. Draft;
Submitted for journal publication; online since 30 Sep. 2004; Full version
released 10 September 2005, 2005.

[KMS04] C. Kirkegaard, A. Møller, and M. I. Schwartzbach. Static analysis of
XML transformations in Java. IEEE Transaction on Software Engineering,
30(3):181–0 6, 2004.

[LS04] K. Z. M. Lu and M. Sulzmann. An implementation of subtyping among
regular expression types. In Proc. of APLAS’04, volume 3302 of LNCS, pages
57–73. Springer-Verlag, 2004.

[MS99] E. Meijer and M. Shields. XMλ: A functional language for constructing and
manipulating XML documents. (Draft), 1999.

[PT00] B. C. Pierce and D. N. Turner. Local type inference. ACM Transactions on
Programming Languages and Systems, 22(1):1–44, 2000.

[Sch07] U. Schmidt. Haskell XML Toolbox. http://www.fh-wedel.de/~si/HXmlToolbox/,
2007.

[SL07a] M. Sulzmann and K.Z.M. Lu. A faithful semantics for Hindley/Milner with
regular expression types. Manuscript, July 2007.

[SL07b] M. Sulzmann and K.Z.M. Lu. XHaskell – adding regular expression types to
Haskell. Manuscript, June 2007.

[SM01] M. Shields and E. Meijer. Type-indexed rows. In Proc. of POPL’01, pages
261–275. ACM Press, 2001.

[SSW03] P. J. Stuckey, M. Sulzmann, and J. Wazny. The Chameleon type de-
bugger. In Proc. of Fifth International Workshop on Automated Debug-
ging (AADEBUG 2003), pages 247–258. Computer Research Repository
(http://www.acm.org/corr/), 2003.

[SSW06] P. J. Stuckey, M. Sulzmann, and J. Wazny. Type processing by constraint
reasoning. In Proc. of APLAS’06, volume 4279 of LNCS, pages 1–25. Springer-
Verlag, 2006.

[SW] M. Sulzmann and J. Wazny. Chameleon. http://www.comp.nus.edu.sg/
˜ sulzmann/chameleon.

[Thi02] P. Thiemann. A typed representation for HTML and XML documents in
Haskell. Journal of Functional Programming, 12(4 and 5):435–468, July 2002.

[Vou06] J. Vouillon. Polymorphic regular tree types and patterns. In Proc. of
POPL’06, pages 103–114. ACM Press, 2006.

[WR99] M. Wallace and C. Runciman. Haskell and XML: Generic combinators or
type-based translation? In ICFP ’99, pages 148–159. ACM Press, 1999.

138

Evaluating and Using a Grid-Enabled Parallel
Haskell

Phil Trinder1, Abyd Al Zain1, and Kevin Hammond2

1 Heriot-Watt University, UK
2 St Andrews University, UK

Abstract. This paper reports both the performance evaluation of a
Grid Enabled parallel Haskell (GpH) and ongoing work aimed at using
GpH to parallelise a range of Computational Algebra systems as part of
the EU FP6 SCIEnce project.
Computational Grids potentially offer low cost, readily available, and
large-scale high-performance platforms. However such Grids pose a num-
ber of problems when targeting high-performance parallel program ex-
ecution: in particular, they may be heterogeneous in terms both of the
underlying execution platform and the communicaton structure, typi-
cally possessing hierarchical, and often shared, interconnects, with high
and variable latencies between clusters.
We investigate whether Glasgow parallel Haskell (GpH) with high-level
parallel coordination and a Distributed Shared Memory model (DSM)
can deliver good, and scalable, performance on a range of Computational
Grid configurations. GpH abstracts over the architectural complexities of
both parallel systems in general, and Computational Grids in particular.
We have previously developed the GridGUM2 implementation of GpH.
GridGUM2 is a sophisticated grid-specific implementation and the first
high-level DSM parallel language implementation for computational grids.
In this paper, we report a systematic performance evaluation of GridGUM2
on combinations of high-/low-latency and homo-/hetero-geneous com-
putational grids. We measure the performance of a small set of kernel
parallel programs representing a variety of application areas, two paral-
lel paradigms, and ranges of communication degree and parallel irregu-
larity. We investigate GridGUM2’s performance scalability on medium-
scale heterogeneous and high-latency computational grids, and analyse
the performance with respect to the program characteristics of commu-
nication frequency and degree of irregular parallelism.
We report ongoing work developing SymGrid-Par, a new framework for
executing large computer algebra problems on computational Grids. We
present the design of SymGrid-Par, which supports multiple computer
algebra packages, and hence provides the novel possibility of compos-
ing a system using components from different packages. Orchestration of
the components on the Grid is provided by GpH. We present a proto-
type implementation of a core component of SymGrid-Par, together with
promising measurements of two programs on a modest Grid to demon-
strate the feasibility of our approach.

139

Partial parsing: combining choice with
commitment

Malcolm Wallace

University of York

Abstract. Monadic parser combinators are a venerable and widely-used
solution to read data from some external format. However, the capability
to return a partial parse has, until now, been missing. When only a small
portion of the entire data is desired, it has always been necessary either
to parse the entire input in any case, or to break up the grammar into
smaller pieces and move some work outside the world of combinators.
This paper presents a technique for lazy, demand-driven, parsing with
combinators, where the grammar specification may remain complete, and
yet only sufficient input is consumed to satisfy the result demanded. It
is built on the observation that a commitment to a grammar alternative
precludes the choice of other alternatives, but that making a choice does
not imply a commitment. Rather, the two notions are distinct, and can
be captured in different combinators.
Performance results demonstrate that partial parsing is often faster and
more space-efficient than strict parsing, but never worse. The trade-off
is that partiality has consequences when dealing with ill-formed input.

1 Introduction

Monadic parser combinators have been with us for a long time. The original
tutorial paper by Hutton and Meijer[4] illustrated a sequence of ever-more so-
phisticated parsers, gradually adding state, error-reporting and other facilities.
Rojemo[6] demonstrated space efficient parsers, whilst Leijen’s Parsec[5] aimed
for good error messages with both space and time efficiency by reducing the need
for backtracking except where explicitly annotated. Packrat parsing[3] eliminates
backtracking altogether by memoising results (a technique that is highly space-
intensive). Laarhoven’s ParseP[8] also eliminates backtracking, by parsing alter-
native choices in parallel. Swierstra[7, 1] has shown us how to do sophisticated
error-correction, and permutation parsing.

But there are several other niches still unexplored. One such niche is partial
parsing. All current parser combinator libraries effectively require to see the
entire input, before they can return even a portion of the result. Why is it not
possible to be non-strict, demand-driven, partial? Because of the possibility of
parse errors. If the document is syntactically incorrect, the usual policy is to
report the error and do no onward processing of the parsed data, and in order
to prevent onward processing, we must wait until all possible errors could have
arisen.

140

Sometimes this is not what you want. Imagine processing a large XML doc-
ument that you already know to be well-formed. Why should you wait until the
final close-tag has been verified to match its opener, before beginning to pro-
duce output? There is also often an enormous memory cost to store the entire
representation of the document internally, where lazy processing could in many
cases reduce the needed live heap space to a small constant. Even if you do not
know for certain that a document is well-formed, it can be useful to process an
initial part of it.

Of course, there is a flip-side to partial processing – the parsed value may itself
be partial, in the sense of containing bottom (undefinedness, or parse errors).
One must be prepared to accept the possibility of notification of a parse-failure
when it would be too late to undo the processing already completed.

Our presentation of partial parsing relies on a two-level failure representation,
which is useful in its own right, whether or not one takes the extra step towards
partiality. For good performance and good error messages, it is necessary to dis-
tinguish between recoverable and unrecoverable errors. Essentially, recoverable
errors permit choice between alternatives, whilst unrecoverable errors give good
positional information about the cause of the parse failure. A variant of this ap-
proach has already been used by Parsec[5], which requires explicit annotations
of the points at which a choice may require arbitrary lookahead. Elsewhere, only
one token of lookahead is available – that is, grammars must be LL(1) except
where marked. We examine the dual approach to Parsec, where arbitrary choice
is always available, and instead the user annotates the points at which backtrack-
ing can no longer validly occur. We call this the commit tactic, in opposition to
parsec’s try, and believe it leads to a much clearer specification of the grammar.

This paper will first outline some ordinary (strict) parser combinators, then
add the commit-based implementation of two-level failure to them. Finally we
show how the same commit tactic easily facilitates partial parsing. The combi-
nators described here are freely available in the polyparse library[9].

2 Simple polymorphic parsers

We assume the reader is familiar with the basic concept and implementation of
monadic parsing as described in [4]. An outline of the basic mechanism follows:

newtype Parser t a = P ([t]→ (Either String a, [t])

The Parser type is parameterised on the type of input tokens, t , and the type
of the result of any given parse, a. A parser is a function from a stream of input
tokens, to the desired result paired with the remaining unused tokens. If a parse
fails, we report the failed result in the String alternative of the Either type.

Parsers are sequenced together using monadic notation. The instances of
Functor and Monad are:

instance Functor (Parser t) where
fmap f (P p) = P (λts → case p ts of

141

(Right val , ts ′)→ (Right (f val), ts ′)
(Left msg , ts ′) → (Left msg , ts ′))

instance Monad (Parser t) where
return x = P (λts → (Right x , ts))
fail e = P (λts → (Left e, ts))
(P p) >>= q = P (λts → case p ts of

(Right x , ts ′) → let (P q ′) = q x in q ′ ts ′

(Left msg , ts ′) → (Left msg , ts ′))

A parser can be ‘run’ by applying it to some input token list:

runParser :: Parser t a → [t]→ (Either String a, [t])
runParser (P p) = p

Choice between different parses is expressed by onFail , which tries its second
argument parser only if the first one fails. Note that information may be lost,
since any error message from the first parser is thrown away. We return to this
point later.

onFail :: Parser t a → Parser t a → Parser t a
(P p) ‘onFail ‘ (P q) = P (λts → case p ts of

(Left ,)→ q ts
right → right)

Finally, we need a single primitive parser called next , that returns the next
token in the stream.

next :: Parser t t
next = P (λts → case ts of

[]→ (Left "Ran out of input (EOF)", [])
(t : ts ′)→ (Right t , ts ′))

Higher-level combinators can be defined using the primitives above. For in-
stance:

-- One token satisfying a predicate.
satisfy :: (t → Bool)→ Parser t t
satisfy p = do x ← next

if p x then return x else fail "Parse.satisfy: failed"
-- Use ’Maybe’ type to indicate optionality.

optional :: Parser t a → Parser t (Maybe a)
optional p = fmap Just p ‘onFail ‘ return Nothing

-- ’exactly n p’ parses precisely n items, using the parser p.
exactly :: Int → Parser t a → Parser t [a]
exactly 0 p = return []
exactly n p = do x ← p

xs ← exactly (n − 1) p

142

return (x : xs)
-- Take the first alternative in the list that succeeds.

oneOf :: [Parser t a]→ Parser t a
oneOf (p : ps) = p ‘onFail ‘ oneOf ps

A parser for some application is then built from these combinators, and looks
rather like a recursive-descent grammar. The example in Figure 1 illustrates a
grammar for a very simplified form of XML, assuming the input tokens have
already been lexed according to XML-like rules, with positional information
calculated by the lexer.

data XML = Elem String [XML]
| Text String

xml :: Parser (Posn,String) XML
xml = do satisfy (token "<")

name ← satisfy identifier ‘report ‘ "bad tagname"
satisfy (token ">") ‘report ‘ "bad open tag"
content ← many xml
satisfy (token "</") ‘report ‘ "missing close tag"
endname ← satisfy identifier
satisfy (token ">") ‘report ‘ "bad end tag"
when (name 6≡ endname) (fail "open/close tags do not match")
return (Elem name content)

‘onFail ‘
do fmap Text string
‘report ‘ "unrecognisable as XML"

report :: Parser (Posn, t) a → String → Parser (Posn, t) a
p ‘report ‘ s = p ‘onFail ‘ do posn ← next

fail (s ++ " at " ++ show posn)

Fig. 1. Example combinator grammar for a simplified XML.

3 Problems and Limitations

Error messages are often poor. Due to backtracking over choice points, they
rarely point close to the location where the input fails to match the grammar.
Indeed, in the worst case, errors are often reported at the topmost outer-most
layer of the value’s structure, i.e. column 1 of the input.

In the XML example (Figure 1), the error message from attempting to
parse the incorrect input <a>hello is not, as one might hope,
"bad open tag at char 14", but rather "unrecognisable as XML at char 1".
Why? Because failure anywhere in the first do-block is thrown away by the en-
closing onFail .

143

Backtracking over choices sometimes leads to inefficiency. Again for
the example input <a>hello despite the fact that we have already
found a valid open tag <a> for the element branch of the grammar, nevertheless
because something further inside the element is incorrect, this parser necessarily
backtracks to the top-level and attempts to match the non-element case, on
which it is bound to fail.

The XML example only allows for two choices of outer construct – element or
text, corresponding to the two branches of the resultant Haskell sum type – but
imagine a type and its grammar having a hundred possible different constructors.
A parse failure deep within the first branch could lead to the evaluation of all
of the remaining 99 constructor choices, failing on all of them, before giving up.
Not only is the error message imprecise, but it took much longer than necessary
to deliver it!

Complete consumption of input. If you only want a small part of the
parsed data, you must still parse the whole thing first. For instance, given the
XML input <a>hello<c>world</c> one may wish to extract only
the contents of the tag, yet one is forced to read the <c> tag as well! The
input could be arbitrarily large, with the fragment of sole interest close to the
beginning. Not only that, but the uninteresting part of the input must be fully
well-formed, which may be too restrictive for some applications.

One way to avoid complete parsing is to resort to other coding techniques
outside the parsing monad. An example of such a technique is repeatedly calling
runParser on smaller units of the input, tracking unused tokens between calls.
Yet manipulation of the parse state is exactly the tedious boilerplate that the
monad is supposed to hide for you! Moving outside the monad also leads to a
highly non-modular grammar, requiring much special-case code to deal with the
specific fragments of interest.

Ideally, one would like to keep the original grammar, and just interpret it
lazily in order to return a partial result.

In the following sections, we shall first present a way to overcome the poor
and inefficient error-reporting, then build on that technique to introduce lazy
partial parsing.

4 Choice and commitment

We have seen how backtracking over choice points leads to poor error messages.
The solution is to divide parse failures into two separate classes: recoverable

and unrecoverable. Recoverable errors allow backtracking to any enclosing choice
point. By contrast, unrecoverable errors should always be reported to the user –
no choice point should ignore them.

We must refine the parser type to codify the different error classes. Instead
of the plain Either type, we introduce Result , which gives a three-valued logic,
with two different kinds of error case.

data Result a = Success a | FailRecover String | FailReport String
newtype Parser t a = P ([t]→ (Result a, [t]))

144

The basic monadic definitions are modified accordingly:

instance Monad (Parser t) where
return x = P (λts → (Success x , ts))
fail e = P (λts → (FailRecover e, ts))
(P p) >>= q = P (λts → case p ts of

(Success x , ts ′)→ let (P q ′) = q x in q ′ ts ′

(FailRecover e, ts ′)→ (FailRecover e, ts ′)
(FailReport e, ts ′)→ (FailReport e, ts ′))

We also add a new combinator for unrecoverable errors, which we call failBad :

failBad :: String → Parser t a
failBad e = P (λts → (FailReport e, ts))

The choice combinator must be modified to try alternatives only when errors
are recoverable. Unrecoverable failures are propagated outwards.

onFail :: Parser t a → Parser t a → Parser t a
(P p) ‘onFail ‘ (P q) = P (λts →

case p ts of
r@(Success ,)→ r
r@(FailReport ,)→ r
(FailRecover ,)→ q ts)

Finally, another new combinator allows the user to indicate commitment more
conveniently than with failBad . It raises the severity of any failure discovered
in its argument parser to become unrecoverable:

commit :: Parser t a → Parser t a
commit (P p) = P (λts →

case p ts of
(FailRecover e, ts ′)→ (FailReport e, ts ′)
otherwise → otherwise)

Commit is similar to the cut operator used by Rojemo[6] in his parser com-
binators to achieve space efficiency. It also bears a strong similarity to the extra-
logical ! operator in Prolog, which also serves to prevent backtracking.

Commit is a kind of dual of the try combinator in Parsec[5]. In Parsec, no
backtracking is allowed normally – it must be explicitly permitted with try . But
in our framework, backtracking is normally the default, except where explicitly
disallowed by commit . Ultimately, they have a similar effect however: the calling
context of try or commit will never be returned to; in both cases, we have
committed to any particular branch that led to the current call, yet are still
willing to try different alternative branches within the call.

Figure 2 refines the example grammar of Figure 1, re-expressing it in terms of
commit . Note the careful placement of commitment after sufficient tokens have

145

xml :: Parser (Posn,String) XML
xml = do satisfy (token "<")

commit (do
name ← satisfy identifier ‘report ‘ "bad tagname"
satisfy (token ">") ‘report ‘ "bad open tag"
content ← many xml
satisfy (token "</") ‘report ‘ "missing close tag"
endname ← satisfy identifier
satisfy (token ">") ‘report ‘ "bad end tag"
when (name 6≡ endname) (fail "open/close tags do not match")
return (Elem name content))

‘onFail ‘
do fmap Text string
‘report ‘ "unrecognisable as XML"

Fig. 2. The XML grammar re-expressed using commit .

been read to disambiguate the cases. Now, when given the badly-formed input
string <a>hello in contrast to the previous attempt, we receive the
error message "bad open tag at char 14", as hoped.

It is worth noting that one of the commonest sources of bugs in Parsec
grammars is that users do not know where to place the try combinator. Parsec
grammars are LL(1) by default, but try is used to permit extra lookahead for
disambiguation. It can be difficult to look at a grammar and count the required
lookahead. If a user’s grammar turns out not to work as expected, often they
resort to simply sprinkling try into various locations to discover a fix.

By contrast, we believe that the commit approach is superior, because the
lack of a commit will not cause the grammar to fail unexpectedly, merely to be
inefficient or to give unhelpful error messages. In addition, the intuition needed
to place a commit combinator correctly within the grammar is a much lower
barrier. It indicates a simple certainty that no alternative parse is possible once
this marked point has been reached. This is easier to verify by inspection than
deciding how many tokens of lookahead are required to disambiguate alterna-
tives.

5 How to be lazy

It turns out that two-level errors are exactly the insight that is needed to support
partial (lazy) parsing.

First let us consider the type of runParser , when we want a partial result.

runParser :: Parser t a → [t]→ (a, [t])

We follows immediately that the value to be returned must not be wrapped in an
Either or Result type. A wrapper type would convey success/failure information,

146

but we want to ignore parse failures and just pretend the value is available
directly, unfolded lazily on demand as we consume it.

The obvious difficulty, that has prevented partial parsing from being explored
previously, is how is it possible to implement the combinator for choice between
alternatives? We have already seen that choice operates by detecting failure in
one branch, in order to try another. But with no representation of failure in the
final result, choice looks impossible.

However, when a distinction between recoverable and unrecoverable errors
is made, we can distinguish the notions of choice and commitment. If a back-
tracking (recoverable) choice is still available, no partial value can be returned.
If an explicit commitment has been made to a particular alternative, the partial
value can be returned immediately.

Our parser type changes once again:

newtype Parser t a = P ([t]→ (Either String a, [t]))

Yes this is exactly the parser type we started with before introducing two kinds
of failure! What is going on? The answer is that we no longer need to report
unrecoverable failure within the type being returned. Instead, an unrecoverable
error is semantically bottom, the undefined value, or more prosaically thrown as
an exception containing an explanatory message.

All of the supporting monadic machinery, including the choice combinator
‘onFail‘, reverts to its original form, but we keep the idea of failBad and commit :

throwE = Control .Exception.throw ◦ ErrorCall
failBad :: String → Parser t a
failBad msg = P (λts → (throwE msg , ts))
commit :: Parser t a → Parser t a
commit (P p) = P (λts → case p ts of

(Left e, ts ′)→ (throwE e, ts ′)
right → right)

The implementation of runParser is different however. It strips away the en-
closing Either type at the outer level, leaving just the value itself or an exception.

runParser :: Parser t a → [t]→ (a, [t])
runParser (P p) = (λ(e, ts)→

(case e of Left e → throwE e
Right x → x))

◦ p

This covers partiality with respect to errors, but one new combinator is
needed to express partiality with respect to return values. How do we ensure
that a value is returned to the consumer before parsing is complete? Should the
monadic bind operator be lazy? No. As we wish to allow multiple-token looka-
head to fail in a recoverable fashion, it would be highly inconvenient for monadic
bind to be lazy, since it would prevent exactly that. So we need to introduce a

147

second kind of sequencing operator, which differs from monadic sequence only
by being lazy. We borrow the notion of applicative functors, as used previously
by e.g. Rojemo[6].

infixl 3 ‘apply ‘
apply :: Parser t (a → b)→ Parser t a → Parser t b
(P pf) ‘apply ‘ (P px) = P (λts →

case pf ts of
(Left msg , ts ′)→ (Left msg , ts ′)
(Right f , ts ′) →

let (ex , ts ′′) = px ts ′

x = case ex of {Right x → x ;Left e → throwE e }
in (Right (f x), ts ′′))

The key point in this definition is that if the first parser succeeds, then the whole
combined parse succeeds (returns a Right value). Both failures and successes
within the second parser are stripped of their enclosing Left or Right , and used
’naked’.

We now have two ways to express sequence with combinators. The user must
develop their grammar to make careful use of lazy or strict sequence as appro-
priate.

discard :: Parser t a → Parser t b → Parser t a
px ‘discard ‘ py = do {x ← px ; (return (λ → x)) ‘apply ‘ py }
xml :: Parser (Posn,String) XML
xml = do satisfy (token "<")

return Elem
‘apply ‘ satisfy identifier ‘report ‘ "bad tagname"
‘discard ‘ satisfy (token ">") ‘report ‘ "bad open tag"
‘apply ‘ many xml
‘discard ‘ satisfy (token "</") ‘report ‘ "missing close tag"
‘discard ‘ satisfy identifier
‘discard ‘ satisfy (token ">") ‘report ‘ "bad end tag"

‘onFail ‘
do fmap Text string
‘report ‘ "unrecognisable as XML"

Fig. 3. The XML grammar in lazy form.

For illustration, Figure 3 one again re-expresses the simplified XML gram-
mar, this time in a lazy fashion. A mixture of strict monadic sequence and lazy
application is used. Note also that application is of course curried, so chain-
ing many parsers together as straightforward in the applicative case as in the
monadic case.

148

Sometimes in the applicative case, it is unnecessary to build one of the result
values into a larger structure. Whereas in the monadic sequence one would simply
avoid binding the value to a name, it is more tedious to build a function that
ignores one of its arguments. For exactly this situation, the extra combinator
discard was introduced.

It is also worth making the point that this revised grammar no longer checks
that XML end tags match their opening tags.

6 Evaluation

To give a flavour of the performance of lazy partial parsing, we designed a small
number of (slightly artificial) tests using the Xtract tool from the HaXml suite.
Xtract is a grep-like utility which searches for and returns fragments of an XML
document, given an XPath-like query string. Because the intention is to find
small parts of a larger document, it is an ideal test case for partial parsing. The
XML parser used by Xtract is switchable between the strict and lazy variations.

We created a number of well-formed XML documents of different sizes n
(ranging from 10 to 1,000,000) with interesting characteristics:

– linear: the document is a flat sequence of n identical elements enclosed in a
single wrapper element.

– nested: the document contains n elements of different types, with element
type i containing a single element of type i + 1 nested inside it, except for
the nth element, which is empty.

– follow: the nested document, followed by a single trivial element, together
enclosed in a wrapper element.

The queries of interest are:

– Xtract "/file/element[0]" linear
Find the first element in the flat sequence of elements.

– Xtract "/file/element[$]" linear
Find the last element in the flat sequence of elements.

– Xtract "//elementn" nested
Find the most deeply nested element(s) in the nesting hierarchy. The dif-
ference between this test and the following one is that this test continues
searching after finding the first result.

– Xtract "//elementn[0]" nested
Find only the first most deeply nested element in the nesting hierarchy.

– Xtract "/file/follow" follow
Find the single top-level element that follows the large deeply-nested ele-
ment.

The time and memory taken to satisfy each query is given in Table 1, using
both the strict and lazy parser variations. In all cases, the lazy parser is better
(both faster, and more space efficient) than the strict parser. For extremely large
documents, where the strict parser often crashes due to stack overflow, the lazy

149

Strict: time(s)
query n=10 n=100 n=1000 n=10000 n=100000 n=1000000
linear first 0.018 0.034 0.144 1.165 37.958 >1200
linear last 0.020 0.036 0.176 1.260 38.976 >1200
nested 0.019 0.037 0.149 2.002 104.596 >3600
nested first 0.018 0.038 0.187 1.993 104.304 >3600
follow 0.020 0.036 0.175 1.934 103.239 –

Lazy: time(s)
query n=10 n=100 n=1000 n=10000 n=100000 n=1000000
linear first 0.015 0.015 0.016 0.015 0.015 0.016
linear last 0.017 0.035 0.150 0.819 6.879 70.736
nested 0.019 0.035 0.092 0.996 19.081 1088.59
nested first 0.018 0.026 0.086 0.556 8.917 504.60
follow 0.017 0.033 0.134 1.256 51.976 –

Strict: peak live memory(b)
query n=10 n=100 n=1000 n=10000 n=100000 n=1000000
linear first 3.6k 91k 905k 10.1M 96.5M –
linear last 3.5k 112k 1.18M 4.53M 124M –
nested 3.6k 122k 1.65M 14.7M 159M –
nested first 3.6k 129k 1.66M 14.5M 158M –
follow 3.7k 118k 1.51M 12.7M 140M –

Lazy: peak live memory(b)
query n=10 n=100 n=1000 n=10000 n=100000 n=1000000
linear first 7.7k 7.7k 7.8k 7.8k 7.8k 7.8k
linear last 7.7k 72k 844k 2.49M 498k 2.49M
nested 7.7k 63k 628k 5.9M 58.4M 521M
nested first 7.7k 49k 634k 4.23k 51.9M 486M
follow 7.8k 61k 1.06M 6.92M 56.3M –

Table 1. Time and memory performance results, measured on a twin-core 2.3GHz
PowerPC G5, with 2Gb physical RAM. All timings are best-of-three.

parser continues to work smoothly. For the cases where the only result is a small,
early, fragment of the full document, laziness reduces the complexity of the task
from linear to constant, that is, it depends on the required distance into the
document, not on the size of the document. Even when the searched element is
at the end of the document, laziness eliminates a space-leak by allowing the early
portion of the parsed document to be garbage-collected before the remainder has
yet been read, leading to roughly constant heap usage in contrast to the linear
heap usage seen in the strict version.

None of this is very surprising of course. Lazy streaming is well-known to
improve the complexity of many algorithms operating over large datasets, often
allowing them to scale to extreme sizes without exhausting memory resources,
where a more strict approach hits physical limitations. One such demonstration
is given in the field of isosurface extraction for visualisation[2], where the pure
lazy solution in Haskell is slower than a rival C++ implementation, only until
very large inputs are considered, beyond which the Haskell overtakes the C++.

150

7 Conclusion

The contribution of this paper is a demonstration that partial parsing is both
possible, and convenient, using the framework of monadic parser combinators.
As expected, the resources needed to partially parse a document depend on
how much of the input document is consumed, not on the total size of the
document. However, partial parsing also means that the ability to report parse
errors is shifted from within the parsing framework out to the world of exception
handling.

References

1. A. Baars, A. Löh, and D. Swierstra. Parsing permutation phrases. In R. Hinze,
editor, Haskell Workshop, volume 59 of ENTCS, Firenze, Sept 2001.

2. D. Duke, M. Wallace, R. Borgo, and C. Runciman. Fine-grained visualization
pipelines and lazy functional languages. IEEE Transactions on Visualization and
Computer Graphics, 12(5):973–980, Sept 2006.

3. B. Ford. Packrat parsing: Simple, powerful, lazy, linear time. In International Con-
ference on Functional Programming, Pittsburgh, October 2002. ACM SIGPLAN.

4. G. Hutton and E. Meijer. Monadic parser combinators. Technical Report NOTTCS-
TR-96-4, University of Nottingham, 1996.

5. D. Leijen and E. Meijer. Parsec: Direct style monadic parser combinators for the
real world. Technical Report UU-CS-2001-35, University of Utrecht, 2001.

6. N. Röjemo. Garbage collection and memory efficiency in lazy functional languages.
PhD thesis, Chalmers University of Technology, 1995.

7. D. Swierstra. Combinator Parsers: from toys to tools, volume 41 of ENTCS. Elsevier,
2001.

8. T. van Laarhoven. Parsep. parsing software: http://twan.home.fmf.nl/parsep/.
9. M. Wallace. Polyparse combinators. http://www.cs.york.ac.uk/fp/polyparse, 2007.

151

Functional Master-Worker Skeletons

– Work in Progress –

Jost Berthold, Mischa Dieterle, Rita Loogen, and Steffen Priebe

Philipps-Universität Marburg, Fachbereich Mathematik und Informatik
Hans Meerwein Straße, D-35032 Marburg, Germany

{berthold,dieterle,loogen,priebe}@informatik.uni-marburg.de

Abstract. Master-worker systems are a well-known and often applica-
ble scheme for the parallel evaluation of a pool of tasks, a work pool.
The system consists of a master process managing a set of worker pro-
cesses. After an initial phase with a fixed amount of tasks (“prefetch”),
further tasks are distributed dynamically in reply to results sent back
from the workers. As this setup quickly leads to a bottleneck in the
master process, the paper investigates alternative implementations of
master-worker schemes. We present declarative techniques for hierarchi-

cally nesting master-worker instances, discuss common pitfalls and iden-
tify performance-critical characteristics of different implementations.
Nesting master-worker systems is nontrivial especially in cases where new
tasks are dynamically created from previous results (typically breadth-
or depth-first tree search algorithms). We discuss how to handle dynam-
ically growing pools in a hierarchy and present a functional implemen-
tation for nested master-worker systems with dynamic task creation.
Furthermore, we compare hierarchies to an alternative non-hierarchical
implementation, where the work pool is managed in a distributed man-
ner. In this implementation concept, realised with a work-stealing mech-
anism for load-balancing, dynamically growing task pools are easier to
handle. On the other hand, a distributed work pool is more sensible
against irregularity, it needs responsive load-balancing mechanisms, and
a sophisticated termination detection.
All implementations are carried out in the parallel functional language
Eden, which allows abstract skeleton implementations as higher-order
functions, and to easily change load-balancing policies and other imple-
mentation details. The presented work is intended as a conceptual study
of different master-worker implementations, and the abstraction offered
by the functional implementation language is therefore essential for a
clear view on the implemented mechanisms.

Part of the work we present on the following pages is currently under consideration for
presentation and publication at another conference. Meanwhile, we have continued our
research in master-worker implementations, and obtained new results, which we will
present at the IFL 2007 workshop, and possibly submit later for the final proceedings.
The new material, mentioned as “future work” in the remainder, is an extended anal-
ysis and optimisation of the hierarchical variant, and a non-hierarchical master-worker
skeleton implementation with a distributed task pool. The final paper will include dis-
cussions for all optimisations and a performance comparison for selected test programs.

152

1 Introduction

Parallelising an algorithm implemented as a functional program starts by iden-
tifying a set of largely independent evaluations. These tasks have to be assigned
to nodes of a parallel computer, to gain high speedups by simultaneous evalua-
tion. If the number of tasks and their individual runtimes are statically known,
mapping them to the parallel nodes is trivial. The everyday situation, however,
faces us with irregular tasks of varying and unknown complexity. The static task
distribution has to be replaced by a dynamic one.

...

 m:1

workerworker

master

[task]

[result]

[task]

[task] [result]

[result]

Fig. 1. Master-worker scheme

The master-worker scheme is a parallel
skeleton for a task pool with dynamic task dis-
tribution. A master process distributes tasks to
a set of subordinate worker processes, and col-
lects the results. Many-to-one communication
enables the master to evenly supply a new task
to each worker every time it sends back a re-
sult. Apparently, workers are idle in the period
between sending a result and receiving a new task. Idle-time can be avoided by
pre-assigning a configurable amount (prefetch) of initial tasks to all workers. The
prefetch parameter decides the behaviour of the skeleton, between completely
dynamic (prefetch 1) and completely static distribution (less tasks than totalised
prefetches).

So far, we have assumed a statically fixed task pool, which, in essence, results
in a parallelised map function with dynamic assignment. Again, more realistic
are dynamic settings where results might imply additional new tasks at runtime.
This changes the scene completely: Tasks are not only irregular and of unknown
number, but also carry an unknown ’task productivity’. This weakens the signif-
icance of the prefetch parameter, as dynamically evolving task sets often start
out with a comparatively small number of initial tasks (often just one task).

A master-worker scheme essentially relies on a double functionality of the
master process: it is responsible for collecting (possibly large) results, and it
emits new tasks to idle workers. When a large number of workers is used, the
single master process quickly becomes a bottleneck which paralyses the whole
scheme. As a remedy, we investigate possibilities to nest the basic master-worker
skeleton in a master-worker hierarchy. The master process at the top distributes
tasks to several lower submasters, each of which manages a (smaller) worker set
of its own, or possibly another level of submasters in a deeper hierarchy.

The hierarchical master-worker system as a whole is tree-shaped, with worker
processes at the leaves and submasters as the inner nodes. Arbitrary tree shapes
can be created, from a broad tree with many workers per submaster to a deep
narrow (binary) tree. The optimal hierarchy layout depends on the nature of the
tasks, and on the number and performance of processing elements (PEs). The
basic skeleton mechanism of tasks and requests remains the same at all tree lev-
els, but at higher levels of the tree, skeleton parameters and distribution policies
have to be adjusted to achieve good performance. In the case of a dynamic task

153

pool, another question we investigate is whether submasters at one level should
forward new tasks to upper levels, or keep them for their own worker set.

The paper is organised as follows: Section 2 presents non-hierarchical and
hierarchical master-worker skeletons for a static task pool; the essential mecha-
nism for nesting the basic skeleton, and how to automatically compute suitable
skeleton parameters. In Section 3, we extend the skeleton for the case of dy-
namic task sets, and show the more complex nesting mechanisms needed for
this skeleton variant. Each section includes experiments with an example ap-
plication, discussing the behaviour for different hierarchy layouts and prefetch
values. Section 4 discusses related work, and Section 5 concludes.

2 Static Task Pools

In this section, we consider master-worker systems with a static task pool, i.e.
no tasks are created during processing. The task pool is a list of tasks which
can also be provided as a stream, the total number of tasks does not have to be
known in advance. System termination depends, however, on closing this task
stream.

2.1 The Basic Master-Worker Skeleton

We perform our experiments in the parallel Haskell extension Eden [1] which
allows to specify many different variants of the general master-worker schemes in
an elegant and concise way. Figure 2 shows the Eden implementation of the basic
master-worker skeleton. The task pool tasks is distributed to n worker processes,
which, for each task, apply the worker function wf and return a pair consisting of
the worker number and the result of the task evaluation to the master process,
i.e. the process evaluating mw. The worker numbers are interpreted as requests for
new tasks. The master uses a function distribute to send tasks to the workers
according to the (n*prefetch) requests initially created and the ones received
from the workers. Care must be taken that distribute is incremental, i.e. it can
deliver partial result lists without the need to evaluate requests not yet available.
The skeleton uses the following Eden functions:

– process ::(Trans a, Trans b) => (a -> b) -> Process a b

wraps a function into a process abstraction which shifts function evaluation
to a remote processing element. The Trans context ensures the existence of
internal communication functions.

– spawn :: [Process a b] -> [a] -> [b]

starts processes on remote machines eagerly.
– merge :: [[r]] -> [r]

nondeterministically merges a set of streams into a single one.

An additional merge phase would be necessary to restore the initial task order
for the results. This can be accomplished by adding tags to the task list, and
passing results through an additional function mergeByTags (not shown) which

154

mw :: (Trans t, Trans r) => Int -> Int -> (t -> r) -> [t] -> [r]

mw n prefetch wf tasks = ress

where

(reqs, ress) = (unzip . merge) (spawn workers inputs)

-- workers :: [Process [t] [(Int,r)]]

workers = [process (zip [i,i..] . map wf) | i <- [0..n-1]]

inputs = distribute n tasks (initReqs ++ reqs)

initReqs = concat (replicate prefetch [0..n-1])

-- task distribution according to worker requests

distribute :: Int -> [t] -> [Int] -> [[t]]

distribute np tasks reqs = [taskList reqs tasks n | n<-[0..np-1]]

where taskList (r:rs) (t:ts) pe | pe == r = t:(taskList rs ts pe)

| otherwise = taskList rs ts pe

taskList _ _ _ = []

Fig. 2. Eden master-worker skeleton with a static task pool

merges the result streams from all workers (each sorted by tags, thus less complex
than a proper sorting algorithm). We will not go into further details.

In the following, we will investigate the properties and implementation is-
sues of hierarchical master-worker skeletons. As proclaimed in the introduction,
this should enable us to overcome the bottleneck in the master when too many
workers must be served.

2.2 Nesting the Basic Master-Worker Skeleton

To simplify the nesting, the basic skeleton mw is modified in such a way that it
has the same type as its worker function. We therefore assume a worker function
wf :: [t] -> [r], and replace the expression (map wf) in the worker process
definition with wf. This leads to a slightly modified version of mw, denoted by
mw’ in the following. An elegant nesting scheme (taken from [2]) is defined in
Figure 3. The parameters specify the branching degrees and prefetch values
per level, starting with the root parameters. The length of the parameter lists
determines the depth of the generated hierarchical system.

The nesting is achieved by folding the zipped branching degree and prefetches
lists. The proper worker function, of type [t] -> [r], is used as the starting value
of the folding process. The folding function fld corresponds to the mw’ skeleton
applied to the branching degree and prefetch value parameters taken from the
folded list and the worker function produced by folding up to this point.

The parameters in the nesting scheme above allow to freely define tree shape
and prefetch values for all levels. As the mw skeleton assumes the same worker
function for all workers in a group, it generates a regular hierarchy, one cannot
define different branching or prefetch within the same level. It is possible to define
a version of the static nestable workpool which allows for even more control (not
considered here), yet more simple skeleton interfaces are desirable, to provide

155

mwNested :: (Trans t, Trans r) =>

[Int] -> [Int] -> -- branching degrees/prefetches per level

([t] -> [r]) -> -- worker function

[t] -> [r] -- tasks, results

mwNested ns pfs wf = foldr fld wf (zip ns pfs)

where fld :: (Trans t, Trans r) =>

(Int,Int) -> ([t] -> [r]) -> ([t] -> [r])

fld (n,pf) wf = mw’ n pf wf

Fig. 3. Static nesting with equal level-wise branching

access to the hierarchical master-worker at different levels of abstraction. We can
define an interface that automatically creates a regular hierarchy with “good”
parameters for a given number of available processing elements.

mwNest :: (Trans t, Trans r) =>

Int -> Int -> Int -> Int -> (t -> r) -> [t] -> [r]

mwNest depth level1 np basepf f tasks

= let nesting = mkNesting np depth level1

in mwNested nesting (mkPFs basepf nesting) (map f) tasks

In this version, the parameter lists are computed from a given base prefetch,
nesting depth and top-level branching degree by auxiliary functions. These fewer
parameters provide reasonable control of the tree size and shape, and prefetch
adjusted to the task granularity.

Auxiliary function mkNesting computes a regular nesting scheme from the
top-level branching degree level1 and the nesting depth, which appropriately
maps to np, the number of processing elements (PEs) to use. It calculates the
branching list for a hierarchy, where all intermediate levels are binary. The num-
ber of workers per group depends on the number of remaining PEs, rounded up
to make sure that all PEs are used. Please note that this possibly places several
worker processes on the same PE. Workers sharing the same PE will appear as
slow workers in the system, but this should be compensated by the dynamic task
distribution unless the prefetch is too high.

ld =

np −

total # subm.s
︷ ︸︸ ︷

l1 · (2
d−1 − 1)

l1 · 2
d−2

︸ ︷︷ ︸

lowest subm.s

⇒ Branching list: l1 : 2 : 2 : . . . : ld
︸ ︷︷ ︸

d levels

A central problem for the usage of the nested scheme is the choice of ap-
propriate prefetch values per level, specified by the second parameter. Suitable
prefetch values for submasters at each level must be chosen carefully: a sub-
master with m workers requiring prefetch p should receive a prefetch of at least
m · p tasks to be able to supply p initial tasks to its child processes. Given a
worker (leaf) prefetch of pf and a branching list [l1, ..., ld−1, ld], this leads to the
following minimum prefetch at the different levels:

156

[
d−1∏

j=k

lj ∗ pf | k ∈ [1 . . . d− 1]

]

= [(l2 · l3 · l4 · pf), (l3 · l4 · pf), (l4 · pf), pf]

A reserve of one task per child process is added to this minimum, to avoid the
submaster running out of tasks, since it directly passes on the computed prefetch
amount to its children. The list of prefetch values is computed by a scanr1.

2.3 Experimental Results

We have tested the presented nesting scheme with different branching and prefetch
parameters, with an application that calculates a Mandelbrot set visualisation
of 5000× 5000 pixels. All experiments use a Beowulf cluster of the Heriot-Watt
University Edinburgh, 32 Intel P4-SMP nodes at 3 GHz with 512 MB RAM and
Fast Ethernet. The timeline diagrams in Figure 4 visualise the process activity
over time for program runs with different nesting and prefetch. Blocked processes
are red (dark), and active/runnable processes green/yellow (light).

Flat vs. Hierarchical Master-worker System The hierarchical system shows bet-
ter runtime behaviour than the flat, i.e. non-hierarchical version. Although fewer
PEs are available for worker processes, the total runtimes decrease substantially.
Figure 4(a) shows a trace of the non-hierarchical master-worker scheme. Many
worker processes are blocked most of the time. In a hierarchical version with a
single additional level comprising four submasters, shown in (b), workers finish
faster. Due to the regular structure of the hierarchy, some of the workers in
the last branch share the same PE. Nevertheless, the system is well-balanced,
but not completely busy. The dynamic task distribution of the master-worker
inherently compensates load imbalance due to slower workers or irregular tasks.

Load Balance and Prefetch Values In Figure 4(c), we have applied the same
nesting as in (b), but we increased the prefetch value to 120. Small prefetch
values lead to very good load balancing, especially PEs occupied by several (and
therefore slow) workers do not slow down the whole system. On the other hand,
low prefetch lets the workers run out of work sooner or later. Consequently, it is
better to correlate prefetch values with the worker speed. Higher prefetch values
(like 120) reduce the worker idle time, at the price of a worse load balance, due
to the almost static task distribution.

Depth vs. Breadth Figure 4 (d) shows the behaviour of a nested master-worker
scheme with two levels of submasters. It uses 2 submasters at the higher level,
each serving two submasters. From our experiments, we cannot yet identify clear
pros and cons of employing deeper hierarchies. Comparing runs with one and two
additional submaster-levels, runtime and load balancing behaviour are almost
the same, the advantage of the one-level hierarchy in Figure 4 (b) remains rather
vague. However, it is clear that deeper hierarchies will be advantageous on bigger
clusters with more machines. As shown in Figure 5, a broad flat hierarchy reveals
the best total runtimes.

157

(a) Non-hierarchical, , pf 60

(b) branching [4], , pf 60

(c) branching [4], , pf 120

(d) branching [2,2], , pf 60

Fig. 4. Mandelbrot traces, with different nesting and varying prefetch

Garbage Collection Another phenomenon can be observed in traces (a), (b) and
(d): If the prefetch is small, relatively short inactivity at the tree root can make
the whole system run out of work and lead to global inactivity. In this case,
the reason are garbage collections in the master process, which make all the
submasters and workers run out of tasks. The effect is slightly intensified by
higher top-level branching, and compensated by higher prefetch (c).

Post-Processing Our experiments have shown that the bottleneck in the master
process is mainly caused by the huge amount of results that the master collects
and stores in its local heap. As new requests are processed together with the
result values, request processing is slowed down in the master processes. This
is also the reason for the long post-processing phases that can be observed in
our traces. When the master is freed from result processing, it has no prob-

158

 34
 36
 38
 40
 42
 44
 46
 48
 50

Ru
nt

im
e

(s
ec

.)

Hierarchy

Mandelbrot with res. 5000x5000

prefetch 40
prefetch 60
prefetch 80

prefetch 100
dynamic, pf.40

Fig. 5. Runtimes for various hierarchies and prefetch values

lems to keep all workers busy, even with small prefetch values and no hierarchy.
The hierarchy throttles the flow of results and thus helps to shorten the post-
processing phases. This is the main reason why the hierachical master-worker
skeletons show much better total runtimes, as shown in Figure 5.

3 Dynamic Creation of New Tasks

Except for some problems consisting of independent tasks which are trivial to
parallelize, e.g. mandelbrot, ray tracing and other graphical problems, many
problems deliver tasks containing inherent data dependencies. Thus, the task
pool is not completely known initially, or it depends on other calculation results
to be fully defined. This is the case when the problem space is built hierarchically,
as a tree structure or following other, more complex, patterns.

3.1 The Dynamic Master-Worker Skeleton

The elementary master-worker skeleton can easily be extended to enable the
dynamic creation of additional tasks within the worker processes. In the version
shown in Figure 6, the worker processes deliver a list of new tasks with each
result, and the master simply adds the new tasks to its task queue. A straight-
forward extension would be to let the master filter or transform the task queue,
considering global information [2].

The static task pool version terminates as soon as all the tasks have been
processed. With dynamic task creation, explicit termination detection becomes
necessary, because the task list contains a reference to potential new tasks. In
the skeleton shown in Figure 6, a function tdetect keeps track of the current
number of tasks in process. It is essential that the result list is extracted via
tdetect and that the evaluation of this function is driven by the result stream.
As long as new tasks are generated, the function is recursively called with an

159

mwDyn :: (Trans t, Trans r) => Int -> Int -> (t -> (r,[t])) -> [t] -> [r]

mwDyn n prefetch wf initTasks = finalResults

where -- identical to static task pool except for the type of workers

(reqs, ress) = (unzip . merge) (spawn workers inputs)

workers = [process (zip [i,i..] . map wf) | i <- [0..n-1]]

inputs = distribute n tasks (initReqs ++ reqs)

initReqs = concat (replicate prefetch [0..n-1])

-- additions for task queue management and termination detection

tasks = initTasks ++ newTasks

initNumTasks = length initTasks

(finalResults, newTasks) = tdetect ress initNumTasks

-- task queue control for termination detection

tdetect :: [(r,[t])] -> Int -> ([r], [t])

tdetect ((r,[]):ress) 1 = ([r], []) -- final result

tdetect ((r,ts):ress) numTs = (r:moreRes, ts ++ moreTs)

where (moreRes, moreTs) = tdetect ress (numTs-1+length ts)

Fig. 6. Eden master-worker skeleton with a dynamic task pool

updated task counter, initialised to the length of the skeleton input.1 As soon
as the result of the last task arrives, the system terminates by closing the tasks
list and, via distribute, the input streams of the worker processes.

3.2 Nesting the Dynamic Task Pool Version

...

[(r,[t],Bool,Int)]

count tasks,
trigger req.s
termination

[Maybe t]

[Maybe t]

[request]

split
new
tasks

 [(r,[t],Bool,Int)]

map
Left

distribute

sub- / topmaster

(counter,mode)

[Maybe t]

map
Right

subm./worker subm./worker subm./worker

tcontrol

Fig. 7. Submaster functionality in the dynamic
master-worker hierarchy

It would be possible to apply the
simple nesting scheme from Sec-
tion 2 to the dynamic master-
worker skeleton mwDyn. However,
newly created tasks would always
remain in the lower submaster-
worker level because the interface
of mwDyn only passes results, but
not tasks, to upper levels. For nest-
ing, the dynamic master-worker
scheme mwDyn has to be gener-
alised to enable a more sophisti-
cated task management within the
submaster nodes.

Each submaster receives a task
stream from its master and a result
stream including new tasks from its workers. It has to produce task streams for
its workers and a result stream including new tasks for its master (see Figure 7).

1 The reader might notice that the initial task list must have fixed length. The skeleton
presented here cannot be used in a context where the input tasks arrive as a stream.

160

Sending back all dynamically generated tasks is a waste of bandwith, when they
might be needed in the local subtree. A portion of the generated new tasks can be
kept locally, but surplus tasks must be passed up to the next level. Furthermore,
sending a result should not automatically be interpreted as a request for a new
task, since tasks kept locally can compensate for solved task. Finally, global
information about tasks in process is needed at the top-level, to decide when to
terminate the system. The Eden code for the submaster is shown in Figure 8,
and shows the necessary changes.

– The input stream for submasters and workers has type Maybe t, where the
value Nothing serves as a termination signal, propagated downwards from
the top level.

– The output stream of submasters (and workers) now includes information
about the number of tasks kept locally, and a Bool flag, indicating the request
for a new task, leading to a complex type [(r,[t],Bool,Int)].

– The incoming list initTasks for submasters is no longer finite, but a stream.
It has to be merged with the stream of worker answers, and processed by
a central control function tcontrol. The origin of each input to tcontrol is
indicated by tags Left (worker answers) and Right (parent input), using the
Haskell sum type Either (Int,(r,[t],Bool,Int)) (Maybe t)

– All synchronisation is concentrated in the central task control function tcontrol.
It both controls the local task queue, passes new requests to distribute, and
propagates results (and a portion of generated tasks) to the upper levels.

The heart of the dynamic master-worker hierarchy is the function tcontrol,
shown in Figure 9. It maintains two counters: one for the amount of tasks that
have been generated and passed up to this submaster, to decide whether a request
must be sent up, and the overall task count in the subtree below.

Tasks sent by the parent are simply enqueued in the local task queue. Tasks
generated by workers are split into a part that is kept local, and a part that is
passed upwards. The nested task pools can be seen as a system of interdependent
buffers, and both buffer-underruns and buffer-overruns will spoil the skeleton
performance. This is relatively easy for a static task list: the exchange of tasks
and results between different buffers is limited, and the prefetch parameter
defines the maximum buffer size. In the extension for dynamically growing task
pools, more sophisticated policies are needed instead of mechanically forwarding
new tasks and requests.

The split function decides how many tasks to hold in the subtree below a
submaster. If a sufficient amount of self-generated tasks fills the subtree below
the node (overall task count numTs), all generated tasks are forwarded to the
upper level. Likewise, requests for new tasks are only emitted if a solved task
cannot be compensated by self-generated ones. In our version, tcontrol emits
requests only when all self-generated tasks have been assigned, thereby trying
to maintain its initial prefetch value. The split function we use (not shown)
splits generated tasks one half each, until the total task count exceeds the double
prefetch for the whole subtree below. Different heuristics can be configured by
exchanging the split function, and minor changes in tcontrol.

161

mwDynSub :: (Trans t, Trans r) =>

Int -> Int -> ([Maybe t] -> [(r,[t],Bool,Int)])

-> [Maybe t] -> [(r,[t],Bool, Int)]

mwDynSub n prefetch wf initTasks = finalResults where

fromWorkers = spawn workers inputs

-- worker :: [Process [Maybe t] [(Int,(r,[t],Bool,Int))]]

workers = [process (zip [i,i..] . wf) | i <- [0..n-1]]

inputs = distribute n tasks (initReqs ++ reqs)

initReqs = concat (replicate prefetch [0..n-1])

-- task queue management

controlInput = merge (map Right initTasks :

map (map Left) fromWorkers)

(finalResults, tasks, reqs)

= tcontrol (n*prefetch+n) (False,0,0) controlInput

Fig. 8. Eden submaster for nested dynamic master-worker skeleton

tcontrol _ (_,_,0) ((Right Nothing):_) -- from above, final termination

= ([],repeat Nothing,[])

tcontrol pf (even,local,numTs) ((Right (Just t)):ress) -- task from above

= let (moreRes, moreTs, reqs) = tcontrol pf (even, local ,numTs+1) ress

in (moreRes, (Just t):moreTs, reqs)

-- from i below, result plus new tasks plus flag

tcontrol pf (even,local,numTs) ((Left (i,(r,ts,wantNew, heldBelow))):ress)

= let (localTs,fatherTs,evenAct) = split numTs pf ts even

-- part of tasks to parent

lenlocalTs = length localTs

-- counts only "self-generated" tasks

newLocal = lenlocalTs + local

- if wantNew && not newTasksForMe --minimum 0

then 1 else 0

-- local counter: decrease, add new tasks held (local & below)

newNumTs = numTs-1 + lenlocalTs + heldBelow

-- new numTs: -1 came back, + new ones, local or below

(moreRes, moreTs, reqs) -- recursion

= tcontrol pf (evenAct, newLocal, newNumTs) ress

-- node i below wants new tasks?

newreqs = if wantNew then i:reqs else reqs

-- order new tasks? only if "no compensation" in subtree

newTasksForMe = local + lenlocalTs == 0 && wantNew

in ((r, fatherTs, newTasksForMe, heldBelow + lenlocalTs):moreRes,

(map Just localTs) ++ moreTs, newreqs)

Fig. 9. Control function for submaster of Figure 8

162

The top-level master in the nesting scheme for a dynamic task pool works similar
to the submasters we have described, but of course cannot forward tasks to the
outside. A separate top-level master has to be defined.

topMaster :: (Trans t, Trans r) =>

Int -> Int -> ([Maybe t] -> [(r,[t],Bool,Int)]) -> [t] -> [r]

Besides termination detection, the former tdetect function now takes the role of
tcontrol in the submaster processes, also incorporating the more sophisticated
request handling we have introduced in the tcontrol function. Further changes
are the adaption of the worker function to the Maybe type interface and the
termination signal Nothing for all submasters upon termination.

3.3 Experimental Results

The skeletons that support dynamic task creation have been tested with a special
test application: a program which computes all satisfying variable assignments
for a particular logical formula (i.e. it is a specialised SAT problem solver). Tasks
are incomplete variable assignments, and the workers successively assign a value
to a new variable and partially evaluate the result. An assignment that already
yields false is immediately discarded, true results are counted, yet unspecified
results are new tasks returned to the level above.

The program runs the satisfiability check for a formula which disjoins all

conjunctions of n logical variables where k variables are negated (yielding
(
n

k

)

disjoint monoms). In the underlying search tree of the SAT problem, each node
has at most two child nodes, and the tree becomes deeper for bigger n, and
more dense for bigger k. Thereby we have good control of the tasks for testing
our skeleton variants. It is easy to create a basic problem where most of the
subproblem nodes in the search tree ony have one successor. Using a formula
of 200 variables and 1 negation tests the skeleton behaviour for a broad sparse
tree. Especially with sparse search trees, it is challenging for the load balancing
strategy to serve all subtrees evenly, avoiding idle times. Many tasks can be
discarded early, but the test for 200 variables is complex. In contrast, a test with
8 variables out of 16 negated shows the performance for a dense tree with very
small tasks. Runtimes have been compared for the basic version, for hierarchies
with one level of two, four and six submasters, and for a binary hierarchy with
two levels.

Flat vs. Hierarchical Skeleton In general, variants of hierarchical master-worker
schemes perform better than the non-hierarchical skeleton in our test runs. How-
ever, when testing a formula with only 16 variables, tasks are numerous, but very
simple. For this variant, hierarchical skeletons yield smaller runtime gains.

Depth vs. Breadth The runtime comparison in Figure 10 shows that, in our setup
of 31 machines, broader hierarchies with only one level generally perform bet-
ter than the binary two-level hierarchy. The variant with 6 submasters yields

163

 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

Ru
nt

im
e

(s
ec

.)

Parallel SAT, different MW-Hierarchies

200/1 var.s
200/1 var.s, task variant

16/8 var.s
16/8 var.s, task variant

Runtime (sec)

16 var.s, dense tree 7.16 7.09 5.58 5.55 5.94

200 var.s, sparse tree 21.16 17.03 14.13 12.90 13.19

16 var.s, task variant 7.12 6.97 5.50 5.36 5.85

200 var.s, task variant 21.28 16.57 10.81 9.08 10.61
(Heriot-Watt Beowulf, 31 nodes)

Fig. 10. Experiments using skeletons for dynamic task pool

the best results for all variants, whether sparse or dense decision trees. Mea-
surements with a simplified test procedure, where tasks are checked very fast
using aditional knowledge about the tested formula, confirm this result: The
performance of the skeleton with two-level nesting is slightly worse than for the
one-level nestings. Of course, this result again has to be qualified for a bigger
cluster, as our experiments use only 31 PEs.

Prefetch and Forwarding Policy: Prefetch values have little influence on perfor-
mance (or trace appearance) for this test program, since there are relatively few
tasks in the beginning anyway and many of the generated tasks are held close
to the processing units. Contrary to the expectation, higher prefetch values only
lead to “bundled” working and idle phases instead of a more steady workload.
Using higher prefetches, we also observed periods of global inactivity, maybe
again caused by garbages collections of the top-level master.

A crucial feature of the hierarchical skeleton is to use a good partition policy
for tasks returned by workers, in order to avoid unnecessary idle times and
uneven balance between submasters. The list of tasks from workers is normally
split in half, but an even level of tasks in every submaster must be achieved,
by keeping the task pool size between two thresholds (sometimes called low and
high watermark [3]). Our minimum threshold, the prefetch parameter, is self-
suggesting: requests are emitted when locally generated tasks cannot compensate
for a parameterised property of the skeleton. The very existence of a maximum
threshold, applied by the split function, has principal impact on the load balance,
especially important in our setup, where only few new tasks are created. Our
experiments have, however, confirmed that increasing the high watermark for
the split policy hardly produces perfomance gains. This is why we hard coded
the value as 2*prefetch, instead of adding another parameter to the skeleton.

164

, prefetch 6

Fig. 11. Trace for SAT solver (200/1 var.)

Figure 11 shows a trace for a program run using the best skeleton in our
experiment, with six submasters above the leaves, on a sparse decision tree. The
workers expose a slow startup phase, since the (relatively few) tasks must first be
propagated in all branches. Tasks are well distributed among the different sub-
master branches, leading to an even workload among the worker processes. Even
though some PEs are reserved as submasters, the remaining workers outperform
the non hierachic skeleton close to factor 2.

4 Related Work

The commonly used master-worker scheme with a single master managing a
set of workers is a well-known scheme which has been used in many different
languages [4]. Modifications of this scheme are however more rare, and we are
not aware of other hierarchical master-worker schemes like ours.
Two notable, yet imperative, approaches are:

Driven by the insight that the propagation of messages is expensive in a
master-worker scheme, Poldner and Kuchen [5] present a variant of the scheme
where the master is divided into a sending dispatcher and a receiving collector.
In the spirit of saving communication, the dispatcher of Poldner and Kuchen
applies a static instead of our dynamic task distribution, and they argue that for
a large number of tasks, a roughly even load balance can be expected. However,
this contradicts one of the basic ideas of dynamic master-worker skeletons: the
intention to balance not only task irregularity, but also potential differences
in worker performance. An undisputed advantage is that the dispatcher can
serve more workers, as the collecting is done by another process. The scheme
is nevertheless limited in scalability, critical work load in either dispatcher or
collector will affect the overall runtime. As own ongoing work, we investigate a
nested master-worker skeleton with separate collector and dispatcher, especially
considering a variant with a hierarchy of collectors, but only one dispatcher.

Hippold and Rünger describe task pool teams [6], a programming environment
for SMP clusters that is explicitly tailored towards irregular problems with strong

165

inter-task dependences. The scheme comprises a set of task pools, each running
on its own SMP node, and interacting via explicit message passing. Dynamic
task creation by workers, task migration, and distributed task pools with a task
stealing mechanism are possible. Locality can be exploited to hold global data on
the SMP nodes, while communication between nodes is used for task migration,
remote data access, and global synchronisation.

Various load balancing strategies for divide-and-conquer algorithms are dis-
cussed by Nieuwpoort et al., in [7]. The authors experiment with different tech-
niques to exchange tasks between autonomous worker processes, in the context
of WAN-connected clusters (hierachical wide-area systems). Aside from special
optimisations to handle different network properties, a basic distinction is made
between task pushing and stealing approaches. Demand-driven work stealing
strategies are generally considered advantageous, but must take into account
the high latency connections in question. The work pushing strategy specula-
tively (and blindly) forwards tasks to random peers when the amount of lo-
cal tasks exceeds a prefetch threshold. Contrary to the randomised, or purely
demand-driven, task distribution in this work, our skeletons are always based on
task-request cycles, and concentrate surplus tasks at higher levels.

5 Conclusions

We have given a series of functional implementations of the parallel master-
worker scheme. The declarative approach enables a clear conceptual view of the
skeleton nesting we have developed.

Starting off with a very compact version of the standard scheme, we have
given implementations for skeleton nesting, to shift the administrative load to a
whole hierarchy of (sub-)masters. The hierarchies have been elegantly expressed
as foldings over the modified basic scheme. In the case of a dynamically growing
task pool, a termination detection mechanism is needed. Nesting this skeleton
is far more complex and needs special code for submasters, especially an appro-
priate task forwarding policy in the submaster processes.

As our tests show, master-worker hierarchies generally speed up runtime and
keep workers busier, avoiding the bottleneck of a flat skeleton. Hierarchy layout
and suitable prefetch values, however, have to be chosen carefully, depending on
the target architecture and problem characteristics. Our experiments show the
importance of suitable task distribution and task forwarding policies, which we
have described and discussed in detail.

We have presented implementations and experiments with a range of hierar-
chical master-worker variants, and we will continue investigations on some open
topics. One interesting extension, already mentioned, is to investigate variants
with separated dispatcher and collector. Furthermore, we are implementing non-
hierarchical peer-to-peer solutions, extending the one proposed by Hippold and
Rünger in [6], and compare them to our master-worker hierarchies.

Acknowledgements: We greatly appreciate the opportunity to conduct runtime
experiments on the Beowulf cluster of the Heriot-Watt University in Edinburgh.

166

References

1. Loogen, R., Ortega-Mallén, Y., Peña-Maŕı, R.: Parallel Functional Programming in
Eden. Journal of Functional Programming 15(3) (2005) 431–475

2. Priebe, S.: Dynamic Task Generation and Transformation within a Nestable
Workpool Skeleton. In Nagel, W.E., Walter, W.V., Lehner, W., eds.: European
Conference on Parallel Computing (Euro-Par) 2006. LNCS 4128, Dresden, Germany
(2006)

3. Loidl, H.W.: Load Balancing in a Parallel Graph Reducer. In Hammond, K., Curtis,
S., eds.: SFP’01 — Scottish Functional Programming Workshop. Volume 3 of Trends
in Functional Programming., Bristol, UK, Intellect (2001) 63–74

4. Danelutto, M., Pasqualetti, F., Pelagatti, S.: Skeletons for Data Parallelism in P3L.
In Lengauer, C., Griebl, M., Gorlatch, S., eds.: Euro-Par’97. LNCS 1300, Springer
(1997) 619–628

5. Poldner, M., Kuchen, H.: Scalable farms. In Joubert, G.R., Nagel, W.E., Peters,
F.J., Plata, O.G., Tirado, P., Zapata, E.L., eds.: Parallel Computing: Current &
Future Issues of High-End Computing, Proceedings of the International Conference
ParCo 2005, 13-16 September 2005, Department of Computer Architecture, Univer-
sity of Malaga, Spain. Volume 33 of John von Neumann Institute for Computing
Series., Central Institute for Applied Mathematics, Jülich, Germany (2005) 795–802

6. Hippold, J., Rünger, G.: Task Pool Teams: A Hybrid Programming Environment
for Irregular Algorithms on SMP Clusters. Concurrency and Computation: Practice
and Experience 18 (2006) 1575–1594

7. van Nieuwpoort, R.V., Kielmann, T., Bal, H.E.: Efficient load balancing for wide-
area divide-and-conquer applications. In: PPoPP ’01: Proceedings of the eighth
ACM SIGPLAN symposium on Principles and practices of parallel programming,
New York, NY, USA, ACM Press (2001) 34–43

167

Towards an Implementation of a Computer
Algebra System in a Functional Programming

Langauge

Oleg Lobachev

Fachbereich Mathematik und Informatik der Philipps–Universität Marburg

Abstract. This article discusses briefly the possibility of using modern
purely functional programming language like Haskell for an implemen-
tation of a computer algebra system. The concept of “language unity” is
suggested and discussed. Some examples are discussed.

1 Background and Motivation

With the flow of the history of computing, exact methods gained more and more
importance. It was clear since almost the beginning, that inexact, numerical
operations may and will fail. The Wilkinson Monster

20∏
j=1

(x− j)

is a nice – and old! [Wil63,Wil84] – example for the thesis “the way we compute
it matters”. The wish to perform exact, algebraic operations lead to the inven-
tion and implementation of computer algebra systems (CAS) [Dav94, Fat72].
Such systems include not only arbitrary precision arithmetic, but feature alge-
braic (and hence: exact) manipulation with abstract objects. To name the most
popular computational algebra concept: the gröbner bases gain more and more
importance in computer algebra implementations.

There are some nice ideas, already implemented in some systems, but still
not mainstream. Asymptotically fast multiplication algorithm by Schönhage and
Strassen [SS71, Sch82] gives significant performance boost for computations in-
volving really large values (be it numbers or polynomials), but it is rather hard
to be implemented, compared with older methods by Karatsuba or in general by
Toom and Cook [Knu98]. Fast multiplication algorithms as well as many other
aspects of computer algebra are discussed in [vzGG03,Knu98]. An example of a
modern CAS, utilising this fast method is GiNaC [HK05,GiN07], written in C++.
We will return to GiNaC in the further sections of this text.

Another interesting example is PARI/GP, a CAS made by Henri Cohen’s
team [BBB+06]. PARI/GP divides an implementation of the computational CAS
functions (the library PARI) and a high–level language front-end (the GP lan-
guage and the associated gp interpreter), which uses the PARI library to perform

168

the computations itself. It is also possible to compile a GP program to C whilst
continuing to use the PARI as program library. Many of the ideas and algorithms
of PARI/GP can be found in Henri Cohen’s book [Coh95].

Writing a computer algebra system in a functional programming languages
is not really new idea. The first generation CAS named Macsyma was written
in a LISP 1.5 dialect called MACLISP, and LISP is considered to be the first
functional language ever. Some interesting aspects has Axiom CAS. It features
an embedded (although detachable) functional programming language [BDea03].
Axiom uses hierarchical structure of mathematical objects (like: monoid – group
– ring – integrity domain – field) to specify and perform operations on them.
Taking a brief view from another point: some features of modern functional
languages, like lazy evaluation indeed improve numerical computations [BMP94,
BJDM97]. There are also other features, which could be useful for a CAS [Mil95].
As a side note, both functional programming language [LOP05,TBD+98,RSN95,
Eri07,Roy04] and computer algebra systems [GMa07b,GMa07a,HAC+07,SCI07]
are present in the field of parallel and distributed computing. But can some
languages of a CAS be functional and which consequences will it have?

2 What a Functional Language Can Give a CAS?

Let’s take a bit conciser look on what a functional language can offer a modern
CAS implementation. We are basing our thoughts on Haskell [Pey03], a pure
functional language with many interesting constructs and features (such as cur-
ring, lazy evaluation, infinite data structures, garbage collection, monads), big
community, fully documented structure and – not really a feature of the lan-
guage itself, but also hard to underestimate – a full–fledged compiler and more
than one interpreter.

The following features are interdependent and all of them can be found in a
modern pure functional language like Haskell.

– Lazy evaluation means that no expression is evaluated if it is not required,
but also that no expression is evaluated more than once. We should think
of lazy evaluation as of a double–edged sword. Indeed it reduces the amount
of required computations and lets the end user of the CAS the freedom of
writing his own programs in a more mathematical way. We shall state a nice
short example for it later. The reason why lazy evaluation is rather unused in
the industry is certain performance loss in comparison with eager languages
on the same hardware platform. Hardware support is much more solid for
eager and imperative languages [Pey93], the cases of of better performance
of a lazy (and functional) language in some tasks are still possible. Roughly:
they occur due to better optimisation and “skipping” unneeded computa-
tions. The cases of worse performance are one where lazy evaluation fails to
“skip” more operations, than the overhead needed to perform the lazy eval-
uation itself. Detailed comparison is beyond the scope of this paper, but it
is impossible to designate some particular language or even some particular
language type as all round superior one.

169

– A data structure which can exist only in non–eager languages are the infinite
data structures, notably: lists. Such lists cannot be implemented without lazy
evaluation. But infinite data structures give us an opportunity of much “more
mathematical” definition of e. g. sequences and series, than any other eager
language. The following code is in Haskell1.

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
This example is in linear time, which is quite bad for such sequence. Faster,
but more elaborate implementations are possible.

– Pure functional languages have no side effects. Consider an example in C.
int i = 5;
i = ++i + i++;

This example is rather unnatural, but the correct value is not defined and
depends on implementation – try it in other imperative languages of your
choice. In a pure functional language such situation is not possible, due to
the nature of “variable” declaration itself. The most feasible benefit is again a
“more mathematical” semantics: is f a function, so has f(5) the same value,
whenever it is called, pretty much as f(5) in a mathematical notation has.
This is also known as referential transparency.

– Some functional languages feature strict typing, a type system more resistant
to a particular kind of programming errors. In the contest of a CAS strict
typing brings some benefits. If we have, e. g. some ring A and its invert-
ible elements A∗, then an advanced type system can report an error in the
processing of the expression “a−1” for some a ∈ A, if a 6∈ A∗.

But what does a language, in which one is willing to write his/her CAS has
in common with language the end user of that CAS will be dealing with? The
answer is in the next section.

3 The two languages of a CAS

Computer algebra systems possess two different languages, we shall call them in
this paper as follows. The external language of a CAS is the language the system
is written in, the implementation language. Since the end user of the CAS is to
perform some kind of programming, there is also a second language. The internal
language of CAS is the language with which the CAS interfaces with its user,
the embedded language.

It is desirable to write as much as possible of the CAS itself in its internal
language. Such decision gives the user opportunity to inspect and (if needed) to
modify some internal functions of the CAS, giving him/her as much freedom, as
he/she can take. However this is impossible in most cases. Firstly the internal
language of most CASes is weaker, than the external. It is still Turing–complete
but some technical things may be hard or even impossible. On the other side the
internal language is better laid of for the typical computer algebra operations:

1 Cf. http://haskell.org/haskellwiki/The_Fibonacci_sequence

170

we may expect, e. g. polynomials and matrices as native objects or an interesting
handling of lists, non–existent in the external imperative language of the CAS.

Secondly, unfortunately, internal languages of most CASes are not as fast, as
the external one. The cause may be the interpreted origin of these languages or
it very high level nature. The heavy inheritance of an interpreter is fought in a
nowadays common way in practical software development. E. g. Matlab, despite
being rather a scientific calculation system, and not a CAS in its narrow sense2,
compiles the input files in his own internal language into “pseudo-code” [Mat99].
Another possibility of immense speedup pays the price of shutting the user out
of the program internals. The implementation of S programming language for
statistical computations, GNU R, utilises a Scheme dialect as its internal language.
The whole R system can be implemented in in Scheme. But because of perfor-
mance lack in core operations, the later ones are replaced with function calls from
the bundled C library. These functions can still be overloaded and replaced by
user’s own version, but one cannot simply look inside of the routines, which are
sped up this way. There is also a third possibility: to use a functional language
and to perform typical for a functional language optimisations in the language
compiler. This way our internal language could be feature–rich and reasonably
fast, but it will have the price of writing a, say, LISP interpreter in an imperative
language, thus not as a primary task, but just as a mere implementation of an
internal CAS language. However a decent implementation of the all computer
algebra algorithms, we wish to see in a proper computer algebra system, should
also be not forgotten.

An interesting approach in this field was taken by Christian Bauer, Alexan-
der Frink, Richard Kreckel et al., the developers of GiNaC [BFK02,GiN07]. This
computer algebra system was written in C++ and it maintains C++ as its main
interface. It is made in a very simple way: GiNaC is rather a computer algebra
library, than a complete system with 3D plotter, audio file importer and colour-
ful movie maker. So the primary use of GiNaC is to write your own C++ program,
while using arbitrary precision numbers, polynomials, matrices, expression eval-
uation and other nice (and lightening–fast!) computer algebra functions, offered
by the GiNaC library. As the authors of GiNaC state:

Its design is revolutionary in a sense that contrary to other CAS it does
not try to provide extensive algebraic capabilities and a simple program-
ming language but instead accepts a given language (C++) and extends
it by a set of algebraic capabilities.

This approach is very interesting and powerful, but the interactive front end
program of GiNaC, the ginsh, is much less powerful due to a rather weak lan-
guage. It was, however, never intended to be a complete GiNaC interface. The
possibility to use all the GiNaC’s features at an interactive prompt requires a C++
interpreter.

2 Matlab is still capable of computer algebra system stylish arbitrary exact computa-
tions with a symbolic computation “toolbox”.

171

While interpreting C++ is not very nice (although possible: [cin07]), it is
much easier with Haskell: aside from the Glasgow Haskell Compiler [ghc07],
we have Hugs, the Haskell interpreter. Also, GHC itself offers an interactive
version, GHCi. The later is also capable of loading precompiled object files into
the interpreted environment. With this achievement one has the possibility to
write a computer algebra system, which internal, interface language equals its
external, implementation language, and this language is a functional one.

The idea of GiNaC was not born in vain: most long CAS–supported com-
putations are run in “batch mode”, with no user interaction. It seems plausible
not to wait in front of a command prompt for the result for hours, days or even
months.3 On the other hand, most of CAS–based development is done in an
interactive environment, in a “shell”. If one could use the same language both
for developing and for lengthy computations, this would be a major success in
sparing developers’ work time [PH94] and gaining stability of computations.

Now why not just make both: a compiler and an interpreter of CAS’ inter-
nal language? The problem is, that despite many efforts, the internal languages
of computer algebra systems are slow. On the other hand, we already have a
fast language in our (currently fictitious) CAS–developing project. This is the
language, the CAS itself is written in, the external language. But, one may op-
pose, the whole game with computer algebra system’s internal language was
started, because the external language was not high–level enough for vectors,
matrices, polynomials and all the other expressions, which are eager wanted in a
full–fledged CAS. Now we come back to the beginning of this article. Functional
languages are complicated and high–level enough to have all the aforementioned
objects [Pey03,TT07,Mec07,BDea03]. Functional languages have very compact
code size and rapid development times [PH94]. Most functional languages have
very interesting data structures [Oka98] and language design features, which
benefit both featuring them as an external or as an internal language. And some
modern functional languages already have an efficient compiler and an inter-
preter implemented, which leads us to the future goal of external and internal
language fusion. Languages like Haskell.

4 Getting more practical

Now as we have seen some theoretical reasons for a CAS to be implemented in
Haskell, let’s take a look at some examples. At first we shall examine the uni-
variate polynomials. One can hardly imagine a computer algebra system without
them, polynomials are used in thousands of higher–level algorithms and the op-
erations with polynomials should undoubtedly be fast. In this article we do not
develop fast polynomial multiplication – it is a large topic beyond the scope of
3 In this case one might think of porting his/her CAS–based program to some low–

level language and let, say, FORTRAN run the number–crunching mills. However this
is an highly interactive and bug–ridden process. And the FORTRAN program is to
be tested for errors again, before the real computations may begin: the thoroughly
tested CAS–routines are not enough!

172

this text. We rather look at the existent implementations and note some design
patterns, making the code faster. Unfortunately as of today neither of proposed
Haskell implementations of univariate polynomials uses sub–quadratic algo-
rithms like Karatsuba4, Toom–Cook or Schönhage–Strassen algorithms.

We have tested four different implementations:

1. Our own naive implementation with lists of integers,
2. Implementation from Haskell for Math [Amo07],
3. Implementation from Numeric Prelude [TT07]
4. Our naive implementation, modified à la Numeric Prelude

All tests were run on the same machine5 with the same compiler – GHC 6.6.1,
the latest stable version currently available. For the same length n the test was
run ten times, the mean value of measured execution time is further used. We
multiply two dense univariate (n − 1)–grade polynomials with random coeffi-
cients. The coefficients are normally distributed integers and lie in the range
[−400, 400].

What we are testing are not the algorithms – they all represent pretty the
same “school” multiplication, and not the compiler options, but the layout of
classes and data structures. Naive implementation uses “dumb” lists of Ints,
other implementations build chain of types similar to the algebraic objects. E. g.
one can define addition and subtraction in a group object, multiplication of
some group members in a ring object and the reciprocal value of an arbitrary
ring element in a field. Two consequences are to be stated.

– The simplest implementation is not the fastest.
– the type hierarchy matters more than the design of a single function.

We have also tried a naive implementation with floating point arithmetic, but it
produces roughly twice worse result, as naive integer implementation: it seems
that the integer values are too small for floating point arithmetic to beat the
hardware integer arithmetic implementation: for larger integer values the per-
formance gap is narrower, for “sufficient large” integers the floating point im-
plementation should outperform the integer one, while still remaining exact,
cf. [vzGG03].

There was also a remarkable side effect. We have to state that really large
lists in the source files kill the compiler. Simply defining a module consisting of
two “functions” f and g as lists of 10000 elements each led to the compilation
time of several minutes for this module. An overview of test results is provided
in Figure 1.

We would like to discuss briefly another example. We take a well–known
and very quickly growing function on integers: the factorial. We have tested the
famous Haskell one–liner fac n = product [1..n], and two C++ implementa-
tions. Both base on the CLN – the arbitrary precision library used in GiNaC.
4 Although an implementation of Karatsuba’s algorithm in Haskell was suggested

in [HL00,Sch98].
5 AMD Athlon XP 2200+ with 512 Mb of RAM, running Debian GNU/Linux 4.0

173

5 10 15 20

0
5

10
15

20

100*n

T
im

e

● ● ● ● ●
●

●
●

●

●

●

●● Naive
Haskell for Math
Numeric Prelude
Naive With Numeric Prelude Methods

Fig. 1. Multiplication of two univariate polynomials of degree n− 1. The coeffi-
cients are integers in [−400, 400]. Time is measured in seconds(!). We conclude
the strong need in sub–quadratic implementations. Note the overlapping values
for both naive methods.

174

2 3 4 5

−
4

−
2

0
2

4

log10(n)

lo
g1

0(
tim

e)

●

●

●

●

● Haskell one liner
CLN build−in
CLN iterative

Fig. 2. Computing the factorial. Both execution time and the argument are
stated as log10 of the real value, otherwise the difference in execution time for
different arguments is too big to be plotted precisely. Note that the difference
e. g. between computing 104! with naive Haskell method and the build–in CLN
method is tenfold. The CLN library utilises sub–quadratic multiplication.

175

One implementation uses build–in factorial function from the CLN. It makes use
of table look–ups and computes some parts of the factorial value in divide and
conquer fashion. The other C++ implementation is an unoptimised one, but it
still uses CLN build–in multiplication and large integers. We find this implemen-
tation comparable with the naive Haskell implementation. It should be stated
that the graphical representation of the obtained results (see Figure 2) presents
the logarithms of the original values, so the difference between two pretty narrow
values is larger, as it may appear. The first values for Haskell implementation
are not available – the results were too biased. For example the timings for
n = 50 and n = 100 were equal.

5 Conclusions and Future Work

Functional languages and computer algebra are two rapid developing research
areas, an intersection of these two areas is highly interesting and rather unex-
plored. In the aspect of practical implementations: modern algorithms of com-
puter algebra should be implemented in relevant Haskell software packages, as
the naive implementation typically leads to asymptotically bad complexity. One
should carefully design his/her data structures in such implementations, as they
control a significant factor in the execution time for the same complexity class.
The aforementioned algorithms should provide

– fast integer multiplication,
– fast polynomial multiplication,
– efficient Euclid’s algorithm for polynomials,
– efficient vector and matrix computations,
– framework for symbolic computation and object manipulation.

Such foundation will be a solid base for more complex research areas, including

– algorithms of numerical number theory,
– implementation of public key cryptography,
– algorithms of computational algebraic geometry, based on gröbner bases,
– symbolic integration,
– automated theorem proofs.

References

Amo07. David Amos. Haskell for Math program. http://www.polyomi-
no.f2s.com/david/haskell/codeindex.html, August 2007.

BBB+06. C. Batut, K. Belabas, D. Bernardi, H. Cohen, and M. Olivier. User’s
Guide to PARI/GP. Universite Bordeaux I, version 2.3.2 edition,
2006. http://pari.math.u-bordeaux.fr/pub/pari/manuals/2.3.2/us-
ers.ps.gz, retrieved in August 2007.

BDea03. Manuel Bronstein, James Davenport, and Albrecht Forten-
bacher et al. AXIOM – the 30 year horizon. 2003.
http://portal.axiom-developer.org/public/book2.pdf, retrieved in
August 2007.

176

BFK02. Christian Bauer, Alexander Frink, and Richard Kreckel. Introduction to the
GiNaC Framework for Symbolic Computation within the C++ Programming
Language. J. of Symbolic Computation, 33:1–12, 2002.

BJDM97. Richard S. Bird, Geraint Jones, and Oege De Moor. More haste, less speed:
lazy versus eager evaluation. Journal of Functional Programming, 7(5):541–
547, 1997.

BMP94. M. O. Benouamer, D. Michelucci, and B. Peroche. Error-free boundary eval-
uation based on a lazy rational arithmetic: a detailed implementation. Com-
puter Aided Design, 1994.

cin07. Cint, the c/c++ interpreter, version 5.16.19.
http://root.cern.ch/root/Cint.html, March 2007. retrieved in Au-
gust 2007.

Coh95. Henri Cohen. A Course in Computational Algebraic Number Theory. Springer,
1995.

Dav94. J. H. Davenport. Computer algebra – past, present and future. In Euromath
Bulletin, volume 1, pages 25–44, 1994.

Eri07. Ericsson AB. Erlang Reference Manual, 2007.
Fat72. Richard J. Fateman. Essays in Algebraic Simplification. PhD thesis, Mas-

sachusetts Institute of Technology, April 1972. A Revision of A Thesis.
ghc07. The Glorious Glasgow Haskell Compilation System User’s Guide.

http://www.haskell.org/ghc/docs/latest/users_guide.pdf, April 2007.
retrieved in August 2007.

GiN07. GiNaC program. http://www.ginac.de, August 2007.
GMa07a. Hpc-grid for maple program. http://www.maplesoft.com/products/tool-

boxes/HPCgrid/index.aspx, August 2007.
GMa07b. gridmathematica2 program. http://www.wolfram.com/products/gridma-

thematica/, August 2007.
HAC+07. K. Hammond, A. Al Zain, G. Cooperman, D. Petcu, and P. Trinder. Sym-

grid: a framework for symbolic computation on the grid. LNCS 4703. Eu-
roPar’07 – European Conf. on Parallel Processing, Rennes, France, Spinger-
Verlag, August 2007.

HK05. Bruno Haible and Richard Kreckel. CLN, a class library for numbers manual,
2005.

HL00. Christoph A. Herrmann and Chrisitan Lengauer. HDC: A Higher–Order Lan-
guage for Divide–and-Conquer. Parallel Processing Letters, 2000.

Knu98. Donald E. Knuth. The Art of Computer Programming, volume 2. Addison–
Wesley, third edition, 1998.

LOP05. Rita Loogen, Yolanda Ortega–Mallén, and Ricardo Peña–Marí. Parallel Func-
tional Programming in Eden. Journal of Functional Programming, (15):431–
475, 2005. Special Issue on Functional Approaches to High-Performance Par-
allel Programming.

Mat99. The Mathworks Inc. Using MATLAB, 5.3 edition, 1999. Manual.
Mec07. Serge Mechveliani. DoCon the algebraic domain constructor program.

http://www.haskell.org/docon/, 2007. retrieved in August 2007.
Mil95. Gérard Milmeister. Functional kernels with modules. Master’s thesis, ETH

Zürich, 1995.
Oka98. Chris Okasaki. Purely Functional Data Structures. Cambridge University

Press, 1998.
Pey93. Simon L Peyton Jones. Implementing lazy functional languages on stock hard-

ware: the Spineless Tagless G–machine. Department of Computing Science,
University of Glasgow, 1993. Version 2.5.

177

Pey03. Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, December 2003.

PH94. M. P. Jones P. Hudak. Haskell vs. Ada vs. C++ vs. awk vs.. . . An exper-
iment in software prototyping productivity. Yale University, Department of
Computer Science, July 1994.

Roy04. Peter Van Roy, editor. Multiparadigm Programming in Mozart/Oz. Second
International Conference, MOZ, 2004.

RSN95. J. Hicks S. Aditya L. Augustsson J. Maessen Y. Zhou R. S. Nikhil, L.
A. Arvind. pH Language Reference Manual, Version 1.0. Massachusetts In-
stitute of Technology, 1995. Computation Structures Group Memo No. 396.

Sch82. Arnold Schönhage. Asymptotically fast algorithms for the numerical multi-
plication and division of polynomials with complex coefficients. volume 144
of Lect. Notes Comp. Sci., pages 3–15. EUROCAM ’82: European Computer
Algebra Conference (Marseille, France), April 1982.

Sch98. Christian Schaller. Elimination von Funktionen höherer Ordnung in Haskell–
Programmen. Master’s thesis, Universität Passau, September 1998.

SCI07. Symbolic Computation Infrastructure for Europe project. http://www.sym-
bolic-computation.org/, 2007. retrieved in August 2007.

SS71. Arnold Schönhage and Volker Strassen. Schnelle Multiplikation großer Zahlen.
Computing, 7(3–4):281–292, 1971.

TBD+98. Philip W. Trinder, Ed. Barry Jr., M. Kei Davis, Kevin Hammond, Sahalu B.
Junaidu, Ulrike Klusik, Hans-Wolfgang Loidl, and Simon L. Peyton Jones.
GpH: An Architecture–Independent Functional Language. In Glasgow Func-
tional Programming Workshop, Pitlochry, Scotland, 1998.

TT07. Dylan Thurston and Henning Thielemann. Haskell Numeric Prelude program.
http://darcs.haskell.org/numericprelude/, August 2007.

vzGG03. Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra.
Cambridge University Press, second edition, 2003.

Wil63. J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice Hall, 1963.
Wil84. J. H. Wilkinson. The perfidious polynomial. In G. H. Golub, editor, Studies

in Numerical Analysis, volume 24, pages 1–28. Mathematical Association of
America, Washington, D. C., 1984.

178

Lazy Contract Checking for Immutable Data Structures

Robert Bruce Findler, Shu-yu Guo, and Anne Rogers
{robby,arc,amr}@cs.uchicago.edu

University of Chicago

Summary
Existing contract checkers for data structures force programmers to choose between
poor alternatives. Contracts are either built into the functions that construct the data
structure, meaning that each object can only be used with a single contract and that a
data structure with the invariant cannot be viewed as a subtype of the data structure
without the invariant (thus inhibiting abstraction) or contracts being checked eagerly
when an operation on the data structure is invoked, meaning that many redundant checks
are performed, potentially even changing the program’s asymptotic complexity.

We explore the idea of adding a small, controlled amount of laziness to contract
checkers so that the contracts on a data structure are only checked as the program in-
spects the data structure. Unlike contracts on the constructors, our lazy contracts allow
subtyping and thus preserve the potential for abstraction. Unlike eagerly-checked con-
tracts on the inspection operations, our contracts do not affect the asymptotic behavior
of the program.

1 Introduction
Assertion-based contracts play an important role in the construction of robust software.
They give programmers a technique to express program invariants in a familiar no-
tation with familiar semantics. Contracts are expressed as program expressions of type
boolean. When the expression’s value is true, the contract holds and the program contin-
ues. When the expression’s value is false, the contract fails, causing the contract checker
to abort the program and identify the violation and the violator. Identifying the faulty
part of the system helps programmers narrow down the cause of the violation and, in a
component-oriented programming setting, exposes culpable component producers.

Contracts enjoy widespread popularity. For example, contracts are currently the
most requested addition to Java.1 In C code, assert statements are particularly popu-
lar, even though they do not have enough information to assign blame properly and thus
are a degenerate form of contracts. In fact, 60% of the C and C++ entries to the 2005
ICFP programming contest [7] used assertions, even though the software was produced
for only a single run.

Despite the popularity of contracts, the state of the art in contract checking for data
structure contracts is poor. In order to use contracts on data structures, programmers are
forced to choose between copied code (and thus doubled maintenance costs) and very
poor performance (often infeasible, as we will show). Our contract checker provides a
new alternative. It is designed to strike a balance between performance and the amount

1 http://bugs.sun.com/bugdatabase/top25 rfes.do, June 27, 2007

179

(module bt mzscheme
(define-struct node (n left right))
...
(provide (struct node (n left right)) marshal-bt unmarshal-bt))

(module bst
(require bt)
;; a Binary Search Tree (bst) is either null or
;; (make-node number[n] bst[left] bst[right])
;; where the numbers in left are less than (or equal to) n
;; and the numbers in right are greater (or equal to)

(provide find-bst)
;; find-bst : bst number → boolean
(define (find-bst t n)

(and (node? t)
(or (= n (node-n t))

(and (< n (node-n t))
(find-bst (node-left t) n))

(and (> n (node-n t))
(find-bst (node-right t) n))))))

Fig. 1. Binary search trees, without contracts

of checking, motivated by the desire to avoid changing the asymptotic complexity of
operations that have contracts.

The next section uses binary search trees to make the programmer’s existing poor
choices plain. Section 3 explains the design of our contract checker and how it limits
the amount of checking to recoup tractable performance. Since our design is partially
motivated by performance, we spend Section 4 explaining our implementation and Sec-
tion 5 presenting some performance measurements that validate our design. Section 6
discusses an extension to our contract checker that relaxes the strict asymptotic com-
plexity requirements; by giving the contract checker the freedom to preserve only the
amortized complexity, we gain the ability to write more expressive contracts. Section 7
discusses related work and Section 8 concludes.

2 A Rock and a Hard Place
To see how existing techniques for data structure contracts fail programmers, consider
a binary search tree library (shown in Figure 1) that is built on top of a binary tree li-
brary. The binary tree library is left mostly to the reader’s imagination, but a skeleton
is shown in the bt module, written in PLT Scheme [11]. It exports basic operations on
binary trees (marshaling them to and from disk) and a node struct (record) for building
and querying the nodes in a binary tree. The define-struct introduces a new struct
that consists of three fields. The define-struct also introduces five function defi-
nitions: make-node used to build new nodes, node? used to recognize node structs, and

180

(module bst mzscheme
(require (lib "contract.ss") bt)

;; bst? : any → boolean
(define (bst? t) (bst-between? t −∞ +∞))
(define (bst-between? t low high)

(or (null? t)
(and (node? t)

(number? (node-n t))
(≤ low (node-n t) high)
(bst-between? (node-left t) low (node-n t))
(bst-between? (node-right t) (node-n t) high))))

(define (find-bst t n) ...) ;; as in figure 1

(provide/contract
[find-bst (→ bst? number? boolean?)]
[bst? (→ any/c boolean?)]))

Fig. 2. Binary search trees, with contracts

node-n, node-left, and node-right used to extract the fields from a node struct. In
general, a struct definition introduces a single maker, a single predicate, and one selector
per field. The provide clause exports the struct and the marshaling functions.

The bst module requires the bt module and defines a binary search tree data struc-
ture in a comment, according to the discipline of How to Design Programs [5]. The
comment specifies that binary search trees have the same shape and use the same node
struct as binary trees, but also have the binary search tree invariant. The programmer
carefully uses the same basic data structure so that the existing library for binary trees
(marshaling and unmarshaling functions in this case) can also be used with binary
search trees. Beyond the data definition, the bst module also provides find-bst a
function for finding numbers in binary search trees that takes advantage of the binary
search tree invariant to avoid the recursive calls when it is safe to do so.

As the program grows from a little script to a part of a robust application, its author
decides to improve the reliability of the program by writing a checkable contract on the
data structure as shown in Figure 2. The bst? function uses the bst-between? helper
function to test whether its input is a binary search tree. The function bst-between?
enforces the binary search tree invariant using two accumulators, a lower and upper
bound on the values in the tree. The accumulators are initially negative and positive
infinity respectively, and as the traversal passes each interior node, the bounds tighten
in the recursive calls.

Finally, the bst? predicate is used in the contracts for the provided functions.2 The
contract on find-bst is an → contract and is written using prefix notation. The last
argument to→ is a predicate on the result of find-bst, ensuring that it always produces

2 We use the PLT Scheme contract library’s notation [21] throughout.

181

booleans. The other two arguments are predicates on the inputs to find-bst, ensuring
that the first argument is a binary search tree and that the second argument is a number.
Similarly, the contract on bst? ensures that it is a predicate function.

Although it may not be obvious at first glance, the binary search tree portion of the
revised library is now completely useless. In particular checking find-bst’s contract
means that the bst? predicate is called on each argument supplied to find-bst in
order to enforce the pre-condition (domain) contract. Since bst? traverses the entire
tree, it ruins the optimization built into the find-bst function, changing the asymptotic
complexity from logarithmic to linear, an exponential slowdown.

This state of affairs leaves the programmer in a bind; both the loss of performance
and the loss of reliability are unacceptable. The conventional solution to this problem
is to hide the raw struct operations behind an opaque module boundary and only export
operations that guarantee the binary search tree invariants (e.g., self-balancing insert
plus an empty binary search tree). Of course, this solution has the problem that a client
of bst module cannot reuse the bt operations on bsts.

A programmer may attempt to work around this by providing new versions of each
of the bt operations that simply unwrap a bst struct, apply the operation, and then
rewrap it. This approach is not desirable for two reasons. The bst programmer has to
be able to anticipate all future extensions to the bt library but, even more troublesome,
is that the binary search tree author must now verify that none of the bt operations
violate the binary search tree invariant, rather than letting the system itself ensure the
binary search tree invariant holds.

Another solution is to provide injection and projection functions that convert binary
search trees to and from binary trees and, along the way, verify the invariant. This
solution amounts to changing the pre-condition on the find operation to a simple check,
but requiring that programmers rewrite their programs to explicitly decide where to do
the real checks. Worse, it is not always possible to avoid an asymptotic slowdown when
binary search tree operations are interleaved with binary tree operations.

In general code reuse is enabled by the ability to view a data structure with an
invariant (like the binary search tree) as the same data structure but without the invariant.
Or, put another way, code reuse is hindered by taking that ability away or allowing it
only when accompanied by expensive invariant checks. Thus, the goal of this work is to
provide a new form of contract checking that allows programmers to view binary search
trees as binary trees, without any special action on the part of the programmer.

Throughout the remainder of this paper, we continue to use binary search trees as
a motivating example. Nevertheless, our technique applies to many data structures that
have invariants: heaps, self-balancing trees, sorted lists, etc. It is also useful whenever
one wishes to use refinement types (but when a refinement type checker is not strong
enough) such as even-length or non-empty lists, or viewing the result of Scheme’s read
as having a particular shape. Another particularly fertile ground is a compiler’s interme-
diate representation. Well-known intermediate representations like CPS and A-normal
form [10] are easily expressed as contracts over the general expression type, and com-
piler authors who take advantage of them can determine which pass of a compiler has
failed when bad output is produced.

182

5

3

1 6

7

5

3

1 6

7

(-∞,+∞)

5

3

1 6

7

5

3

1 6

7

(-∞,+∞)

5

3

1 6

7

5

3

1 6

7

(5,+∞)(-∞,5)
5

3

1 6

7

5

3

1 6

7

(5,+∞)(-∞,5)
5

3

1 6

7

5

3

1 6

7
(-∞,3) (3,5)

(5,+∞)
5

3

1 6

7

5

3

1 6

7
(-∞,3) (3,5)

(5,+∞)
5

3

1 6

7

5

3

1 6

7
(-∞,3)

(5,+∞)
5

3

1 6

7

5

3

1 6

7
(-∞,3)

(5,+∞)

(a) (b) (c) (d)

Fig. 3. Evolution of attributes during traversal of tree

3 Lazy Contract Checking
Our solution to this problem is to introduce a new kind of contract for data structures.
These contracts have the benefit of the contracts in Figure 2, namely they permit the
programmer to use a single value with multiple, different contracts, but instead of ea-
gerly checking the entire data structure when checking a contract, our contracts lazily
check the portions of the data structure that the function inspects, and only when it
inspects them.

Our contracts extend MzScheme’s define-struct to define-contract-
struct. It has the same syntactic shape as define-struct, but in addition to in-
troducing a maker, predicate, and selectors, it also introduces a contract constructor. For
example, the declaration

(define-contract-struct node (n left right))

introduces node/dc (read as “node dependent contract”). Its shape is

(node/dc [n contract-expr]
[left (n) contract-expr]
[right (n) contract-expr])

where each clause indicates the contract on the respective field. The (n) in the left and
right contract specifications indicates that the contracts for the left and right fields
depend on the value of the n field (the variables in the parenthesis are ordinary bound
variables, but their names must match the names of other fields of the struct; that is, they
may not be alpha-renamed). In general, the contract on any field may depend on any
of the fields before it, but the dependencies must be specified explicitly. Of course,
node/dc is just an instance of a contract constructor; each define-contract-
struct declaration introduces its own dependent contract constructor that expects
as many fields as there are in the struct.

Using node/dc, the contract for a binary search tree is written as:

183

;; bounded-bst : number number -> contract
(define (bounded-bst lo hi)
(or/c null?

(node/dc [n (between/c lo hi)]
[left (n) (bounded-bst lo n)]
[right (n) (bounded-bst n hi)])))

(define bst (bounded-bst −∞ +∞))

The or/c contract combinator accepts any number of contracts (or simple predicates)
and checks that at least one of them holds. The between/c contract combinator accepts
two numbers and returns a contract that matches numbers in those bounds. The con-
tract on the left and right sub-trees of an interior node are built by recursively calling
bounded-bst with different bounds on the values in the tree. The initial contract on a
binary search tree is built by calling bounded-bst with negative and positive infinity.

The remainder of this section explains how dependent struct contracts behave and
continues to use binary search trees as the motivating example.

3.1 Checking During Traversal

The contract checker only checks struct contracts as the program itself inspects the
data structure. To see how this plays out, consider this binary search tree and call to
find-bst.

(define a-bst (make-node 5
(make-node 3
(make-node 1 ...)
(make-node 6 null null))
(make-node 7 ...)))

(find-bst a-bst 4)

The series of diagrams in Figure 3 shows the evolution of the contracts as find-bst
traverses a-bst seaching for 4. To represent the contract on the tree, we draw a box
around the tree and annotate the box with the contract. So, when the tree is first passed
to find-bst, it picks up the binary search tree contract and is labeled “(−∞,+∞)”,
meaning that the elements in the tree must be between −∞ and +∞, corresponding to
the contract obtained by calling (bounded-bst −∞ +∞). The first step find-bst
takes is to examine the top node in the tree. At the point when find-bst first extracts
a field of the top node struct, the contract checker steps in and verifies that the values
of the fields of the node match the contract. Verifying that the number in the tree is
in the appropriate range is a simple check, but to ensure that the subtrees match their
contracts, the contract checker must create new boxes to avoid exploring more of the
tree than the program does, as shown in Figure 3 (b).

The labels on the new boxes indicate the new contracts, derived from the binary
search tree invariant (as implemented by bounded-bst). The left sub-tree’s elements
must be smaller than 5 and the right sub-tree’s elements must be larger than 5. Fig-
ure 3 (c) shows the state of the tree after find-bst inspects the left child of the root.
Again, the contract checker verifies that the node’s value is appropriate and creates new
boxes for the sub-trees. At this point in the program, no contract violation is signaled,
because the program has not yet discovered the contract violation lurking one level

184

5

3

1 6

7

5

3

1 6

7

(-∞,+∞)

5

3

1 6

7

5

3

1 6

7

(-∞,+∞)

5

3

1 6

7

5

3

1 6

7

(5,+∞)(-∞,5)

(-∞,+∞)

5

3

1 6

7

5

3

1 6

7

(5,+∞)(-∞,5)

(-∞,+∞)

5

3

1 6

7

5

3

1 6

7

(5,+∞)(-∞,5)

(-∞,+∞)

5

3

1 6

7

5

3

1 6

7

(5,+∞)(-∞,5)

(-∞,+∞)

(-∞,+∞)

5

3

1 6

7

5

3

1 6

7

(5,+∞)(-∞,5)

(-∞,+∞)

5

3

1 6

7

5

3

1 6

7

(5,+∞)(-∞,5)

(-∞,+∞)

(-∞,+∞)

5

3

1 6

7

5

3

1 6

7

(5,+∞)(-∞,5)

(5,+∞)(-∞,5)

(5,+∞)(-∞,5)

(-∞,+∞)

5

3

1 6

7

5

3

1 6

7

(5,+∞)(-∞,5)

(5,+∞)(-∞,5)

(5,+∞)(-∞,5)

(-∞,+∞)

(a) (b) (c) (d)

Fig. 4. Evolution of contracts during tree traversal without stronger check

down in the tree. Indeed, if the program never explores that part of the tree, a contract
violation will never be signaled. But, since find-bst is searching for a 4, it does inspect
that node, and a contract violation is signaled blaming the caller of find-bst.

3.2 Redundant Contracts

Although the boxes help eliminate much of the redundant work that eager contract
checking would incur, it is still possible to do too much work. In particular, we must be
careful to avoid accumulating multiple, redundant boxes on the same tree. To see how
this happens, imagine that a tree is built up via an insert : bst number → bst
operation that first calls find-bst to see if the value is in the tree and, if so, just returns
the original tree. Consider the effect of these two calls happens during the evaluation of
(insert (insert a-bst 5) 5). Even though the two calls do not change the tree, a
naive strategy for putting boxes on contracts accumulates surprisingly many new boxes.

Figure 4 shows what would happen for those two calls. Initially, the tree has no con-
tracts, but as soon as it is passed to insert, the binary search tree contract is wrapped
around it, as shown in Figure 4 (a). The first thing insert does is pass the tree to
find-bst, along with 5. Since 5 is in the root node of the tree, find-bst triggers the
checking of only the first layer of the contracts, pushing contracts down to the left and
right sub-children, and removing the outer layer of contracts. After that, the first call to
insert returns and its post-condition adds another box around the entire tree and we
are left with the tree shown in Figure 4 (b).

As the second call to insert happens, the pre-condition adds another wrapper to the
tree, leaving us with Figure 4 (c). When insert calls find-bst, it inspects the top por-
tion of the tree, pushing both of the contracts to its subtrees, and then the post-condition
of insert adds yet another contract outside the tree, leaving us with Figure 4 (d).

To avoid this accumulation, we must be able to detect redundant contracts. In the
case of a binary search tree, we can simply compare the bounds. If the box around a

185

tree has the same (or tighter) bounds than the new box would, then we can just leave
the tree alone, relying on the existing contract to guarantee that the new contract holds.

To detect redundant contracts in general, our contract system supports a partial or-
dering on contracts that is used to compare two contracts to determine if one is stronger
than or equal to the other. The ordering is tied to the particular contracts that our sys-
tem supports. Each contract knows how to compare itself to certain other contracts in
our system; if the contract does not recognize the other one, we avoid unsoundness and
assume that neither contract is stronger than the other.

As a design principle for our system, we decided that programmers who merely
use contracts should not have the responsibility of specifying the stronger relationships.
Instead, that responsibility should lie with the programmers that implement the con-
tract combinators (such as between/c or → or the struct contracts). Accordingly, the
stronger relationships are set in stone once a particular contract combinator has been
defined. So far, this method has worked well enough for us, but we may also eventually
investigate separating the stronger relation definition from the contract combinators and
allowing programmers to extend it.

For between/c contracts, our system treats the one that accepts the same or fewer
numbers to be the stronger contract. One contract on a struct is stronger than another
if the contracts on the fields of the first are stronger than the contracts on the fields
of the second. Comparing function contracts uses the usual contra-variant ordering.
To date, simple structural equality of contracts, combined with the bounds checking
of between/c has been sufficient for all of the data structure invariants we have en-
countered (including all those in Okasaki’s book [16] and in Cormen, Leiserson and
Rivest [4]).

To exploit our new relation on contracts, we simply avoid adding a new contract if
the contract already on the data structure is stronger than or equal to the new contract.
Note that we do not need to consider blame here; indeed, if two contracts surround a
single data structure, the inner contract is always checked before the outer one, since the
inner contract was placed on the object first. If the contract already on the data structure
is stronger than the new contract, it does not matter who might be blamed if the new
contract were to be violated; the existing contract guarantees it never fails.

Once we avoid adding redundant contracts, calling insert as above (or even arbi-
trarily many more times) would result in the wrappers shown in Figure 4 (b). That is,
each sub-tree would only have a single wrapper, no matter how many times insert is
called.

4 Implementation and an Optimization
In our implementation, each contract is represented as a struct that has at least one field.
That field contains a reference to a group of functions specific to that kind of contract
that interpret the values in the other fields. The representation is similar to the way
objects are represented in class-based object-oriented languages: the record of functions
is like the vtable of methods and is shared among every contract of a particular kind. As
an example, Figure 5 (a) shows a box-and-line diagram for the result of (between/c
−4 5) and (between/c 0 9). Each points to the same record of functions and has
two numbers indicating the range it accepts.

186

between-contract -4 5

ctc

procs

between-contract 0 9

node-contract

ctc

procs
between-contract -4 5

dependent

proc

dependent

proc

ctc

procs

(a) Two between contracts (b) A node contract

Fig. 5. Contract layouts

A contract on a struct also has a shared record of contract procedures, but it has one
additional field per struct field. Each of those fields is either a contract that the contents
of the field must satisfy directly, or it is a function that accepts the values in the other
fields and returns such a contract. As an example, the contract

(node/dc [n (between/c −4 5)]
[left (n) (bounded-bst −4 n)]
[right (n) (bounded-bst n 5)])

is shown in Figure 5 (b). The first field is the record of functions. Since the contract on
the n field does not depend on other contracts, the second field of the contract record is
the between/c contract. But, the left and right fields depend on the value of the n
field, so they are functions that consume the n field’s value and produce contracts.

Each contract’s record of functions includes three functions. The first accepts the
contract record and a value and enforces the contract. The second accepts two con-
tracts and returns a boolean indicating whether the first is stronger than the second or
not. This function inspects the structure of the contracts and behaves essentially as de-
scribed in Section 3, except for dependent contracts when the fields are functions, as in
Figure 5 (b). In that case, it inspects the closure, comparing the code pointer and the
pointers to the elements of the closure (but does not recursively traverse the closure).
Since this comparison may fail when standard compiler optimizations are performed,
our implementation communicates with the compiler, telling it not to optimize these
particular closures. Finally, the third function in the contract accepts a contract record
and builds a name for the function to be used in error reporting.

Of course, to support lazy structure contracts, we must not examine the struct’s
fields right away. Accordingly, the checking function for structs merely verifies that the
struct’s type matches, and then pairs the contract with the struct. Later, when a selector
is applied to the struct, the contract is checked. Figure 6 contains a series of box and
pointer diagrams that illustrate this process. The first diagram shows an example binary
search tree, where the nulls representing the empty tree are written mt to clarify the
figure.

187

node 5

node 3 mt mt node 7 mt mt

node-wrap

pos

neg

node 5 bst(-inf.0,+inf.0)

node 3 mt mt node 7 mt mt

(a) Original tree (b) Contract first added

node 5

node 3 mt mt node 7 mt mt

node-wrap #f

5

node-wrap

pos

neg

node-wrap

pos

neg

bst(-inf.0,5) bst(5,+inf.0)

node-wrap #f

5

node-wrap #f

3

mt

mt
node-wrap #f

7

mt

mt

(c) One layer explored (d) Tree entirely explored

Fig. 6. Evolution of objects during contract checking

Figure 6 (b) shows the tree paired with a between contract in a node-wrap struct. The
node-wrap struct that holds the pair has a number of extra fields. The first field refers to
the original object, but is also used as flag to indicate if the top row or the bottom row of
fields are active. In the case shown, since that first field contains a reference to a struct,
the top fields are active. Those fields contain a pointer to the contract, and two names
that indicate who is to blame for contract violations. The first name indicates who is to
be blamed if this contract fails to hold. The second name is only used to support contract
checking of functions that may appear inside this structure. It indicates the name of the
party responsible for inputs to those functions (as described by Findler & Blume [8]
and Findler & Felleisen [9] in their work on higher order function contract checking).

The other fields are used to implement the removal of the boxes described in Sec-
tion 3. In particular, once the contract has been checked we know that it will continue
to hold for all time, because the data structure is immutable. Accordingly, we place the
contracted versions of the fields of the original struct into the bottom row of the node-
wrap, to avoid recomputing them. When that happens, we also change the first field to
#f in order to indicate that the bottom row is active.

Figure 6 (c) shows the same tree, but after a selector has been applied to the struct
with the contract, causing the contracts on the fields to be checked. The top node-wrap
struct in this diagram is the same node-wrap struct in the top of diagram (b), but now
the lower fields are active. The second field (in the bottom row) in that structure is 5,
the contracted version of the first field in the original struct. The final two fields are

188

the contracted versions of the left and right sub-trees. The left sub-tree now has the
contract (bounded-bst −∞ 5), so it is a node-wrap struct whose first field is not
#f. This node-wrap’s top row is active, since its contract has not yet been checked.
Similarly, the right sub-tree now has the unchecked (bounded-bst 5 +∞) contract.
Finally, the fourth diagram shows the tree after all of the contracts have been checked.
At this point, the tree is very similar to the original tree.

Of course, since the top row and the bottom row are never simultaneously active for
any given node-wrap struct, our implementation only has a single set of fields and uses
the second field to indicate how to interpret the remaining fields.

After some experimentation with our implementation, we discovered that a signifi-
cant amount of time is spent in redundant allocation. In particular, the implementation
allocates a record for each contract combinator. This becomes expensive when com-
bined with dependent contract checking, since the allocation of the contracts themselves
happens during the traversal of the data structure. To compensate, we built an optimiza-
tion for lazy contracts that folds nested contracts together, in order to cut down on the
allocation.

5 Performance
This section presents the results of three experiments we performed on our implementa-
tion. Although performing three experiments is not conclusive, the experiments do pro-
vide some validation of our contract checker. The first experiment merely validates the
claims from Section 2 by showing that eagerly checking the contracts can be arbitrarily
slower than lazily checking them. The second experiment is designed to measure the
cost of laziness, in the case when laziness is superfluous. The third demonstrates how
our lazy contract checker behaves for more realistic applications and provides empiri-
cal evidence that it does indeed preserve the asymptotic complexity of the underlying
operations.

We ran all of our experiments using MzScheme [11] v370.2 on a dual core 1.66
GHz Mac mini with 2 gigabytes of memory (although each test ran sequentially and
only a test that disabled the stronger check allocated a significant amount of memory,
discussed in Section 5.3).

5.1 The Cost of Eagerness

As we discussed earlier in this paper, the cost of eagerly checking data structure con-
tracts can be arbitrarily bad. To verify this claim, we ran a simple test with our imple-
mentation. We built a toy program that constructs increasingly larger complete binary
trees, numbers them via an inorder traversal (to satisfy the binary search tree invariant),
and then measure the time it takes to search for each number.

We added the contracts from Figure 2 and our lazy contracts to the find-bst func-
tion and timed the calls to the two versions of find-bst. Figure 7 shows the results.
The x-axis ranges over the number of elements in the binary search trees, and the y-axis
shows the slowdown as the ratio of the time required to call find-bst with the the ea-
ger contracts to the time required to call find-bst with the lazy contracts. Each point
on the graph represents a single run of each program. Even at the relatively modest size
of a 10,000 element binary search tree, eager checking incurs an overhead of more than

189

The Cost of Eagerness The Cost of Laziness

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fa
ct

or
 s

lo
w

er

Size of binary search tree

time for eager checking divided by time for lazy checking

no
ne

ea
ge

r
la

zy op
t

op
t,

no
 s

tr
on

ge
r

la
zy

, n
o

st
ro

ng
er

0

5

10

15

20

25

Fig. 7. Synthetic benchmark results

200 times that of lazy checking. More worryingly, however, is the shape of the graph;
as the size of the binary search tree increases, so does the slowdown.

5.2 The Cost of Laziness

To measure the cost of laziness, we wrote a program that constructs a list of the num-
bers from 1 to 100,000. We did not use MzScheme’s built-in cons function, since our
contracts only support user-defined structs. Instead, we made a two field struct and used
that for the pairs in the list. Once the list is built, the program applies different imple-
mentations of a contract that specifies that the list is sorted in ascending order, and then
iterates over the list. Since the function always iterates over the entire list, delaying the
contract does not improve the running time. Accordingly, this test helps us understand
the cost of our implementation’s bookkeeping. The right-hand side of Figure 7 shows
those measurements. The height of each bar in the figure is the ratio of the performance
of a particular contract to the performance of the code without any contracts.

The first four bars show the slowdown of the running time as compared to the ver-
sion without contracts. The first bar (none) just give a sense of scale; the slowdown
for the version without contracts as compared to itself is 1. The second bar (eager)
shows the slowdown for the eager contract that iterates down the entire list during the
pre-condition checking, the third for the lazy contracts (lazy) and the fourth for lazy
contracts with our optimization (opt). Each bar corresponds to the average result of five
runs. We see that the cost of the lazy contract bookkeeping is about a factor of 24 for
this program, compared to a factor of 1.2 for the eager contract. Our optimization brings
this down to a more reasonable factor of 2.8.

For a final experiment to measure the cost of laziness, we also set out to determine
the cost of evaluating the stronger relation. For the program in this section, we know
that no contract is ever going to be applied twice to the same object, so the stronger

190

el
ep

ha
nt

el
ep

ha
nt

 b
ig

bi
rd

ko
al

a

0

2

4

6

8

10

Sl
ow

do
w

n
fo

r
op

t
co

nt
ra

ct
s

on
 B

in
om

ia
l H

ea
ps

el
ep

ha
nt

el
ep

ha
nt

 b
ig

bi
rd

ko
al

a

0

2

4

6

8

10

Sl
ow

do
w

n
fo

r
op

t
co

nt
ra

ct
s

on
 B

ST
s

el
ep

ha
nt

el
ep

ha
nt

 b
ig

bi
rd

ko
al

a

0

5000

10000

15000

Sl
ow

do
w

n
fo

r
ea

ge
r

co
nt

ra
ct

s
on

 B
ST

s

(a) (b) (c)

Fig. 8. Binomial heap and binary search tree experiments

relation has no positive effect on the running time. So, we disabled the code that does
that check and re-ran the tests. The results are shown as the final two bars in Figure 7.
They show that the stronger check does not have a significant cost, when compared to
the cost of the contract checking itself.

5.3 A Realistic Benchmark

For this experiment, we extracted traces of calls to a heap data structure from a col-
league’s vision algorithm [6]. We used four traces that are named after the images we
used when extracting each trace: elephant, elephant-big, bird, and koala. The traces vary
in size: elephant has roughly 22,000 inserts and 5,700 remove mins, whereas koala has
more than 300,000 inserts and nearly 150,000 remove mins. We then coded up a bino-
mial heap, as described in Okasaki’s book [16] and ran the traces with three variations
of the contracts on the heap operations: no contracts, optimized lazy contracts, and ea-
ger contracts. Accordingly, these results represent the times for only the data structure
operations, not the original program that used the heap.

Figure 8 (a) shows the slowdown for running the optimized lazy contract checking;
note that this chart’s scale is not the same as that in Figure 7. As you can see, even
though the traces vary in size, the overhead is relatively constant, encouraging us to
believe that our contract checker only adds a constant overhead.

We also synthesized traces for binary search trees from the heap traces. We replaced
each heap insertion with a naive binary search tree insertion and replaced each extract
minimum with a lookup of a random element in the tree. Figure 8 (b) shows the slow-
down for those when using the optimized contract checker and, as before, the overheads
are relatively constant.

Figure 8 (c) shows the slowdown for using the eagerly checked contracts. These
runs take a long time — running the koala trace requires about four days of cpu time, for
example. There are two important features of this chart. First, the scale is significantly
different from that of the first two charts. The overheads are at least 2,000 and can be as

191

bad as 20,000. Second, the overheads vary considerably between traces, demonstrating
that the eager checking does not preserve the asymptotic complexity of the program.

Finally, we performed one more experiment. We disabled the stronger check and
then re-ran program. Partway through the smallest trace, MzScheme had 1.5 gigabytes
of resident storage (according to top) and then the machine proceeded to swap, making
very little additional progress. This behavior indicates that a well-designed stronger
relation is a crucial part of making the implementation practical.

6 Preserving Amortized Complexity
Implicit in the strategy of our lazy contract checker is a limitation its expressiveness. In
particular, the contract for the unexplored portion of the data structure must be express-
ible using only information in the explored portion of the data structure. For example,
we cannot express a contract that says that a binary tree is full using only the contracts
described so far. Indeed, our strategy is based on exploiting this limitation to preserve
the asymptotic complexity.

In order to gain additional expressiveness, we allow programmers to write contracts
that only preserve the asymptotic complexity in an amortized sense. This weakening al-
lows the contract system to propagate information back up the tree and gives us enough
expressiveness to be able to support the full binary tree contract. Roughly, when the
program inspects a particular path from the root of a tree to a leaf, we propagate the
height along that path back to the root, allowing the contract system to signal an er-
ror when two different heights are encountered. In the jargon of attribute grammars,
this gives our contracts the power of synthesized attributes (inherited attributes were
all they could use without this extension). For details of this extension, see the MzLib
manual [21], specifically the details of where clauses.

7 Related work
The idea of software contracts dates back to the 1970s [17]. In the 1980s, Meyer de-
veloped an entire philosophy of software design based on contracts, embodied in his
object-oriented programming language Eiffel [14]. Nowadays, contracts are available
in one form or another for many programming languages (e.g., C [22], C++ [19],
Haskell [12], Java [13], Perl [3], Python [18], Scheme [20], and Smalltalk [1]).

Although the authors did make the connection until much of this work had been
done, this work is a direct intellectual descendent of Okasaki’s dissertation [15], where
Okasaki demonstrates that a controlled amount of laziness, in an otherwise strict lan-
guage, makes achieving desired asymptotic bounds tractable. We cannot, however, use
Okasaki’s $ operator directly, since we need fine grained control over the laziness to
exploit the stronger relation.

From a contracts perspective, our work is anticipated by Chitil, McNeill, and Runci-
man’s Lazy Assertions [2]. They observe that eagerly checking assertions in a lazy set-
ting can introduce non-termination where none should rightly be. In particular, a strict
assertion on an infinite list should not explore the entire list unless the program itself
explores the entire list. Our work is motivated by a similar concern, but in a strict set-
ting, but we believe some of the ideas here (like the stronger relation and possibly the
ideas in Section 6) carry back to thier setting.

192

Hinze, Jeuring, and Löh’s contract checker [12] is also a contract checker for Haskell
(that correctly handles blame), but their checker explores parts of the data structure that
the program does not. For example, the is(sort) example contract in Section 6 of their
paper explores the entire list; a similar contract in our system would not.

Beyond that, there is little other work on checking data structure contracts, except
when using naive strategies. Eiffel, the language most focused on contract checking,
provides no native support for lazy contract checking. Tremblay and Cheston [23] wrote
an algorithms and data structures textbook using Eiffel, but the contracts in their text ei-
ther only partially check the data structure invariants or check them as the data structure
is constructed.

8 What Have We Gained?
In some sense, this work puts data structure contract checking on an even footing with
function-based contract checking. Specifically, when checking a contract on a function,
violations can go undetected if the function is never called with an input that would
trigger an error. Similarly, consider this (supposed) binary search tree:

(make-node 5 (make-node 7 #f #f) (make-node 207 #f #f))

If find-bst is called with that tree and with, say, 6, the contract checker will not dis-
cover the violation. Even worse, if it is called with 7, find-bst with indicate that 7 is
not in the binary search tree, and the contract checker will still fail to detect the viola-
tion. Of course, similar behavior can happen with functions (in fact, this binary search
tree could be encoded as a function to achieve precisely the same behavior) and yet
function contracts enjoy wide-spread use.

We believe that our data structure contracts have the potential to enjoy similar wide-
spread use, for two reasons. First, it is rare for a data structure to be built that will not
eventually be completely explored in a long-running application. Even though the two
calls to find-bst above do not detect the violation, it seems likely that some later call
to find-bst will ask for a number smaller than 5, resulting in a contract violation.

Second, our checker makes checking data structure contracts feasible. As discussed
in Section 5.3, using either the naive strategy of eagerly checking the contracts, or even
avoiding the stronger check makes checking the contracts infeasible, for at least one
realistic program. Intuitively, we expect the naive strategy to fail in general, simply
because the change to the asymptotic complexity incurred by the naive checker is a
tremendous expense.

Fundamentally, the question we ask is how much contract checking can we expect
a program to be able to afford? Our contract checker represents one answer to this
question that does not take into account any a priori knowledge about the program’s
behavior; it provides a maximal amount of contract checking that we can reasonably
expect the program to be able to afford, namely a constant factor.

Acknowledgements. Thanks to Ryan Culpepper and Matthew Flatt for PLT Scheme
infrastructure support and to Matthew for comments on drafts of the paper. Thanks to
Pedro Felzenszwalb for supplying us with the heap traces we use in our experiments.
Also, thanks to Matthias Felleisen and Jacob Matthews for several enlightening discus-
sions and comments on this paper. This work is supported in part by the NSF.

193

References
1. Carrillo-Castellon, M., J. Garcia-Molina, E. Pimentel and I. Repiso. Design by contract in

Smalltalk. Journal of Object-Oriented Programming, 7(9):23–28, 1996.
2. Chitil, O., D. McNeill and C. Runciman. Lazy assertions. In Trinder, P., G. Michaelson and

R. Pena, editors, Implementation of Functional Languages: 15th International Workshop,
IFL 2003, LNCS 3145. Springer, November 2004.

3. Conway, D. and C. G. Goebel. Class::Contract – design-by-contract OO in Perl. http:
//search.cpan.org/∼ggoebel/Class-Contract-1.14/.

4. Cormen, T. H., C. E. Leiserson and R. L. Rivest. Introduction to Algorithms. MIT Press,
1990.

5. Felleisen, M., R. B. Findler, M. Flatt and S. Krishnamurthi. How to Design Programs. MIT
Press, 2001. http://www.htdp.org/.

6. Felzenszwalb, P. and D. McAllester. A min-cover approach for finding salient curves. In
IEEE Workshop on Perceptual Organization in Computer Vision, 2006. http://people.
cs.uchicago.edu/∼pff/papers/.

7. Findler, Barzilay, Blume, Codik, Felleisen, Flatt, Huang, Matthews, McCarthy, Scott, Press,
Rainey, Reppy, Riehl, Spiro, Tucker and Wick. The eighth annual ICFP programming con-
test. http://icfpc.plt-scheme.org/.

8. Findler, R. B. and M. Blume. Contracts as pairs of projections. In International Symposium
on Functional and Logic Programming, 2006.

9. Findler, R. B. and M. Felleisen. Contracts for higher-order functions. In Proceedings of
ACM SIGPLAN International Conference on Functional Programming, 2002.

10. Flanagan, C., A. Sabry, B. Duba and M. Felleisen. The essence of compiling with contin-
uations. In Proceedings of ACM SIGPLAN Conference on Programming Language Design
and Implementation, 1993.

11. Flatt, M. PLT MzScheme: Language manual. Technical Report PLT-TR05-1-v300, PLT
Scheme Inc., 2005. http://www.plt-scheme.org/techreports/.

12. Hinze, R., J. Jeuring and A. Löh. Typed contracts for functional programming. In Interna-
tional Symposium on Functional and Logic Programming, 2006.

13. Karaorman, M., U. Hölzle and J. Bruno. jContractor: A reflective Java library to support
design by contract. In Proceedings of Meta-Level Architectures and Reflection, volume 1616
of lncs, July 1999.

14. Meyer, B. Eiffel: The Language. Prentice Hall, 1992.
15. Okasaki, C. Purely Functional Data Structures. PhD thesis, Carnegie Mellon University,

September 1996. Technical Report CMU-CS-96-177.
16. Okasaki, C. Purely Functional Data Structures. Cambridge University Press, 1999.
17. Parnas, D. L. A technique for software module specification with examples. Communications

of the ACM, 15(5):330–336, May 1972.
18. Plösch, R. Design by contract for Python. In IEEE Proceedings of the Joint Asia Pacific

Software Engineering Conference, 1997. http://citeseer.nj.nec.com/257710.html.
19. Plösch, R. and J. Pichler. Contracts: From analysis to C++ implementation. In Technology

of Object-Oriented Languages and Systems, pages 248–257, 1999.
20. PLT. PLT MzLib: Libraries manual. Technical Report PLT-TR05-4-v300, PLT Scheme Inc.,

2005. http://www.plt-scheme.org/techreports/.
21. PLT. PLT MzLib: Libraries manual. Technical Report PLT-TR2006-4-v352, PLT Scheme

Inc., 2006. http://www.plt-scheme.org/techreports/.
22. Rosenblum, D. S. A practical approach to programming with assertions. IEEE Transactions

on Software Engineering, 21(1):19–31, Janurary 1995.
23. Tremblay, J.-P. and G. A. Chesterton. Data Structures and Software Development in an

Object-Oriented Domain: Eiffel Edition. Prentice Hall, 2001.

194

Haskell – Join – Rules

Martin Sulzmann and Edmund S. L. Lam

School of Computing, National University of Singapore
S16 Level 5, 3 Science Drive 2, Singapore 117543

{sulzmann,lamsoonl}@comp.nus.edu.sg

Abstract. We report some preliminary results on integrating Constraint
Handling Rules (CHR) into Haskell to support concurrent programming.
CHR is a concurrent committed-choice constraint logic programming
language to describe transformations (rewritings) among multi-sets of
constraints (atomic formulae). The CHR model is related to the join cal-
culus which also supports a form of multi-set rewriting. CHR additionally
support guards and propagation rules whereas the join calculus supports
besides asynchronous also synchronized method calls. We integrate all
those features in an extension of Haskell, referred to as HaskellJoinRules.
We compare HaskellJoinRules against programming languages based on
the join calculus such as JoCaml and Polyphonic C# and demonstrate
that HaskellJoinRules offers some highly useful concurrent programming
patterns. We have built a prototype which can be used in combination
with the Glasgow Haskell Compiler.

1 Introduction

There are numerous calculi and programming languages to support concurrent
programming. A particular fruitful model appears to be the join calculus [4]
which provides the basis for the concurrency abstractions found in JoCaml [11]
and Polyphonic C# [2]. Here is a simple example in Polyphonic C#

public class Buffer {
public async Put(string s);
public string Get() & Put(string s) { return s; }

}

We implement a (communication) buffer via a join pattern (also known as syn-
chronization pattern or chord) which declares a synchronous method Get(). The
body of the join pattern will return s if both the Get() and Put(s) methods
have been called. Method Put(s) is asynchronous, that is, the method call will
not block and immediately returns to the caller. On the other hand, a call to
Get() will block and only returns to the caller if we find a partner Put(s).

The advantage of join patterns is that they provide for a more declarative
and higher-level model of concurrency compared to the traditional model based
on threads and locks. Interestingly, a similar model of concurrency has been
developed independently in the context of logic and constraint programming.

Constraint Handling Rules (CHR) [5, 6] is a concurrent committed-choice
constraint logic programming language to exhaustively transform (rewrite) multi-
sets of (asynchronous) constraints into simpler ones. In CHR, we can write the

195

above join pattern as follows.

Get(x),Put(y) ⇐⇒ x = y

For example, the above CHR will rewrite {Get(x),Put(1)} to {x = 1}. Initially,
CHR were developed to specify incremental constraint solvers, CHR are now
used in a multitude of other applications such as planning etc [7]. In our own
work we have made extensive use of CHR to specify type inference systems[18,
17].

In this paper, we report some preliminary results on employing CHR for the
coordination of concurrent computations where the underlying computations
are carried out in Haskell [14]. From the join calculus, we adopt the concept of
synchronized method calls. We refer to the resulting system as HaskellJoinRules.
We choose Haskell as our host language because Haskell is well-suited to develop
domain-specific language extensions. Furthermore, we can easily take advantage
of our concurrent implementation of CHR in Haskell which we have built using
the Glasgow Haskell Compiler (GHC) [8].

Here is a recast of the above Polyphonic C# example in HaskellJoinRules:

Chord Get(x) & Put(y) = x ‘is‘ y

We introduce chords where the left-hand effectively corresponds to the left-hand
side of a CHR. The right-hand side, which will be executed if we find a match
of the left-hand, yields a join computation. The interfaces are

Get :: Chan a -> UCons

Put :: Chan a -> UCons

is :: Chan a -> Chan a -> Join ()

Constraint symbols are treated like (data) constructors and their arguments
are channels. The join computation x ‘is‘ y instantiates x by the value of y.
This computation is only successful if x has not yet been instantiated. It is
straightforward to compile chords to CHR rules.

To trigger the above chord, we provide interfaces to manipulate the CHR
store (i.e. multi-set of CHR constraints).

chan :: a -> Chan a -- Lift value into channel.

newChan :: Join (Chan a) -- Create a new empty channel.

addToCHR :: UCons -> Join ConsId -- Add Constraint to store.

waitUntilDeleted :: ConsId -> Join () -- Wait until constraint deleted.

chan simply lifts a value into a channel type, newChan creates a new chan-
nel. addToCHR adds a constraint to the CHR store and returns a constraint id.
waitUntilDeleted checks whether the constraint has been removed from the
store and will block otherwise.

Thus, we can implement a asynchronous put operation and synchronous get
operation.

get :: Join a put :: a -> Join ()

get = do { x <- newChan put x = do { addToCHR (Put(chan x))

; cid <- addToCHR (Get(x)) ; return () }

; waitUntilDeleted cid }

196

Notice how we turn method calls into constraints.
Join style patterns in the context of Haskell have been explored earlier [16].

To the best of our knowledge, we are the first to introduce the idea of compiling
join patterns into CHR. Most importantly, CHR has additional features such as
guards (Section 3.2) and propagation (Section 3.3) which add functionality and
programming patterns not available in standard join pattern implementations.

In summary, we make the following contributions:

– We review CHR and draw a comparison to the join calculus (Section 2).

– We consider a series of examples to demonstrate HaskellJoinRules. We show
how CHR features (guards and propagation) add useful functionalities to
join patterns. We also draw comparisons to JoCaml and Polyphonic C#
(Section 3).

– We give an overview of the current implementation (Section 4).

We conclude in Section 5 where we also discuss some related work. We assume
that the reader is familiar with Haskell and has a basic understanding of the join
calculus.

2 Constraint Handling Rules

We first review the basics of CHR and then draw a comparison to the join
calculus.

2.1 Syntax and Semantics

A CHR simpagation rule r is of the form

r @ H1\H2 ⇐⇒ g | C

where rule heads H1 and H2 consist of CHR constraints, the guard g is a built-in
constraint from some built-in theory CT (for example Herbrand) and the rule
body C consists of CHR and built-in constraints. In case H2 is empty we call the
CHR a propagation rule and in case H1 is empty we call the CHR a simplification

rule. The idea is that H1 will be removed from the store and replaced by C

whereas H2 will be propagated. That is, remains in the store.
A set of CHR operates on a constraint store by exhaustively applying each

CHR until no further CHR is applicable. A constraint store is a multi-set of CHR
and built-in constraints. To distinguish between CHR and built-in constraints,
we denote the store as the pair 〈S,B〉, abbreviated by Str , where S are the
CHR constraints and B the built-in constraints. We write] to denote multi-set
union and ∧ to denote conjunction among built-in constraints. Depending on
the context we treat substitutions θ, φ as conjunctions of equations.

We can apply the above CHR on a store 〈S,B〉 if we find matching copies
H ′

1
and H ′

2
in S, that is, S ≡ S′]H ′

1
]H ′

2
, such that φ(H1) ≡ H ′

1
, φ(H2) ≡ H ′

2

and CT |= B ⊃ φ(g) for some substitution φ. We assume that variables in the
CHR are fresh. We write ≡ to denote syntactic equivalence and ⊃ to denote

197

Communication channel:

get @ Get(x),Put(y) ⇐⇒ x = y

〈{Get(m),Put(1)}, true〉 ½get 〈∅,m = 1 〉 ‖ 〈{Get(n),Put(8)}, true〉 ½get 〈∅,n = 8 〉

〈{Get(m),Put(1),Get(n),Put(8)}, true〉 ½
∗ 〈∅,m = 1 ∧ n = 8 〉

Greatest common divisor:

gcd1 @ Gcd(0) ⇐⇒ true
gcd2 @ Gcd(n)\Gcd(m) ⇐⇒ m >= n&&n > 0 | Gcd(m − n)

{Gcd(3),Gcd(9)} ½gcd2 {Gcd(3),Gcd(6)}

½gcd2 {Gcd(3),Gcd(3)} ½gcd2 {Gcd(3),Gcd(0)}

½gcd1 {Gcd(3)}

‖ {Gcd(4),Gcd(8)} ½
∗ {Gcd(4)}

{Gcd(3),Gcd(9),Gcd(4),Gcd(8)} ½ ... ½ {Gcd(3),Gcd(4)} ½
∗ {Gcd(1)}

Fig. 1. CHR Examples

Boolean implication. Then, we can transform S to S′] H ′

1
] φ(C ′), where C ′

is the set of all CHR constraints in C, and B to B ∧ φ ∧ C ′′ where C ′′ are all
the built-in constraints in C. We refer to this as a CHR derivation step, written
〈S,B〉 ½r 〈S′] H ′

1
] φ(C ′), B ∧ φ ∧ C ′′〉. Notice that H ′

2
is simplified by the

instantiated rule body φ(C ′) whereas H ′

1
is propagated, that is, remains in the

resulting constraint store. Notice that in contrast to Prolog we never instantiate
variables in the store to fire a CHR.

Let P be a finite set of CHR. Then, we write Str →∗

P Str ′ for the exhaustive
application of P on some initial store Str yielding in a finite number of CHR
derivation steps the final store Str ′. We often drop P and r and write Str ½ Str ′

and Str ½
∗ Str ′ as shorthand for Str ½r Str ′ and Str ½

∗

P Str ′ if its clear which
CHRs are involved in the derivation step.

Figure 1 contains two examples. The first CHR program represents the com-
munication channel which we have seen earlier. The Get(x) constraint represents
the action of writing a value from the communication channel into the variable x,
while the Put(y) constraint represents the action of putting the value y into the
channel. In contrast to the standard CHR syntax which follows Prolog syntax,
we follow Haskell syntax where variables start with a lower-case letter. CHR sat-
isfy a monotonicity property. Hence, the two sample derivations can be executed
concurrently, indicated by the symbol ‖, and we can straightforwardly combine
both derivations as long as they do not interfere.

The second CHR program computes the greatest common divisor among a
set of numbers. For illustration purposes, we write out some of the intermediate
steps for the left derivation. We also simplify the store because there are no
built-in constraints for this example.

2.2 Comparing CHR and Join Calculus

In CHR, conjunction of constraints can be regarded as interacting collections of
multiple asynchronous agents or processes. That is, a CHR constraint will never

198

data UCons -- User CHR Constraint

data ConsId -- Constraint Identifier

addToCHR :: UCons -> Join ConsId -- Add a constraint to CHR solver

waitUntilDeleted :: ConsId -> Join () -- Block until constraint is deleted

data Chan a -- Communication Channel

newChan :: Join (Chan a) -- Create a new empty channel

chan :: a -> Chan a -- ’Lift’ an item into a channel

readChan :: Chan a -> Join a -- Read and block until channel is full

is :: Chan a -> Chan a -> Join () -- Assign a value to a channel, block if

-- source is empty.

async :: UCons -> Join () -- an asynchronous call

async uc = do { addToCHR uc

; return () } -- just proceed

sync :: UCons -> Join () -- a synchronous call

sync uc = do { cid <- addToCHR uc

; waitUntilDeleted cid } -- block until cid is deleted

Fig. 2. HaskellJoinRules Interfaces

block whereas a synchronized method call in Polyphonic C# such as Get() will
block if there is no partner Put(s).

In Join, a join pattern effectively resembles a CHR simplification rule. Ad-
ditionally, CHR may have guard and propagation heads. For example, see the
above CHR gcd2 .

We conclude that CHR and the join calculus have quite a bit in common
and can gain from each other. For instance, CHR can benefit from synchro-
nized constraints and the join calculus can benefit from guarded join patterns
which contain propagated parts. We integrate these concepts into an extension
of Haskell, referred to as HaskellJoinRules.

3 HaskellJoinRules

In this section, we give an informal overview of HaskellJoinRules and its main
features. Implementation details, such as how to compile HaskellJoinRules chords
to CHR and how to implement synchronized constraints efficiently are discussed
in the next section.

The main feature of HaskellJoinRules is the specification of chords such as
the one we saw earlier in the introduction.

Chord Get(x) & Put(y) = x ‘is‘ y

In general, a chord in HaskellJoinRules can be of the form

Chord P1 & ... & Pi \ S1 & ... & Sj | g = body

where each Pi refers to a propagated constraint and each Sj refers to a simplified
constraint. A n-ary constraint U comes with the interface

199

U :: (Chan a1,...,Chan an) -> UCons

The guard g must be of type Join Bool whereas the chord body must be of
type Join (). Like CHR, a chord fires if we find a match for the (chord) head
and the guard yields true. Then, we execute the body. Figure 2 summarizes the
HaskellJoinRules interfaces which allow the programmer to communicate with
the underlying CHR solver. Most are straight-forward except for the blocking
interfaces which we will discuss in detail in Section 4.2.

Next, we consider a series of examples to explore the various features of
HaskellJoinRules.

3.1 HaskellJoinRules Basics : Standard Buffer

Recall in Section 1 we introduce the buffer example in Polyphonic C# The buffer
example is implemented by the following chord and constraint interfaces:

Chord Get(x) & Put(y) = x ‘is‘ y

Get(x) :: Chan a -> UCons

Put(y) :: Chan a -> UCons

Yet the above definition does not specify what type of constraints (syn-
chronous or asynchronous) Get and Put are meant to be. We do this by defining
the get and put monadic operations (method calls) of the Join monad.

put :: a -> Join () get :: Join a

put y = async (Put(chan y)) get = do { x <- newChan

; sync (Get(x))

; readChan x }

The put operation is meant to be asynchronous, hence it simply involves in-
troducing a Put constraint into the CHR solver. The synchronous get operation
is more complex: a Get constraint is introduced and the operation blocks until it
is removed from the constraint store. A local channel is also created to observe
the results of the Get constraint.

It may seem strange that we define our method calls separately from chords.
In section 3.4 we shall illustrate the advantages of having the flexibility of such
explicit synchronization.

3.2 Exploiting Guards: Conditional Buffer

In this section, we highlight a simple example which exploits guard conditions.
The conditional buffer example is an extension of the buffer example: condGet
method calls consists of an addition higher order filter Join operation so we can
select only items that passes this filter. The conditional buffer HaskellJoinRules
program is illustrated by the following:

Chord CondGet(f,x) & Put(y) | f y = x ‘is‘ y

CondGet :: (Chan (a -> Join Bool),Chan a) -> UCons

200

condGet :: (a -> Join Bool) -> Join ()

condGet f = do { x <- newChan

; sync (CondGet(chan f,x))

; readChan x }

Note we omit details of the put asynchronous call, since it is the same as the
previous example. Guard conditions may seem to be a trivial extension, however
that is entirely not the case: activating the above chord involves a search for
matching pairs of CondGet(f,x) and Put(y) constraints. For instance, a call
to CondGet(prime,x) where prime filters away non-prime numbers, involves
searching through the collection of Put constraints for one with a prime number,
rather than simply dequeue the first.

In general this search procedure is an expensive task, but efficient optimiza-
tion techniques in the context of CHR have already been widely and still actively
studied. [10, 3, 15]. Execution of Standard join pattern (JoCaml and Polyphonic
C#) however does not include such a built-in search mechanism (call instances
are simply dequeued), hence the programmer is left on her/his own to explicitly
program such search mechanism. For instance, the prime integer instance of the
conditional buffer example can be implemented in polyphonic C#:

public class Buffer2 {

public async Put(int n);

public int PrimeGet() & Put(int n) {

if(IsPrime(n)) return n;

else { Put(n) ; PrimeGet(); }

}

}

We assume that IsPrime(n) is simple procedure that tests if n is a prime
number. Note that the ’search’ is implemented by replacing a Put asynchronous
call if it is not a prime number and calling PrimeGet again. This however is
terribly inefficient: If there are at least one Put call, but none with a prime
number argument, a call to PrimeGet blocks by executing a non-terminating
cycle of Put and PrimeGet calls until a prime integer is introduced.

3.3 Exploiting Propagation: Authorized Buffer

Propagation adds the convenience of defining chords with method calls that
act as ’catalysts’: These method calls are necessary for activating the chord
but are not consumed upon successful activation. The authorized buffer is an
extension of the buffer example in which get calls (in this case idGet) will only
be successful if they are called by authorized processes. The following highlights
a simple implementation of the authorized buffer:

Chord Authorize(id) \ IdGet(id,x) & Put(y) = x ‘is‘ y

Authorize :: Chan String -> UCons

IdGet :: (Chan String,Chan a) -> UCons

201

authorize :: String -> Join ()

authorize id = async (Authorize(chan id))

idGet :: String -> Join a

idGet id = do { x <- newChan

; sync (IdGet(chan id,x))

; readChan x }

Note that this chord contains a non-linear pattern (id appears in two loca-
tions), but we can always compile this into a guard (eg. id1==id2). Propagation
does not offer greater expressiveness, but it provides not only convenience, most
importantly it provides better a concurrency behavior. To illustrate this, we
consider an implementation of Authorized buffers in Polyphonic C#:

public int IdGet(string id1) & Put(int y) & Authorize(string id2) {

Authorize(id2);

if(id1==id2) return y;

else { Put(y); IdGet(id1); }

}

The Authorize(id2) asynchronous calls are consumed and reintroduced,
causing unnecessary writes into the shared memory and inevitably interleav-
ing all IdGet calls using the same Authorize call. With propagation however,
Authorize calls are never removed but simply checked for presence in the store,
hence multiple IdGet calls with the same id can share the same Authorize call.

3.4 Exploiting Customized Synchronization: N-way Synchronization

In this section, we demonstrate how we can customize synchronization protocols.
We consider the N-way synchronization problem. The following illustrates a naive
implementation of n-way in HaskellJoinRules which is meant for n less than 4.

-- n way for n < 4

Chord Accept(1) & Entry() = return ()

Chord Accept(2) & Entry() & Entry() = return ()

Chord Accept(3) & Entry() & Entry() & Entry() = return ()

Accept :: Chan Int -> UCons Entry :: UCons

accept :: Int -> Join () entry :: Join ()

accept n = sync (Accept(chan n)) entry = sync (Entry())

A synchronous call to accept n will block until n Entry calls are found, dur-
ing which all n+1 synchronous calls will unblock together. Consider the following
attempt to generalized n-way synchronization:

-- Liberal version for generalized n way

Chord Accept() & Entry() = return ()

Accept :: UCons Entry :: UCons

202

accept :: Int -> Join () entry :: Join ()

accept 0 = return () entry = async (Entry())

accept n = do { sync (Accept())

; accept (n-1) }

Note that this version of n-way synchronization does not work like the pre-
vious one. Each entry call is unblocked immediately once paired with a accept
call and does not need to wait for the other n-1 entry calls. Interestingly, this
is the more liberal interpretation of n-way synchronization adopted by [1]. For-
tunately, in HaskellJoinRules ’strict’ n-way synchronization is just a small step
away:

-- Generalized n way

Chord Accept(ch) & Entry(ch’) = ch’ is (chan ch)

Accept :: Chan () -> UCons

Entry :: Chan (Chan ()) -> UCons

accept :: Int -> Join ()

accept n = do { ch <- newChan -- create synchronization channel

; mapM (_ -> sync (Accept(ch))) [1..n]

; ch ‘is‘ () } -- n-way complete, let’s go!

entry :: Join ()

entry = do { ch’ <- newChan

; sync (Entry(ch’))

; ch <- readChan ch’ -- block and wait for Accept

; readChan ch } -- block and wait for n-way complete

This implements n-way synchronization by using a single channel to synchro-
nize with all n entry calls. This synchronizing channel is created by an accept
call and distributed to entry calls via the chord show above. Upon receiving this
synchronization channel, each entry call blocks until the n-way synchronization
is completed. accept completes the n-way after finding n entry calls, and writes
the synchronization channel with a dummy value. (unit ’()’ in this case).

Programmers are also free to define their own variants of synchronous con-
straints, for instance:

-- Append a given Channel as last argument of constraint

appendChan :: UCons -> Chan a -> UCons

mysync :: UCons -> Join a

mysync uc = do { x <- newChan

; addToCHR (appendChan uc [x])

; readChan x }

The mysync synchronous operation blocks until the last argument of a con-
straint is instantiated. This variant of synchronous calls is especially useful for
modeling concurrent programs like n-way synchronization.

203

3.5 Santa Claus Example

Originally highlighted in [19], the Santa claus problem is an interesting challenge
for concurrent programming. In this section, we briefly illustrate a solution in
HaskellJoinRules . The santa claus problem is summarized by the following:

Santa sleeps until wakened by either all of his nine reindeer, or by a group
of three of his ten elves. If awakened by the reindeer, he delivers toys with all
of them. If awakened by a group of elves, he consults with them on toy R&D.
At the end of either task, all helpers (elves or reindeer) are released from duties.
Santa should give priority to the reindeer in the case that there is both a group
of elves and a group of reindeer waiting.

We first define the chord and join operations that models the elf waiting
routine:

-- ElfWait CHR chord and synchronous call.

Chord ElfWait(ch1) & ElfWait(ch2) & ElfWait(ch3) = elfGroup [ch1,ch2,ch3]

ElfGroup :: Chan [Chan ()] -> UCons

ElfWait :: Chan () -> UCons

elfGroup :: [Chan ()] -> Join ()

elfGroup chs = async (ElfGroup(chan chs))

elfWait :: Join ()

elfWait = do { x <- newChan

; sync (ElfWait(x))

; readChan x }

This program essentially synchronizes 3 waiting elves and creates an elf
group by making a asynchronous call elfGroup. We do the same for the 9
reindeers, only difference is we assume the presence of a asynchronous call
NoReindeersGroup that will be removed once a reindeer group is successfully
formed.

-- ReindeerWait CHR chord and synchronous call.

Chord ReindeerWait(ch1) & ReindeerWait(ch2) & ReindeerWait(ch3) &

ReindeerWait(ch4) & ReindeerWait(ch5) & ReindeerWait(ch6) &

ReindeerWait(ch7) & ReindeerWait(ch8) & ReindeerWait(ch9) &

NoReindeerGroup() = reindeerGroup [ch1,ch2,ch3,ch4,ch5,ch6,ch7,ch8,ch9]

ReindeerGroup :: Chan [Chan ()] -> UCons

NoReindeerGroup :: UCons

ReindeerWait :: Chan () -> UCons

reindeerGroup :: [Chan ()] -> Join ()

reindeerGroup chs = async (ReindeerGroup(chan chs))

noReindeerGroup :: Join ()

noReindeerGroup = async (NoReindeerGroup())

reindeerWait :: Join ()

reindeerWait = do { x <- newChan

204

; sync (ReindeerWait(x))

; readChan x }

Next, we introduce a variant of n-way synchronization that provides 2 par-
titions of synchronization (RoomIn and RoomOut). This is what santa is going to
be using to control the movement of his helpers.

-- N-Way Synchronization

data Partition = RoomIn | RoomOut

Chord Accept(s,ch) & Entry(s,ch’) = ch’ ‘is‘ (chan ch)

Entry :: (Chan Partition,Chan (Chan ())) -> UCons

Accept :: (Chan Partition,Chan ()) -> UCons

entry :: Partition -> Join ()

entry s = do { ch’ <- newChan

; sync (Entry(chan s,ch’))

; ch <- readChan ch’

; readChan ch }

accept :: Partition -> Int -> Join ()

accept s n = do { x <- newChan

; mapM (_ -> sync (Accept(chan s,ch))) [1..n]

; ch ‘is‘ () }

Now we can implement santa by defining the chords which allows him to
synchronize with reindeer/elf groups:

-- SantaWait CHR chord and synchronous call.

Chord SantaWait(j) & ReindeerGroup(gch) = do { chs <- readChan gch

; mapM (\ch -> ch ‘is‘ ()) chs

; noReindeerGroup

; j ‘is‘ "Reindeer" }

Chord NoReindeerGroup() \ SantaWait(j)

& ElfGroup(gch) = do { chs <- readChan gch

; mapM (\ch -> ch ‘is‘ ()) chs

; j ‘is‘ "Elf" }

SantaWait :: Chan String -> UCons

santaWait :: Join String

santaWait = do { j <- newChan

; sync (SantaWait(j))

; readChan j }

We enforce priority by making elf group synchronization explicitly requiring
NoReindeerGroup as a catalyse. In section 4 we will discuss some issues of rule
priorities. Upon a successful synchronization with a group (reindeers or elves),
santa will ’wake’ each helper in the group via instantiating their synchronization
channels. The final piece of the puzzle is the top level routines of santa and his
helpers:

205

-- Top Level Santa / Helper Routines --

elfRoutine :: Join ()

elfRoutine = do { elfWait

; entry RoomIn

-- consult santa

; entry RoomOut }

reindeerRoutine :: Join ()

reindeerRoutine = do { reindeerWait

; entry RoomIn

-- deliver toys

; entry RoomOut }

santaRoutine :: Join ()

santaRoutine = do { grp <- santaWait

; case grp of

"Elf" -> do { accept RoomIn 3

-- consult elves

; accept RoomOut 3 }

"Reindeer" -> do { accept RoomIn 9

-- deliver toys

; accept RoomOut 9 }

}

We assume that each of these routines are repeated indefinitely by execution
threads, represent the 10 elves, 9 reindeers and santa himself. Elves and reindeers
simply run their respective wait operations and blocks until santa has choosen
them. They are re-synchronized again by the entry RoomIn and finally waits
until santa has released them (entry RoomOut). Santa, on the other hand, calls
his own waiting operation, which returns the type of his helper once synchro-
nization is successful. Depending on the helper type, he will usher in and on the
respective number of helpers via the accept operations, while intermediately
executing the required task.

4 Implementation Highlights

This section highlights some of the important aspects of the implementation of
HaskellJoinRules. The underlying CHR solver is our very own concurrent CHR
implementation [12] in Haskell with Software Transactional Memory [9].

4.1 Compiling and Executing HaskellJoinRules Chords

Recall the general form of HaskellJoinRules chords:

Chord P1 & ... & Pi \ S1 & ... & Sj | G = body

We use a straight forward scheme to compile the above into CHR rules. Basi-
cally, heads of the chord are mapped as CHR rule heads and guard condition of
the chord is the CHR rule guard. The chord body, which is a join computation
is compiled as a CHR body. This is a minor extension to the CHR semantics:

206

Rather than just a collection of constraints, rule bodies are actual join compu-
tations that are executed by the CHR solver upon triggering of the rule. Hence
we have the following CHR rule:

P1 , ... , Pi \ S1 , ... , Sj ⇐⇒ G | body

Compiling our chords into CHR rules is highly beneficial: we now have a well
established incremental search technique for activating HaskellJoinRules chords.
Hence, unique CHR features like propagation and guards are available to our
disposal. Since the body computation can potentially block as it may contain
synchronous join operations, a new execution thread which we shall refer to as
the surrogate thread, is spawned by the CHR solver to execute this computation.

In polyphonic C#, chord bodies are executed by the program thread that
executed the synchronous method of the chord, rather than using surrogate
threads. This means that the original thread will block if a sub-operation of
the chord body blocks. In HaskellJoinRules we provide the flexibility for the
programmer to decide what happens, for instance consider the following variant
of buffers:

Chord Get(x) & Put(y) = do { incGetCount -- increment ’Get’ count

-- do some other admin operations ...

; x ‘is‘ y }

Get :: Chan a -> UCons Put :: Chan a -> UCons

get :: Join a put :: a -> Join ()

get = do { x <- newChan put y = async (Put(chan y))

; sync (Get(x))

; readChan x }

The chord of this buffer variant contains a body that increments a global
counter and possibly do other adminstrative operation before executing x ‘is‘
y which unblocks the get call. Polyphonic C# we are force to write this buffer
variant similar to the above way, hence executing these admin operations before
unblocking the get call. In HaskellJoinRules however, we can redefine this chord
in a unique and intuitive way:

Chord Get(x) & Put(y) = do { x ‘is‘ y

; incGetCount

-- do some other admin operations ... }

The get and put operations remain the same while we change the chord
body to execute x ‘is‘ y first. This immediately unblocks the thread which
has called get while the surrogate thread executes the adminstrative operation.

4.2 Implementing Efficient Blocking Mechanism

In this section, we review the implementation of the blocking interfaces in fig-
ure 2. Similar to our concurrent CHR implementation, we use Haskell software

207

data TVar a -- Transactional Variable

newTVar :: STM (TVar a) -- Create a new TVar

readTVar :: TVar a -> STM a -- Read value of a TVar

writeTVar :: TVar a -> a -> STM () -- Write value into a TVar

retry :: STM () -- Block and retry STM operation

Fig. 3. STM Transactional Memory Interfaces

transactional memory concurrency primitives. Figure 3 shows the interfaces of
STM transactional memory.

A transactional variable (TVar) is a shared mutable memory location. It can
be created, read and written via newTVar, readTVar and writeTVar. The retry
operation is an explicit blocking procedure that can be called when certain user
defined conditions are not favorable for continued execution. For instance, the
following procedure blocks until the given boolean transactional variable contains
False

blockUntilFalse :: TVar Bool -> STM ()

blockUntilFalse bt = do { b <- readTVar bt

; if b then retry

else return () }

GHC’s implementation of the retry procedure ensures that the operation is
actually rescheduled only if certain transactional variables have been changed.
This gives us the means of implementing efficient blocking join pattern interfaces
almost for free. In the above case, blockUntilFalse is only ever rescheduled if
bt has been changed. The following reviews the implementation of the data types
ConsId and Chan seen earlier in Figure 2.

data ConsId = ConsId (TVar Bool) -- A Constraint identifier

data Chan a = Chan (TVar (Maybe a)) -- A Channel (constraint argument)

doSTM :: STM a -> Join a -- Do an STM computation from Join computation

waitUntilDeleted :: ConsId -> Join ()

waitUntilDeleted (ConsId b) = doSTM (blockUntilFalse b)

readChan :: Chan a -> Join a

readChan (Chan t) = doSTM (do { mb <- readTVar t

; case mb of

Just a -> return a -- Not empty, return

Nothing -> retry }) -- Empty, block

is :: Chan a -> Chan a -> Join ()

is c1 c2 = do { v2 <- readChan c2 -- Blocks if c2 is empty

; doSTM (writeTVar c1 (Just v2)) }

A constraint identifier is nothing more than a shared boolean flag uniquely as-
signed to each stored constraint while our CHR solver is programmed to set this
variable to False once the constraint is deleted. Thus, the waitUntilDeleted op-
eration simply waits until the flag has been set to False by running blockUntilFalse

208

on the flag. Channels (Chan) are also transactional variables, which can be empty
(containing Nothing) or contain some value v (Just v). readChan uses the same
STM retry trick, while is inherits the blocking condition from readChan.

4.3 Implementing Rule Priorities

Recall in Section3.5 we enforce rule priorities by explicitly modeling the absence
of reindeer groups (NoReindeerGroup). This essence of technique is illustrated
by the following:

Chord A() & A() & NoAPair = makeAPair -- Chord 1: Add an APair

Chord B() & B() = makeBPair -- Chord 2: Add a BPair

Chord APair & C() = do {..} -- Chord 3: High Priority

Chord NoAPair \ BPair & C() = do {..} -- Chord 4: Low Priority

Chords 1 and 2 simply creates A and B pairs. Note that we model the absence
of A pairs via NoAPair. Priority is enforced by specifying that chord 4 require
NoAPair to activate. However, this is a flawed solution: consider the program
state {NoAPair, A, A, B, B} we have no control over which chord (1 or 2)
is schedule first, thus it is possible for chord 2 to activate and be immediately
followed by chord 4, hence breaking the priority.

Fortunately, we can write a better solution in HaskellJoinRules. Recall that
chord guard conditions can be any boolean join computations (Join Bool). We
can rewrite the above program as:

notExists :: [UCons] -> Join Bool

Chord A() & A() & C() = do {..}

Chord B() & B() & C() | (notExists [A(),A()]) = do {..}

notExists is a join computation that explicitly check if the constraint store
contains a given set of constraints. With this primitive, we can specify the nega-
tion of chord heads in guard conditions of chords, hence modeling priority in a
more direct manner.

5 Conclusion

We have provided an overview of our proposed language extension to Haskell,
HaskellJoinRules. In HaskellJoinRules, CHRs are employed as join pattern style
concurrency coordination where underlying computations are executed in Haskell.
From join calculus, we adopt the concept of synchronized method calls.

There is lots of related work, some which we will briefly discuss below. Ex-
tending Haskell with join style patterns have been explored earlier in [16], which
introduces Join patterns to Haskell as a higher order combinator library. In [13],
an extension of JoCaml with pattern matching is introduced. This extension al-
lows ML style patterns in chord heads to be compiled into standard join patterns.
Yet, in HaskellJoinRules the marriage of rule based constraint programming and
process calculi has resulted in a concurrent abstraction with unique features:
Propagation (Section 3.2), user defined guards (Section 3.3) and customizable
synchronization patterns (Section 3.4).

209

References

1. N. Benton. Jingle bells: Solving the santa claus problem in polyphonic c#. Tech-
nical report, Microsoft Research, 2003.

2. N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for C#.
ACM Trans. Program. Lang. Syst., 26(5):769–804, 2004.

3. G. J. Duck. Compilation of Constraint Handling Rules. PhD thesis, The University
of Melbourne, 2005.

4. C. Fournet and G. Gonthier. The join calculus: A language for distributed mo-
bile programming. In Applied Semantics, International Summer School, APPSEM
2000, Caminha, Portugal, September 9-15, 2000, Advanced Lectures, pages 268–
332. Springer-Verlag, 2002.

5. T. Frühwirth. Constraint handling rules. In Constraint Programming: Basics and
Trends, LNCS. Springer-Verlag, 1995.

6. T. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming, 37(1-3):95–138,
1998.

7. T. Frühwirth. Constraint handling rules: the story so far. In Proc. of PPDP ’06,
pages 13–14. ACM Press, 2006.

8. Glasgow haskell compiler home page. http://www.haskell.org/ghc/.
9. T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable memory

transactions. In Proc. of PPoPP’05, pages 48–60. ACM Press, 2005.
10. C. Holzbaur, M. J. Garćıa de la Banda, P. J. Stuckey, and G. J. Duck. Optimizing

compilation of Constraint Handling Rules in HAL. TPLP, 5(4-5):503–531, 2005.
11. Jocaml. http://jocaml.inria.fr/.
12. E. S. L. Lam and M. Sulzmann. A concurrent Constraint Handling Rules imple-

mentation in Haskell with software transactional memory. In Proc. of ACM SIG-
PLAN Workshop on Declarative Aspects of Multicore Programming (DAMP’07),
pages 19–24, 2007.

13. Q. Ma and L. Maranget. Compiling pattern matching in join-patterns. In CON-
CUR, pages 417–431, 2004.

14. S. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2003.

15. T. Schrijvers. Analyses, optimizations and extensions of Constraint Handling
Rules: Ph.D. summary. In Proc. of ICLP’05, volume 3668 of LNCS, pages 435–436.
Springer-Verlag, 2005.

16. S. Singh. Higher-order combinators for join patterns using stm, 2006. Proc. of
TRANSACT’06: First ACM SIGPLAN Workshop on Languages, Compilers, and
Hardware Support for Transactional Computing.

17. P. J. Stuckey and M. Sulzmann. A theory of overloading. ACM Transactions on
Programming Languages and Systems (TOPLAS), 27(6):1–54, 2005.

18. M. Sulzmann, G. J. Duck, S. Peyton Jones, and P. J. Stuckey. Understanding func-
tional dependencies via constraint handling rules. J. Funct. Program., 17(1):83–
129, 2007.

19. J. A. Trono. A new exercise in concurrency. SIGCSE Bulletin, 26(3):8–10, 1994.

210

Splitting and Merging Program Refactorings

Christopher Brown1 and Simon Thompson2

1 University of Kent, Canterbury, Kent, UK.
cmb21@kent.ac.uk

2 University of Kent, Canterbury, Kent, UK.
S.J.Thompson@kent.ac.uk

Abstract. Program slicing is a well understood concept in the impera-
tive paradigm, but so far there has been little work on program slicing
in the context of functional languages. This paper describes a program
slicing technique for Haskell that takes tuple returning functions apart
(called splitting); the converse of this is also described (called merging).
The slicer is implemented as a transformation for the Haskell Refac-
torer, HaRe. Splitting functions is a useful transformation to allow the
programmer to extract a particular subset of the functionality of a tuple
returning function into a new definition. Merging is a useful transfor-
mation because it allows many definitions to be merged together, thus
eliminating duplicate code and encouraging code reuse. Splitting and
merging can help to reduce dead code and increase program productiv-
ity and can be also used for debugging purposes.

1 Introduction

Refactoring was first introduced by Opdyke in his PhD. thesis in 1992 [10].
Refactoring is the process of changing the internal structure and organization of
a program, while preserving its semantics. The key aspect of refactoring —in con-
trast to general program transformations, such as genetic programming [4] — is
the focus on purely structural changes rather than changes in program function-
ality. Refactoring also contrasts with other meaning-preserving transformations
which emphasize a change in efficiency or other non-functional aspects. Refac-
toring is aimed at improving code quality, increasing programming productivity
and increasing the ability for code to be reused. This functionality-preservation
is crucial so that refactorings do not introduce, or remove, any bugs.

This paper is concerned with the investigation of a number of refactorings for
Haskell. We start with dead code elimination and based upon that the process is
extended to introduce a notion of function splitting and merging. As an example
of merging and splitting, consider the following Haskell library functions, take
and drop:

take :: Int -> [a] -> [a]
take 0 _ = []
take _ []= []

211

take n (x:xs)
| n > 0 = x : take (n-1) xs

take _ _ = error "PreludeList.take: negative argument"

drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop _ [] = []
drop n (x:xs)
| n>0 = drop (n-1) xs

drop _ _ = error "PreludeList.drop: negative argument"

As a concrete example of the usage of take and drop, consider:

> (take 10 "hello world", drop 10 "hello world")
> ("hello worl","d")

A merge refactoring allows the creation of a function which provides both results
using only one list traversal rather than one traversal for each of take and drop.
In the following example, splitAt is the result of merging take and drop:

splitAt 0 xs = ([],xs)
splitAt _ [] = ([],[])
splitAt n (x:xs)
| n > 0 = (x:ys,zs)
where
(ys,zs) = splitAt (n-1) xs

splitAt _ _ = (error "PreludeList.take: negative argument",
error "PreludeList.drop: negative argument")

The following is an example of the usage of splitAt:

> splitAt 10 "hello world"
> ("hello worl","d")

Splitting is the converse of merging, for example, the extraction of the definitions
of take and drop from splitAt. Although splitAt is a predefined Haskell
function, it serves as a useful example to illustrate splitting and merging. The
process of these refactorings is described in section 3.

The refactorings are implemented in the Haskell Refactorer, HaRe. HaRe is
the result of the combined effort of the Refactoring Functional Programs project
at the University of Kent [7]. HaRe provides refactorings for the full Haskell 98
standard, and is integrated with the two most popular development environments
for Haskell programs: Vim and (X)Emacs. HaRe refactorings can be applied to
both single- and multi- module programs; HaRe is itself implemented in Haskell,
and is built upon the Programatica [11] compiler front-end, and the Strafunski [6]
library for generic tree traversal. The HaRe programmers’ API provides the user
with an abstract syntax tree (AST) together with utility functions (for example,
tree traversal and tree transforming functions) to assist with the implementation
of refactorings.

212

Pure functional programs are referentially transparent [14], therefore the op-
portunities for refactoring are much greater than for imperative programs. The
classical example of this, of course, is that in a functional language it is always
possible to transform f x + g x into g x + f x (assuming, of course, that + is
a binary commutative operator). This is not possible for an imperative language
because either f or g may change the value of the parameter x and therefore
the result will depend on execution order. This is not, of course, the case in a
functional language.

The following sections first introduce the idea of eliminating code within
a function that is not needed; this has two flavours: unused code elimination
and irrelevant code elimination. A notion of program slicing in Haskell is then
outlined. A backwards, static program slicing technique that takes apart tuple
returning functions is defined. Following this the converse of the splitting opera-
tion, namely merging is also defined. The paper concludes by looking at possible
future developments in program slicing for Haskell.

2 Code Elimination

Dead code elimination [3] is a compiler optimization used to reduce a program
size by removing the parts of the program which are not needed. In Haskell dead
code contains code that is unreachable by evaluating the main function.

This section introduces two flavours of code elimination: dead code elimina-
tion and irrelevant code elimination. Dead code elimination is concerned with
taking a particular top-level function of interest, and removing any nested decla-
rations within that function that are not needed. Irrelevant code elimination is a
generalization of the former. Irrelevant code elimination focuses upon removing
nested declarations that are not needed to compute a particular sub-expression
within the top-level declaration. Irrelevant code elimination is used to aid the
programmer in debugging code.

2.1 Dead Code Elimination

Programmers in general tend to produce programs rapidly and badly [5]. Often,
having written a program, the programmer will realise that a different approach
would have been much better. Refactoring provides software support for modify-
ing the original program into a better written program thus avoiding the expense
of starting from scratch.

Programming rapidly and badly can cause lots of unnecessary declarations
in the program; declarations that are never called and are hence “dead”.

For example, the code below takes a list of type variables and produces a
data structure containing the list of type variables:

createApp [var]
= (Typ (HsTyVar (nameToTypePNT var)))
createApp (v:vars)

213

= Typ (HsTyVar (nameToTypePNT (v ++
(concatMap (" -> "++) vars))))

where
myConcat :: [String] -> String
myConcat [] = []
myConcat (x:xs) = (x ++ " -> ") ++ (myConcat xs)

The function createApp contains one declaration that is not needed: myConcat
can be removed, as it is not needed to evaluate the result. Dead code can make a
function look particularly messy and depending on the particular compiler used
may actually consume memory and slow execution. Dead Code Elimination is a
refactoring implemented in HaRe that searches the AST for the definition of a
particular function (supplied as a location in the original code), removing any
declarations that are not needed. The examples provided in this section present
only a where clause; a similar technique is used to cope with lambda definitions
and let clauses.

There are two stages to the refactoring. An analysis stage that collects all
the information required to do the modification, and a modification stage that
actually performs the modification on the AST with the information provided by
the analysis stage. Currently the refactoring only removes dead code from within
one function. However, it could easily be expanded to take a whole module of
functions (or, indeed, a set of modules) into consideration.

The main algorithm is as follows:

1. The particular function clause in question is extracted from the AST.
2. The right-hand-side is traversed until the result is found.
3. A list of free identifiers (identifiers that are declared at another point in the

program) are calculated from the expression. Identifiers that are declared
outside of the scope of the function clause are removed from the list.

4. There are three main stages to the removal of dead code:
(a) declarations that are used on the right-hand-side are then also traversed

to determine free variables contained therein.
(b) steps 3 - 4 are repeated for each declaration appearing in the list of free

variables (this checks to see whether some declarations depend on other
declarations in scope). Nested declarations are also considered.

(c) the where clause is then traversed. Steps 3 - 4 is repeated for each decla-
ration in the where clause. This takes into account nested where clauses.

5. For mutually referential declarations the algorithm traverses the AST for
all declarations to ensure that all free variables in those declarations are
retained.

6. Any declarations remaining are removed from the AST.

In order to use this tool, firstly the user selects a function from the editor
window. The user then selects dead code elimination from the HaRe drop-down
menu. To capture the entire namespace, the whole program is parsed into an
AST and token stream. The AST is then traversed using Strafunski to find the
particular function clause in question. This traversal is performed by using the

214

location information in the AST; it is possible to traverse into any functions
corresponding to the selection region in the editor. Once the function is found
the function’s where clause and right-hand-side is retrieved. The function’s right-
hand-side is then traversed until the result is reached. For example the result of
createApp is:

Typ (HsTyVar (nameToTypePNT (v ++ (concatMap (" -> "++) vars))))

Declarations declared in the scope of createApp must be analysed to check
whether they are dead; these declarations can appear within let clauses and
lamdba expressions within the right-hand-side of the function. The refactoring
takes into consideration nested declarations; for example: where/let clauses.
Once the returning subexpression is reached, the free and bound names within
the subexpression are calculated. The list of free names is then used to remove
those declarations residing on the right-hand-side that do not appear within the
list of free names. For example:

f x = z + res
where
res = f (x-1)
res2 = f (x+1)
y = x + 1
z = 46

The result expression is z + res and the only free variables are z and res;
therefore, y can be removed from the right-hand-side of f as it is not used
within z + res.

Any mutually referential declarations must be taken care of by ensuring that
all free variables in those declarations are retained. For example in the code below
it can clearly be observed that the declaration z depends on the declaration y.

Once the right-hand-side has been modified to remove the declarations that
are not used, the where clause of the function in question is then analysed. This
time the free variables are calculated for each sub-expression within the modified
right-hand-side; each member of the where clause that appears in the list of free
variables is then analysed for its free variables. All the declarations in the where
clause that are not needed by the right-hand-side of the function in question, and
do not appear in the dependancy graph of any needed declaration, are removed:

f x = z + res
where
res = f (x-1)
y = x + 1
z = 46 + y

After the AST has been modified, the source code is also modified to mirror
the changes of the refactoring.

A popular technique in abstract interpretation [2] is strictness analysis [8].
Dead code elimination is related to strictness analysis in that strictness analysis

215

searches for parts of a program that will always be used. Dead code elimination
searches for parts of the program that will never be used. However, strictness
analysis commonly works dynamically: inferring that the boolean conditional in
an if expression is False, say, and therefore calculating that the consequence
of the if is never evaluated. This paper takes a static approach to determining
dead code.

2.2 Irrelevant Code Elimination

Irrelevant code elimination is useful for debugging purposes and to some extent
is used in algorithmic debugging [13]. In algorithmic debugging the debugging
tool asks the user a series of questions about whether a particular sub-expression
in the code is generating the correct result or not. As the questions proceed, the
particular parts of the program that the debugging tool is asking questions about
becomes more clearly focused. It is often the case, however, that the programmer
will have some intuition where the bug will lie within the code. Extracting a
particular sub-expression that is suspected to cause a bug increases the chances
of fixing the error. Parts of a function that are known (or at least assumed) to
be correct are temporarily removed so the programmer can concentrate effort
on fixing the incorrect sub-expression.

As described below, the Dead Code Elimination technique may be generalized
to facilitate debugging. It is possible to select a particular sub-expression of
interest and to have the function pruned of declarations that are not needed by
that particular sub-expression. The expression on the right-hand-side is replaced
with the selected sub-expression. This particular generalization of dead code
elimination is not a refactoring, it is in fact a transformation since it changes
the semantics. For example, consider:

count :: [[a]] -> Int
count (l:list) = maximum (map length list)

pad :: [[a]] -> [[a]]
pad lists = map (pad’ (count lists)) lists

where
pad’ count entry = entry ++ (replicate count (head entry))

Suppose the programmer suspects there is a bug in pad, specifically, the pro-
grammer believes that the bug is in the call count lists. Isolating out only the
call to count lists into a new function would allow the programmer to test
that call explicitly, eliminating the parts of pad that the programmer believes
to be correct:

count :: [[a]] -> Int
count (l:list) = maximum (map length list)

pad2 :: [[a]] -> Int
pad2 lists = count lists

216

The programmer can then place a call to pad2 in the code, test the program,
discover that the formal parameter to count is in fact incorrect and undo the
previous transformation and correct the error:

count :: [[a]] -> Int
count list = maximum (map length list)

The definition of pad remains unchanged.

3 Slicing Based Refactorings

3.1 Program Slicing

Weiser, in [16], introduces a program slice S as a reduced executable program
obtained from a program P by removing statements, such that S replicates part
of the behavior of P. This process is driven from a slicing criterion, usually a
variable representing the line number and expression of interest, which is used
to represent the point in the code whose impact is to be observed with respect
to the entire program. Weiser introduced the concept that is now known as
a backwards, static slicing method. A backwards slice consists of all parts of
a program that have an effect on the criterion in question. Another form of
program slicing is a forwards slice [15]. Starting with the slicing criterion, or
the program point of interest, a forwards slice is all parts of the program that
the criterion will affect. Orthogonal to forwards and backwards slicing there is
also static and dynamic slicing: static program slicing means that all possible
computations of a program are considered and dynamic program slicing means
inferring names with particular values, giving a very specific computation of
a program. Often, the slicing criterion is a sub-set of program variables —the
program slice becoming the parts of the program related to the variables. The
obvious analogue to this is a subset of the components of a structured result, for
example, the fields of a tuple in Haskell.

Hitherto, there has been little work on program slicing for functional lan-
guages. Ochoa et al.[9] introduced a dynamic slicing technique for a lazy logic
language. The Haskell debugger, Hat [1], also includes a form of program slicer.
However, at this time there is no standalone program slicing tool available for
Haskell and therefore we attempt to define a backwards static slicer for Haskell.

This section introduces the notion of program splitting and merging. A num-
ber of known issues with performing splitting and merging is also given.

3.2 Splitting

A function may return a structured value, for example, a tuple. The particular
examples presented in this section use only pairs, however the technique can
easily work over tuples of any order.

Splitting works by getting an element of the tuple and then working out
everything needed to calculate that element. The calculated dependencies are
then simply extracted and isolated from the rest of the function.

217

Splitting is mostly used for debugging purposes. However splitting may also
be used to extract functionality out of the function so that it can be extended
or re-used. The user passes a parameter to the splitter the elements of the result
of the function in question which are to be extracted.

Consider the function parseMessage below. parseMessage takes a String
of messages each separated by the & character. parseMessage removes the initial
message and returns the next message as the first element of the result and the
remainder of the message as the second element:

type MessageList = String
type Message = String
parseMessage :: MessageList -> (Message, MessageList)
parseMessage [] = ([], [])
parseMessage xs = (takeWhile (/= ’&’) (tail ys),

dropWhile (/= ’&’) (tail ys))
where
ys = dropWhile (/= ’&’) xs

As an example of the usage of parseMessage consider:

> parseMessage "goodbye&hello&world"
> ("hello","&world")

The splitter works through each function clause in turn, extracting the ele-
ments of the function clauses’ result into separate definitions. The first pattern
clause of parseMessage is essentially trivial. Therefore the value[] is extracted
for both elements of the result and two new functions are then created:

parseMessage1 :: MessageList -> Message
parseMessage1 [] = []

parseMessage2 :: MessageList -> MessageList
parseMessage2 [] = []

The splitter appends an index to the end of the names of the new functions, if the
new names conflict with any other identifier in scope then the splitter chooses
a new distinct name. This is simply done by incrementing the index until the
name no longer conflicts with another identifier in scope.

The next function clause’s result is then analysed. Irrelevant code elimination
is then performed for each element in the resulting tuple and the result of the
code elimination is placed into new function clauses for parseMessage1 and
parseMessage2. ys is required by both elements of the result of parseMessage
so it is retained; the new function clauses are then added to the definitions of
parseMessage1 and parseMessage2 within the AST.

parseMessage1 xs = takeWhile (/= ’&’) (tail ys)
where

ys = dropWhile (/= ’&’) xs

218

parseMessage2 xs = dropWhile (/= ’&’) (tail ys)
where

ys = dropWhile (/= ’&’) xs

This gives the new definitions of parseMessage1 and parseMessage2. The
source code is then modified to reflect the changes within the AST.

3.3 Merging

Merging is the process of taking a number of functions and unifying them to-
gether into one tuple returning function. The process described here only merges
two functions; obviously the functionality can be easily extended however, to
merge together any number of functions.

Merging works by unifying all the code from the selected functions into a
new tuple returning function. Duplicate parts of the function are also removed.
Unlike when doing splitting, where names are generated automatically, the user
must specify a name for the merged function.

Merging is mostly used to reuse code and improve code efficiency. For ex-
ample, merging take and drop into splitAt results in only one recursive call
instead of two. Merging functions together has the possibility to introduce fur-
ther code sharing.

The remainder of this section will focus on merging parseMessage1 and
parseMessage2.

parseMessage1 :: MessageList -> Message
parseMessage1 [] = []
parseMessage1 xs = takeWhile (/= ’&’) (tail ys)

where
ys = dropWhile (/= ’&’) xs

parseMessage2 :: MessageList -> MessageList
parseMessage2 [] = []
parseMessage2 xs = dropWhile (/= ’&’) (tail ys)

where
ys = dropWhile (/= ’&’) xs

Firstly, the merger checks to see whether the pattern sets of parseMessage1 and
parseMessage2 are the same. If they are not then the merger terminates with
an error to the user. The merger also checks to see whether the types of the
arguments to parseMessage1 and parseMessage2 are the same. If the pattern
sets are not the same then the merger cannot correctly unify the patterns; if
they cannot be unified the merger terminates with an error message to the user.

Each function clause in question is merged together. The first clause of
parseMessage1 and parseMessage2 both have the same result value. Merging
those clauses together is trivial:

219

parseMessage :: MessageList -> (Message, MessageList)
parseMessage [] = ([], [])

The second clauses of parseMessage1 and parseMessage2 are now considered.
The results are unified together and placed into a new function clause:

parseMessage xs = (takeWhile (/= ’&’) (tail ys),
dropWhile (/= ’&’) (tail ys))

where
ys = dropWhile (/= ’&’) xs
ys = dropWhile (/= ’&’) xs

The duplicate declaration of ys within the where clause is removed.

3.4 Related Issues

Sometimes when splitting is used patterns that are the result of recursive calls
become redundant. All patterns that are not needed in the result are replaced
with wildcards so that the namespace is kept clean.

One element of a tuple may depend upon another element. For instance, it
is possible for one element to come from the first part of a recursive call, but
returned in the second element in the main body. In very unusual circumstances
the following can occur:

f :: Int -> (Char, (Char, Int))
f 10 = (‘a’, (g ‘f’ 1, 2))
f n = (x, (g x 1, 2))
where
(_, (x, 2)) = f (n+1)

g :: Char -> Int -> Char
g x y = chr (ord x + 1)

The first element of the result of f comes from the second element in its recursive
call. If one element depends on another, both of these elements must be extracted
from the function, otherwise an error occurs.

Before merging, it is necessary that both functions have the same sets of
patterns. If the first function has more pattern clauses than the second for ex-
ample, then the merger cannot determine what to place on the right-hand-side
when patterns from the first function are not matched by patterns in the second.
An error message is presented to the user if the pattern sets are not the same.
An additional refactoring was introduced to allow the user to build particular
pattern clauses by instantiating general patterns with values of the same type.
Consider, for example:

f1 0 l = take 42 l
f1 n l = take n l

f2 n l = drop n l

220

Both f1 and f2 have general cases defined, however, f1 has an additional base
case defined. This is problematic because the merger cannot infer what the in-
tention is of the user during the merge:

merged 0 l = (take 42 l, undefined)
merged n l = (take n l, drop n l)

When merging functions, it is also necessary that the arguments to the func-
tions have the same type so that they can be successfully merged. If the functions
have different argument types then the merger returns an error. It is possible
that the functions have different return types as this will be captured in a tuple.

Merging and splitting monadic functions is a difficult area, especially if the
monad in question is a state monad, for example, the IO monad. Merging two
IO monads is problematic because the merger cannot infer the correct order of
sequencing. Side effects also affect splitting in a similar way, for example, an
element of the tuple return value may depend upon some data written to a file.
It is very difficult for the splitter to determine which parts of the monad can
have a potential affect as all expressions have the potential to alter the state.
Merging and splitting refactorings on monads will be the subject of a future
paper.

4 Conclusions and Future Work

This paper presented a number of refactorings for HaRe. Firstly, a technique
was defined to eliminate dead code from Haskell functions and then generalized
further to remove irrelevant code. A backwards, static program slicer for Haskell
was then described as splitting tuple returning functions; its converse, namely
merging, was also described.

In the future it is planned that dead code elimination will be expanded to
take a whole program into account and not just a selected function. Dead code
elimination could remove the parts of the program that are not directly related
to the main function, which would allow the process to be extended to the whole
of a large Haskell project.

It is also planned to modify the splitter to analyze the whole scope of a
program rather than, simply, tuple-returning functions in the scope of a par-
ticular function of interest. It is also planned to modify the splitter so that
tuple-returning functions that are called from outside a function’s scope to be
extracted.

A further paper will detail work on refactoring with monads.
It is intended for the work on slicing to be extended further to investigate

backwards, dynamic slicing and forwards slicing (both static and dynamic).
There are many more exciting possibilities to analyze for the refactoring of

Haskell code; and it is hoped to continue work in these directions.

221

5 Acknowledgments

Thanks to Dave Harrison of Northumbria University for numerous editorial con-
sultations.

A Source Code

All the code that has been described in this paper can be downloaded using
darcs [12] with the following command:

darcs get http://www.cs.kent.ac.uk/projects/refactor-fp/HaRe_Project/

References

1. Olaf Chitil. Source-based trace exploration. In Draft Proceedings of the 16th
International Workshop on Implementation of Functional Languages, IFL 2004,
pages 239–244. Technical Report 0408, University of Kiel, September 2004.

2. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM
Press, New York, NY.

3. Matthew S. Hecht. Flow Analysis of Computer Programs. Elsevier Science Inc.,
New York, NY, USA, 1977.

4. John H. Holland. Adaptation in natural and artificial systems. MIT Press, Cam-
bridge, MA, USA, 1992.

5. Fred P. Brooks Jr. The Mythical Man-Month. In Proceedings of the international
conference on Reliable software, page 193, New York, NY, USA, 1975. ACM Press.

6. Ralf Lammel and Joost Visser. A strafunski application letter. In Proc. of
PADL’03, January 2003.

7. Huiqing Li, Simon Thompson, and Claus Reinke. The Haskell Refactorer: HaRe,
and its API. In John Boyland and Grel Hedin, editors, Proceedings of the 5th
workshop on Language Descriptions, Tools and Applications (LDTA 2005), April
2005. Published as Volume 141, Number 4 of Electronic Notes in Theoretical
Computer Science, http://www.sciencedirect.com/science/journal/15710661.

8. Alan Mycroft. The theory and practice of transforming call-by-need into call-by-
value. In Proceedings of the Fourth ’Colloque International sur la Programmation’
on International Symposium on Programming, pages 269–281, London, UK, 1980.
Springer-Verlag.

9. Claudio Ochoa, Josep Silva, and Germán Vidal. Dynamic slicing based on redex
trails. In PEPM ’04: Proceedings of the 2004 ACM SIGPLAN symposium on
Partial evaluation and semantics-based program manipulation, pages 123–134, New
York, NY, USA, 2004. ACM Press.

10. William F. Opdyke. Refactoring object-oriented frameworks. PhD thesis, Cham-
paign, IL, USA, 1992.

11. PacSoft. Programatica: Integrating programming, properties and validation.
www.cse.ogi.edu/PacSoft/projects//, 2005.

222

12. David Roundy. Darcs: distributed version management in Haskell. In Haskell ’05:
Proceedings of the 2005 ACM SIGPLAN workshop on Haskell, pages 1–4, New
York, NY, USA, 2005. ACM Press.

13. Josep Silva and Olaf Chitil. Combining algorithmic debugging and program slicing.
In PPDP ’06: Proceedings of the 8th ACM SIGPLAN symposium on Principles and
practice of declarative programming, pages 157–166, New York, NY, USA, 2006.
ACM Press.

14. Harald Sondergaard and Peter Sestoft. Referential transparency, definiteness and
unfoldability. Acta Inf., 27(6):505–517, 1990.

15. F. Tip. A survey of program slicing techniques. Report CS-R9438, Centrum voor
Wiskunde en Informatica (CWI), Amsterdam, 1994.

16. Mark David Weiser. Program slices: formal, psychological, and practical investiga-
tions of an automatic program abstraction method. PhD thesis, 1979.

223

An Interpretation of Temporal Properties in

Functional Programs — Extended Abstract⋆

Máté Tejfel, Tamás Kozsik, and Zoltán Horváth

Department of Programming Languages and Compilers
Eötvös Loránd University, Budapest, Hungary

{matej,kto,hz}@inf.elte.hu

Due to referential transparency, it is straightforward and common practice
to express properties of functional programs in some first-order logic, and to
prove these properties with an equational reasoning using proof techniques such
as induction and co-induction. However, as explained in e.g. [6, 7, 11, 12], some-
times it is useful to formulate temporal logical properties, like invariants, of the
values computed during the execution of a functional program. Temporal prop-
erties can conveniently and compactly describe the expected behaviour of – or
more precisely, the expected relations among the expressions appearing in –
a functional program, hence they support reasoning about the correctness of
functional programs at a high level of abstraction. This facility is especially im-
portant when interactive, concurrent, parallel or distributed functional programs
are concerned.

Our goal is to extend Sparkle [2], the dedicated theorem prover for Clean [10]
with support for temporal logical reasoning. This would make it possible, for in-
stance, to prove the correctness of interactive and concurrent Clean programs,
written in (the spirit of) the Object IO library [1]. Earlier papers, such as [11, 12]
explained the basic mechanisms for defining and proving temporal properties of
Clean programs. As the axiomatic semantics of such properties, they introduced
tactics to rewrite temporal logical theorems into first-order logical subgoals. This
paper presents the semantic background for verifying the soundness of the in-
troduced tactics and the induced axiomatic semantics.

The operational semantics of functional programs can be defined with rewrite
systems. For example, [9] defines the semantics of Clean programs with Term
Graph Rewrite Systems, and Sparkle is based on Term Rewrite Systems. In these
semantics, a syntactically desugared Clean program is represented as an initial
set of graphs (or set of terms), together with rewrite rules. The semantic value
of the program is a graph (or term) in some normal form, which is computed by
reduction, namely by the iterative application of the rewrite rules. According to
these semantics, the state of the rewrite system during reduction is irrelevant;
only the final result matters, which, if it exists, is unique. Clearly, this approach
is not enough for the investigation of temporal properties. For example, when
reasoning about the local states of Clean Object IO processes, like in [4, 5], it
should be possible to refer to those local states as they change during reduction,

⋆ Supported by GVOP-3.2.2.-2004-07-0005/3.0 ELTE IKKK and OMAA 66öu2:
Programm-Verification mit Hilfe algebraischen Methoden, 2007.

224

Fig. 1. A program computing the fifth Fibonacci number.

and it should be possible to analyse the relations among the changing local
states. For this reason, a semantic function providing more details is required.
The alternative semantics will record the inner states of the rewrite system as
obtained by the reduction steps. The semantic function maps a program to a
tree, where the nodes of the tree are labelled with the possible states of the
corresponding rewrite system, and the edges of the tree are labelled with the
reduction steps that are applicable in the parent node and produce the child
nodes. The number of children equals to the number of the redexes found in the
parent, and each branch in the tree represents a possible reduction sequence.
Consider a program that computes the fifth Fibonacci number.

module fibonacci

import StdInt

fib 1 = 1

fib n = fib‘ n 2 1 1

fib‘ n m u v

| n == m

= u

= fib‘ n (m+1) (u+v) u

Start = fib 5

A fragment of the tree that is the semantic value of this program is illustrated
in Figure 1. The grey boxes are the nodes of the tree; each box contains a graph
under reduction. The graph denoted by τ is as follows.

225

case 5==2 of True -> 1

_ -> fib‘ 5 (2+1) (1+1) 1

For every a, b, c and d such that the expression fib‘ a b c d occurs in the
tree the following holds:

a = 5 ∧ 1 < b ≤ a ∧ c = fib b ∧ d = fib (b− 1).

This property is supposed to be expressible as an invariant.
The above technique lets the programmer examine (and reason about) the

possible ways in which the state of the rewrite system can change during re-
duction, for example, the ways in which the local states of Object IO processes
may change during program execution. However, there is one remaining prob-
lem: how to identify those subgraphs which the temporal properties refer to.
Such subgraphs are parts of the graphs appearing in the tree nodes – in the Fi-
bonacci example these were the arguments of the fib‘ function. In this simple
case we propose two ways to describe the invariant property explicitly. The first
way is to use subtype marks [8], and the second, more general approach is object

abstraction [11]. This paper focuses on the latter approach.
Object abstraction is a technique for declaring that certain expressions occur-

ring in the program text represent different states of the same “abstract object”.
This technique introduces the necessary syntax for identifying objects and state
transitions. In an appropriate Integrated Development Environment this (rather
obscure) syntax can be made part of an intermediate language, hidden from the
programmers, and the selection of objects can be performed through a GUI. The
Fibonacci example with object abstraction can be written in the following way.

fib‘ (.|. a n) (.|. b m) (.|. c u) (.|. d v)

| n == m

= u

| otherwise

.#. ((.|. b m),(.|. c u),(.|. d v))

= ((.|. b m)+1, (.|. c u)+(.|. d v), (.|. c u))

= fib‘ (.|. a n) (.|. b m) (.|. c u) (.|. d v)

The objects a, b, c and d are introduced by the .|. token, and the state tran-
sitions are introduced by the .#. token. State transitions are a variant of the
“let-before” (i.e. #) construct of Clean – even their scoping rules are identical.
The states of object b, for example, are the variables identified with the variable
name m; there are two such variables in the function body. One of them is visi-
ble before the state transition and to the right of the equality sign of the state
transition, and the other is visible after the state transition and to the left of
the equality sign of the state transition.

Object abstraction does not influence the way computations are performed.
By simply removing the syntax for identifying objects and state transitions, a
semantically equivalent program is obtained. Furthermore, due to the scoping
rules for “let-before”, this definition is equivalent (in the original Clean semantics)
to the first version of the fib‘ function.

226

fib‘ n m u v

| n == m

= u

| otherwise

(m,u,v) = (m+1, u+v, u)

= fib‘ n m u v

The next task is to extend the tree-semantics and adapt it to the syntactical
changes. This is achieved by annotating the graphs found in the tree nodes by
object identifiers, and inserting an extra edge for each state transition on every
branch of the tree. In each node of the tree every object is attached to at most
one subgraph. The inserted extra edges are orthogonal to reduction; they merely
alter the object annotations. Hence the tree-semantics can be regained from the
“annotated tree-semantics” by projection.

Now it is possible to define the meaning of temporal properties. For instance,
a formula P (defined in terms of some objects a, b . . .) is “always true” in a
program if and only if it holds for every node in the annotated tree, which
is the semantic value of the program. Invariants form a special case of always
true formulas: they impose further restrictions on the states that are not reach-
able during the reduction. Basically, given a reachable or unreachable annotated
program graph that satisfies P , all edges starting from such a tree node should
result in an annotated program graph that also satisfies P . If a formula is proven
to be an invariant, then it is also an always true formula. Therefore invariants
are more strict requirements than alway true properties, but they are preferable
for being compositional (cf. [3]), which is very important when concurrency is a
concern.

Thanks to referential transparency, it turns out that during the proof of
temporal properties it is sufficient to consider only those edges of the annotated
tree, which are responsible for object redirections. The full paper will provide
the details on the annotated tree-semantics, the interpretation of some temporal
logical operators, the subgoals to be generated from temporal logical theorems,
and the soundness of the resulting proof technique with respect to the annotated
tree-semantics.

References

1. Achten, P., Plasmeijer, R.: Interactive Objects in Clean. In: Proceedings of Im-

plementation of Functional Languages, 9th International Workshop, IFL’97, St.
Andrews, Scotland, UK, September 1997, LNCS 1467, Springer-Verlag, pp. 304–
321.

2. de Mol, M., van Eekelen, M., Plasmeijer, R.: Theorem Proving for Functional
Programmers, Sparkle: A Functional Theorem Prover, In: LNCS 2312, Springer-
Verlag, 2001, p. 55 ff.

3. Horváth, Z.: The Formal Specification of a Problem Solved by a Parallel Program—
a Relational Model. In: Annales Universitatis Scientiarum Budapestinensis de

Rolando Eötvös Nominatae, Sectio Computatorica, Tomus XVII. (1998) pp. 173–
191.

227

4. Horváth, Z., Achten, P., Kozsik, T., Plasmeijer, R.: Proving the Temporal Proper-
ties of the Unique World. In: Proceedings of the Sixth Symposium on Programming

Languages and Software Tools, Tallin, Estonia, August 1999. pp. 113–125.
5. Horváth, Z., Achten, P., Kozsik, T., Plasmeijer, R.: Verification of the Tempo-

ral Properties of Dynamic Clean Processes. In: Proceedings of Implementation of

Functional Languages, IFL’99, Lochem, The Netherlands, Sept. 7–10, 1999. pp.
203–218.

6. Horváth, Z., Kozsik, T., Tejfel, M.: Proving Invariants of Functional Programs. In:
Proceedings of Eighth Symposium on Programming Languages and Software Tools,
Kuopio, Finland, June 17–18, 2003., pp. 115–126.

7. Horváth, Z., Kozsik, T., Tejfel, M.: Verifying invariants of abstract functional ob-
jects – a case study. In: 6th International Conference on Applied Informatics, Eger,
Hungary, January 27–31, 2004.

8. Kozsik, T.: Proving Properties Specified with Subtype Marks. In: Implementa-

tion and Application of Functional Languages, 18th International Symposium, IFL

2006, Budapest, Hungary, September 4–6, 2006, Revised Selected Papers, LNCS
4449, Springer-Verlag, 2007. pp. 163–180.

9. Plasmeijer, R., van Eekelen, M.: Functional Programming and Parallel Graph

Rewriting, Addison-Wesley Longman Publishing Co., Inc., ISBN 0201416638,
Boston, MA, USA, 1993.

10. Plasmeijer, R., van Eekelen, M.: Concurrent Clean Version 2.1 Language Report,
2002. Available at http://www.cs.kun.nl/˜clean/Manuals/manuals.html

11. Tejfel, M., Horváth, Z., Kozsik, T.: Extending the Sparkle Core language with
object abstraction. In: Acta Cybernetica Vol. 17 (2005). pp. 419–445.

12. Tejfel, M., Horváth, Z., Kozsik, T.: Temporal Properties of Clean Programs Proven
in Sparkle-T, In: Proceedings of Central-European Functional Programming School,

CEFP 2005, Budapest, Hungary, July 4–16, 2005, LNCS 4164, Springer-Verlag
(2006), pp. 168–190.

228

Approaches to Subtyping in Functional
Languages

Glenn Strong

Trinity College, Dublin, Ireland

Abstract. We present and discuss two closely related type systems for
functional programming languages which extend the normal model by
offering a notion of subtyping relations between some values in the pro-
gram.
Subtyping may be treated in a specialized functional programming lan-
guage which allows declarations of data types which contain sets of over-
lapping labels. The extension to the type system required to permit the
typing of terms which make use of such ambiguous labels can be done in
several ways. Two such approaches that are commonly used are (broadly)
known as Structural and Nominative subtyping. The selection of ap-
proach leads to a very different set of software engineering pressures in
the resulting language.
Two type systems are presented which use subtyping to give types to
terms which are otherwise ambiguous or incorrect. The type rules are
explained and the particular differences that give either structural or
nominative subtyping are discussed, as are the necessary inference al-
gorithms, and some observations on the similarities between the two
systems are made.
Plans for future work, including experiments involving a complete pro-
gramming language to determine what software engineering patterns are
best supported by each approach are outlined.

229

On the Validation of Specifications used in
Model-Based Testing

Pieter Koopman, Peter Achten, and Rinus Plasmeijer

Software Technology, Nijmegen Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands

{pieter, p.achten, rinus}@cs.ru.nl

Abstract. In model-based testing the behavior of a system under test,
sut, is compared automatically with the behavior of the specification.
A significant fraction of issues found in testing appear to be caused by
problems with the specification. In order to ensure that the specification
prescribes the desired behavior, it has to be validated by a human. In
this work we introduce a tool to support this validation. In addition to
an interactive simulator of the specification, the tool is able to generate
transition tables and diagrams of the observed behavior. In order to
make simulation and the displaying of the observed behavior finite, we
introduce equivalence of states, inputs and outputs.

Extended Abstract

In model-based testing the behavior of a system under test, sut, is compared
automatically with the behavior of the specification. The specification is a state
transition system that can be nondeterministic. Usually the number of states,
inputs and outputs possible is infinite. The sut is also assumed to be a state
transition system, but its state is hidden. One can only apply input to the
system and observe the corresponding output. We have used model-based testing
successfully to improve controllers, protocols, javacard applets and more.

For this comparison of behavior, the test system takes a specification and
executes a user defined number of traces. For each trace the sut and the spec-
ification starts in their initial states. The test system selects an input that is
covered by the specification, applies this input to the sut, and computes the
allowed states of the specification. If no states are possible for the specification
the sut has shown behavior that is not covered by the specification. The testers
say that an issue is found.

Ideally, each issue indicates an error in the sut. However, in practice a signif-
icant fraction of issues appear to be caused by problems with the specification:
the specification does not correctly capture the intentions of the users and the
sut does something different. Although the fraction of issues caused by the spec-
ification differs with the kind of system and the amount of effort put in the
correctness of the specification, we estimate that on average in about 25% of the
issues found in model-based testing one has to blame the specification.

230

Incorrect specifications are a problem for several reasons. First, if an issue is
found it is not clear whether we have to blame the specification or the sut. Finding
and correcting errors in the specification takes time during the test phase of the
project. This is not the right moment to create a correct specification. In many
projects there is a significant time pressure during the testing phase of a system.
Second, only behavior that is implemented differently by the sut can cause issues.
All other errors in the specification are not found at all during model-based
testing. Third, any change in the specification during the testing phase can
cause significant implementation changes to the sut. Finally, any change in the
specification invalidates in principle all previous test results (just like any change
in the sut). This implies that errors in the specification can be very expensive
and it is worthwhile to invest effort to ensure the quality of the specification.

In our model-based test system G∀st we use the functional language Clean
as specification language. Due to the high abstraction level of this language it
is possible to write concise specifications which contributes to their quality. The
Clean compiler will check quality aspects like type correctness and consistent
definition of identifiers used. We have shown that quality aspects such as the
reachability of states, determinism and completeness of the specification, and
the preservation of constraints can be checked by systematic testing.

However, this does not rule out the possibility that the specification pre-
scribes the wrong behavior in a consistent way. In order to ensure that the
specification prescribes the desired behavior, it has to be validated by a human.
In this work we introduce tools to support this validation. First, a simulator
enables the user to execute the specification. Such an interactive execution can
be much more illustrative than looking at the code of the specification. Second,
it is possible to record the traces of the specification executed in the simulator.
The states visited and their transitions can be visualized in a table or a state
transition diagram. Since the number of states, inputs and outputs can be in-
finite and different in each and every specification, this is not straightforward.
The key to the solution is an operator to define equivalence of states, inputs and
outputs. For instance, values that are handled by the same symbolic transition
in the specification (function alternative in the specifying function) are usually
considered to be equivalent. All states that are considered equivalent can be
mapped to the same entry of the table or the same place in the transition dia-
gram. Since the equivalence of values is problem dependent, some human input
is required to define equivalence.

2

231

Car Damage Subrogation Workflow

- an iTask exercise -

Erik Zuurbier and Rinus Plasmeijer

ABZ / Solera, Zeist {Erik.Zuurbier@Abz.nl}
Software Technology, Nijmegen Institute for Computing and Information Sciences,

Radboud University Nijmegen {rinus@cs.ru.nl}

Abstract. In this paper we report our experiences and findings while
implementing a workflow in the iTask framework [1]. Traditional workflow
frameworks model the process and control flow of a tasks: which task
has to be carried out when and by whom? They typically model data as
global variables: case data reside in a database and the workflow tasks
read, write and update the database.
Control flow patterns [2] specify when and how control branches split and
merge. Recent developments recognize the structured variants of control
flow patterns, which means that the patterns occur in related pairs. For
instance a structured discriminator pattern is ”The convergence of two or
more branches into a single subsequent branch following a corresponding
divergence earlier in the process model”. The iTask framework follows
the reverse route: by default it makes use of structured patterns. Un-
structured patterns are only introduced when needed.
The workflow we have implemented using the iTask framework is a re-
implementation of an existing workflow application which is daily used
in the Dutch insurance industry. The original workflow application is
implemented in a traditional programming environment without a work-
flow framework. The workflow is carried out between employees of two
different insurance companies. Both cover against liability claims of their
insured and at least one also covers car damage repair costs. In this con-
text the term subrogation refers to the right of a car damage insurer to
recover a paid claim from the liability insurer of the party who caused
the damage. The Car Damage Subrogation Workflow (CDSW) controls
the claim negotiations that take place between the insurance companies.
It turned out that the CDSW can be specified very elegantly in the iTask
framework.
To give the user the freedom to fill in information in advance, new work-
flow patterns (iTask combinators) for speculative tasks have been added.
Compared to standard patterns the new patterns are quite advanced, yet
it was very easy to add them to the iTask system.

1. Rinus Plasmeijer, Peter Achten, Pieter Koopman. iTasks: Executable Spec-
ifications of Interactive Work Flow Systems for the Web. Accepted for pub-
lication in 12th ACM SIGPLAN International Conference on Functional
Programming (ICFP 2007), Freiburg, Germany, October 1 3, 2007.

2. http://www.workflowpatterns.com

232

Towards Open Type Functions for Haskell

Tom Schrijvers?1, Martin Sulzmann2, Simon Peyton-Jones3, and Manuel
Chakravarty4

1 K.U.Leuven, Belgium (tom.schrijvers@cs.kuleuven.be)
2 National University of Singapore (sulzmann@comp.nus.edu.sg)
3 Microsoft Research Cambridge, UK (simonpj@microsoft.com)

4 University of New South Wales (chak@cse.unsw.edu.au)

Abstract. We report on an extension of Haskell with type(-level) func-
tions and equality constraints. We illustrate their usefulness in the con-
text of phantom types, GADTs and type classes. Problems in the context
of type checking are identified and we sketch our solution: a decidable
type checking algorithm for a restricted class of type functions. More-
over, functional dependencies are now obsolete: we show how they can
be encoded as type functions.

1 Introduction

Experimental languages such as ATS [6], Cayenne [1], Chameleon [25], Epi-
gram [15] and Omega [21] equip the programmer with various forms of “type
functions” to write entire programs on the level of types. In the context of
Haskell, there are two distinct languages extensions that that support such type-
level computation: functional dependencies which are well established [12], and
associated types which are a more recent experiment [5]. In this paper, we make
the following contributions:

– We generalise the so-called “associated type synonyms” [5] by decoupling
them from class declarations, thereby allowing us to define stand-alone
type functions (Section 2). We give examples which show the usefulness of
stand-alone type functions in combination with GADTs and phantom types.

– It turns out that pure type inference for our extended language is very easy.
However, in the presence of user-supplied type signatures (which are ubiq-
uitous in Haskell) and GADTs, the type checking problem becomes unex-
pectedly hard. We identify the problem and sketch our solution (Section 3).
This is the main technical contribution of the paper.

– We show that type functions are enough to express all programs involving
functional dependencies, although the reverse is problematic (Section 4).
Other related work is discussed in Section 5.

For space reasons, and because it reports work in progress, this paper is
entirely informal. We have much formal material in an accompanying draft tech-
nical report [20].
? Post-doctoral researcher of the Fund for Scientific Research - Flanders.

233

2 Informal overview

We begin informally, by giving several examples that motivate type functions,
and show what can be done with them. Notably, we have found three uses of
type functions: in combination with type classes, in combination with GADTs
and even in the basic Hindley/Milner type system.

2.1 Type classes and type functions

The original paper on functional dependencies [12] presented the following class
of collections:

class Collects c e | c -> e where
empty :: c
insert :: e -> c -> c
toList :: c -> [e]

instance Collects BitSet Char where ...
instance Eq e => Collects c [c] where ...

The notation “| c -> e” means “the collection type c determines the element
type e”. The two instance declarations explain that the collection of type BitSet
has elements of Char elements; and a collection of type [e] has elements of type
e. The “...” parts give the implementations of the methods empty, insert, etc.

Using our proposed type-function extension we would re-express the example
as follows:

type family Elem c
class Collects c where
empty :: c
insert :: Elem c -> c -> c
toList :: c -> [Elem c]

type instance Elem BitSet = Char
instance Collects BitSet where ...

type instance Elem [e] = e
instance Eq e => Collects c [c] where ...

The type class now has only one parameter, c. A new type family Elem is defined,
using a type family declaration. We think of Elem as a function from the
collection type to the element type, and indeed often refer to it as a “type
function”, although the term “function” is so heavily used that we use “type
family” when we want to be precise. The types of the class methods should now
be self-explanatory; indeed, they are more perspicuous than before.

Each instance declaration now has two related parts. First, we add an equa-
tion to the definition of Elem, using a type instance declaration. Second, we
have a perfectly ordinary Haskell instance declaration.

One might wonder whether functional dependencies are more expressive than
type functions, or vice versa, and we discuss that in Section 4.

234

2.2 Plain type functions

The main benefit of decoupling the type functions from type classes is that the
former can now be used independently. (We still offer the syntax for associated
type synonyms proposed in [5], but it is purely syntactic sugar.) For example,
here is how we might write a library that manipulates lengths, areas, volumes,
and so on:

data Z -- Peano numbers
data S a -- at the level of types

newtype Val u = V Float

type Scalar = Val Z
type Length = Val (S Z)
type Area = Val (S (S Z))
type Volume = Val (S (S (S Z)))

addVal :: Val u -> Val u -> Val u
addVal (V v1) (V v2) = V (v1+v2)

mulVal :: Val u1 -> Val u2 -> Val (Sum u1 u2)
mulVal (V v1) (V v2) = V (v1*v2)

The phantom-type parameter u keeps track (statically) of the units of the value
[11]. The idea is that u will be instantiated by a Peano-number representation
of the dimension of the number, as suggested by the (ordinary, Haskell) type
synonym declarations of Scalar etc. The signature of addVal specifies that it
can only add two values of the same units.

The signature of mulVal is more interesting, because the dimension of the
result is the sum of the dimensions of its argument — for example, multiplying
a Length by an Area gives a Volume. So we need a type-level computation,
expressed using the type function Sum:

type family Sum n m
type instance Sum Zero x = x
type instance Sum (Succ x) y = Succ (Sum x y)

Notice that no type classes are involved here. The same program can be written
using functional dependencies, but only by bringing in a type class (with no
methods), and only by using a more relational notation:

mulVal :: Sum u1 u2 r => Val u1 -> Val u2 -> Val r

The example can readily be extended to handle multiple units (e.g. time as well
as length).

This encoding does not express the fact that Val should only be applied to
compositions of S and Z. It would be better to express this idea in the kinds
thus:

235

datakind Nat = Z | S Nat

newtype Val (u::Nat) = V Float

Not only is this more explicit, but it also allows us to check that we have provided
all the equations for Sum, and permits induction over Nat. In effect, Sum is a closed
type function whereas Elem was an open one. In this paper we concentrate on
open functions, and leave the exploitation of closed-ness for future work.

2.3 GADTs and type functions

Generalised Algebraic Data Types (GADTs) are extremely useful for expressing
rich data structure invariants at the type level. A well-known example is that of
length-indexed lists, or vectors for short:

data Vector el len where
Nil :: Vector el Z
Cons :: el -> Vector el len -> Vector el (S len)

where we use the type encoding of the natural numbers from the previous section.
With vectors we can easily avoid some of the pitfalls of ordinary lists. Con-

sider the well-known Haskell function zip :: [a] -> [b] -> [(a,b)] for pair-
ing up the corresponding elements in two lists. It has an annoying corner case:
when the lengths of the two lists are not matched, then the trailing elements of
the longer list are simply and silently discarded. With vectors we can easily rule
out this corner case at compile time. Consider the definition of vzip, a zip for
vectors:

vzip :: Vector a len -> Vector b len -> Vector (a,b) len
vzip Nil Nil = Nil
vzip (Cons x xs) (Cons y ys) = Cons (x,y) (vzip xs ys)

Observe that the length type parameter of both input lists is identical. This
means that the type checker verifies for every call vzip as bs whether the vec-
tors as and bs have the same length. If not, the program is rejected.

For length-indexing to be useful, we should be able to express the impact
of list transformations on the length. Unfortunately, without resorting to overly
complicated5 type classes with functional dependencies, Haskell’s type system
does not allow us to express even the most basic of transformations.

Concatenation of vectors is a good example. While this implementation is
easy enough to write:

vconcat Nil l = l
vconcat (Cons x xs) ys = Cons x (vconcat xs ys)

and, like mulVal, its signature involves a type-level computation;

vconcat :: Vector e n -> e Vector e m -> Vector e (Sum n m)

This function Sum is a type-level function, defined in the previous section.
5 and rather ill-understood

236

2.4 Equality constraints

Suppose that we want to write a function merge that adds all the elements of
one collection to another collection. It cannot have type

merge :: (Collects c1,Collects c2) => c1 -> c2 -> c2

because not all collections have the same element types. On the the other hand,
it is over-restrictive to write

merge :: (Collects c) => c -> c -> c

because it is perfectly OK to merge collections of different types provided their
element types are the same. For example one could merge a BitSet with a [Char]
because they both have element type Char.

The way to achieve this is to use an equality constraint:

merge :: (Collects c1,Collects c2,Elem c1∼ Elem c2) =>
c1 -> c2 -> c2

where constraint “Elem c1 ∼ Elem c2” says that c1 and c2 must only be in-
stantiated to types for which Elem c1 and Elem c2 are equal. These equality
constraints are, in fact, quite familiar from GADTs. Recall the definition of
Vector from the previous section:

data Vector el len where
Nil :: Vector el Z
Cons :: el -> Vector el len -> Vector el (S len)

One way to think of Cons is that it has type

Cons :: (slen∼ S len) => el -> Vector el len -> Vector el slen

Our new design allows arbitrary type equalities to be specified in a type signa-
ture, with GADTs as a useful special case. In [5] a number of restrictions are
imposed on the form of equality constraints. We do not impose any restrictions;
even constraints that do not involve any type functions are allowed, e.g. Int ∼
Bool.

2.5 Summary

In general, a type function is introduced by a top-level type family declaration.
An optional kind signature may be used for both the argument types and the
result type; for example:

type family MonadRef (monad :: * -> *) :: (* -> *)

Otherwise, these kinds are assumed to be *.
Like a regular Haskell 98 type synonym, a type function has an arity, given by

the number of named arguments to the left of the “::”. For example MonadRef

237

has arity 1, even though it has kind “*->*->*”. Like regular type synonyms,
type-function applications must be saturated : they must be supplied with at
least as many type as prescribed by their arity. Again like type synonyms, over-
application is of course allowed, e.g. MonadRef IO Int.

Unlike regular type synonyms, however, type functions are open functions,
whose definition is extended by type instance declarations; for example:

type instance F [a] k = (a,k)

The part to the left of the “=” is called the definition head and the part to the
right the definition body. The head must have exactly as many type parameters
as the arity of the type function.

In order to ensure modularity, consistency of the type function definition and
termination of type inference, a number of conditions must be imposed on the
instances:

1. Instance heads must not overlap.
2. Type function applications in the body must be smaller than the head.
3. Type function applications in the body must not occur inside other type

function applications.

We return in more detail on these conditions when we discuss type checking.
Just as Haskell has data types as well as type synonyms, we also support

data type families as well as type functions. For example:

data family GMap k v
data instance GMap Int v = GI (Map.Map Int v)
data instance GMap (a, b) v = GP (GMap a (GMap b v))

Like a type instance, there may be many data instance declarations for each
data family, each having a different type pattern to the left of the “=”. The rest
of the declaration is just like a regular Haskell data type declaration: it defines
one or more constructors. (They can even be GADTs!)

Data type families are really only useful in association with type classes; we
refer the reader to [4] for details. In contrast to type functions, it is extremely
straightforward to add data type families to the type inference engine, and we
do not discuss them further here.

3 Technical challenges

To add type functions to Haskell we must explain how to adapt the type inference
engine to accommodate them. Parts of this turned out to be very easy but,
somewhat to our surprise, other parts were much harder than we anticipated.
One of the main contributions of this paper is to identify just what is hard,
although we have space only to sketch our solution.

238

3.1 The easy part: type inference

Consider the problem of doing pure type inference (i.e. with no types declared
by the programmer) in the presence of type functions.

This is an easy problem. Recall that the type instance declarations are
restricted (Section 2.5) so that they can be regarded as a left-to-right rewrite
system that is (a) confluent and (b) terminating. Type inference is conventionally
done using unification (see [18] for a tutorial). When type functions are added,
we modify the unifier so that when it tries to unify two types, it first normalises
them using the rewrite rules.

If performed too early, this normalisation may get “stuck”. For example,
consider inferring the type for

\c -> (insert ’x’ c, length c)

where insert was defined in Section 2.1, and length has its usual type:

insert :: Collects c => Elem c -> c -> c
length :: [a] -> Int

Initially, type inference assigns an unknown type α to c. The insert call requires
us to unify Char (the type of ’x’) with Elem α (the argument type of insert).
Since we do not know what α is, normalisation gets stuck. But all is well, because
“later”, the call length c forces α to be unified with [β]; and now the stuck
normalisation can proceed, rewriting Elem [β] to β.

So all we need is a way to suspend stuck unifications, and try them again
later. That is, we must gather as-yet-unsatisfied equality constraints from the
term, and attempt to solve them later. Happily, Haskell already requires us to
gather type-class constraints from the term, so all the plumbing is already in
place.

All that remains is to consider generalisation. Consider the definition

f = \c -> insert ’x’ c

When we come to generalise f, the stuck unification is still stuck! But that
is easy: just as we abstract over type class constraints in this situation, so we
abstract over equality constraints, to give the type

f :: ∀a.(Collects a, Elem a ∼ Char) =⇒ a→ a

3.2 The hard part: type checking

Alas, we cannot live with type inference alone. Type checking is necessary as
well, for a number of reasons:

– Programmers want to write signatures, as a form of specification or docu-
mentation of their program.

– Full type inference is infeasible for a number of type system features, notably
for GADTs [24].

239

Consider again the vconcat function:

vconcat :: Vector e n -> Vector e m -> Vector e (Sum n m)
vconcat Nil l = l
vconcat (Cons x xs) ys = Cons x (vconcat xs ys)

Let us focus on the first equation alone, the case for Nil. We know that l is of
type Vector e m. The program type checks if we can show that l is also of type
Vector e (Sum n m). If we drop the identical parts, this boils down to showing
that m equals Sum n m. How can we establish this equality? The pattern match
Nil makes available the (local) assumption n∼ Z. So we want to deduce that

n ∼ Z =⇒ m ∼ Sum n m

And this holds, of course, because we can make use of the top-level type-function
equations for Sum:

(∀ys.Sum Z ys ∼ ys),
(∀xs, ys.Sum (S xs) ys ∼ S (Sum xs ys)) |= n ∼ Z =⇒ m ∼ Sum n m

Similar reasoning applies to the Cons case.
In general, type checking is reduced to an entailment check among type equa-

tions with respect to an equational theory:

Et |= Eg =⇒ Ew

where

– Et (top-level equations) refers to the type function theory, i.e. the top-level
type function definitions. These equations may involve universal quantifica-
tion; e.g. ∀ys.Sum Z ys ∼ ys.

– Eg are the given equations arising from type annotations and GADT pattern
matchings, for example n∼ Z. These equations are over monotypes, with no
universal quantification.

– Ew are the wanted equations arising out of expressions, for example m ∼
Sum n m. Again, the equations are over monotypes.

3.3 The type checking strategy

The type inference strategy was to use the top-level equations Et to normalise
the wanted constraints Ew. But we cannot do this for type checking, because the
additional given constraints Eg do not necessarily form a terminating, confluent
rewrite system, particularly when combined with Et:

1. They are not properly oriented to ensure termination. E.g. the TRS formed
by top-level equation F Bool = Int and given equation Int ∼ F Bool is
clearly looping.

2. They may well be inconsistent (i.e. non-confluent) with respect to each other
or the top-level equations. E.g. the TRS formed by top-level equation F Bool
= Int and given equation F Bool∼ Char is not consistent.

240

The solution of these issues is to transform the given equations Eg into an
equivalent set of equations E′g that does satisfy all the necessary properties.
In TRS-terminology, the problem of finding an such an E′g is known as the
completion problem.

Unfortunately, there is no off-the-shelf completion algorithm that suits our
needs. Existing completion procedures are either undecidable [3] or restricted to
systems of ground equations [19]. What we require is a completion algorithm that
is (1) decidable and (2) takes into account the non-ground top-level equations. In
addition, we want to exploit the injectivity property of Haskell type constructors
(usually not considered in TRS). We have therefore devised a novel completion
algorithm that satisfies all our requirements; this algorithm is our main technical
contribution.

Our completion algorithm comprises the following steps:

– Top: Eg is normalised with respect to Et, e.g. Int ∼ F Bool is normalised
to Int∼ Char with respect to F Bool = Int, exposing the inconsistency.

– Trivial: Trivial equations are dropped, e.g. F a∼F a, avoiding trivial non-
termination.

– Decomp: Non-essential type constructors are dropped , e.g. (F a,F b) ∼
(Int,Bool) becomes F a∼ Int and F b∼ Bool.

– Swap: Equations are oriented properly, e.g. Int∼F Bool becomes F Bool∼
Int.

– Subst: of Eg are substituted in each other, exposing inconsistencies. E.g
F a∼ Int is substituted in F a∼ Char,resulting in Int∼ Char.

Moreover, our completion algorithm successfully deals with particularly diffi-
cult given equations like F Int∼ [G (F Int)]. From left-to-right, the equation
is non-terminating (the left-hand side occurs in the right-hand side), while the
Swap rule rejects the right-to-left orientation. Our solution is to break the equa-
tion into two new equations: F Int∼a and [G (F Int)]∼a where a is a skolem
constant. After further completion we end up with F Int∼a and [G a]∼a which
is a proper strongly-normalising TRS.

An inconsistency discovered during completion, e.g. Int∼ Char, means that
no evidence can be provided to support the given equations. While not ill-typed,
the code under consideration is effectively unreachable.6

3.4 Restrictions on type function definitions

We already mentioned that a number of conditions must be imposed on the
top-level type function definitions for reasons of soundness and completeness of
our type checking strategy. The ground rules are these:

Modularity type instance declarations may be added one at a time, and
must be individually accepted or rejected. It is not acceptable to require a
global analysis of all the type instance, followed by a “yes” or “no” answer.

6 Our implementation raises an error to alert the programmer.

241

Arbitrary given constraints We may place restrictions on the type instance
definitions, but we should place no restrictions on the additional given con-
straints Eg, because pattern matching on a GADT can give rise to arbitrary
constraints.

Simplicity The simpler the rules, the better.

As an example of the need for arbitrary given constraints Eg consider the fol-
lowing program:

data Eq a b where
EQ :: EQ a a

f :: Eq (F a) (G a) -> Int
f EQ = ...

where F and G are type functions In the right hand side of f, we have the given
equation F a ∼ G a, and clearly we could have given rise to an arbitrary such
equation simply by choosing a different type signature for f.

Confluence The TRS-based type checking strategy requires that the top-level
equations are confluent. For terminating rewrite systems, confluence is a decid-
able property: the test is based on the normalisation of critical pairs [13]. For
reasons of modularity and simplicity7, we propose more restrictive properties:

1a. The heads of type function definitions do not contain (nested) type functions.
1b. The heads of type function definitions may not overlap.

The first of these is analogous to requiring that the patterns in an ordinary
function definition use only variables and constructors, but not functions.

The second ensures that only one equation can match, and hence their order
does not matter. Remember that, unlike Haskell function definitions, but like
instance declarations, the type instance declarations for a type function are
not required to occur all together, and hence are un-ordered. For example, the
rule excludes this non-confluent overlap:

type instance F Int = Bool
type instance F Int = Char

but also excludes this set of confluent definitions:

type instance F Int = G Bool
type instance F Int = G Char

type instance G Bool = ()
type instance G Char = ()

7 from the points of view of programmers and compiler writers

242

Termination Next to confluence, termination of the TRS is essential for the
completeness of our type checking strategy. The main principle for establishing
termination in rule-based languages (to which type definitions belong) is that
of decreasing calls [2]. A level-mapping assigns a value to all function calls; and
all rules must satisfy the property that the level mappings of all calls in the
right-hand side are smaller than the level-mapping of the rule-head. State-of-
the-art termination analysers, e.g. [10], are capable of automatically inferring
level-mappings in terms of various well-founded orders [7] .

For reasons of modularity and simplicity, we propose not implement a state-
of-the-art termination analysis, but rather to impose two simple conditions on
all individual type definition clauses:

2a. The number of symbols (type constructors and schema variables) in each
type function call in the body, is smaller than the number of the head.

2b. The number of occurrences of any schema variable in each type function call
in the body, is smaller than the number of the head.

Completion Perhaps surprisingly, confluence and termination of the top-level
equations is not enough. We must still account the completion of the given
equations. Let’s consider a single type instance that respects all the above
conditions:

type instance H [[a]] = H (G a)

and the single given equation G Int∼ [[Int]]. The completion algorithm pre-
serves this given equation, and yet the union of the two equations is not termi-
nating: H [[Int]] � H (G Int) � H [[Int]] �

It turns out that the problem is caused by the nested function call H (G a).
We have gained much insight by expressing our problem as a set of Constraint
Handling Rules (CHRs); in that setting, a nested function call corresponds to a
“non-range restricted simplification rule”, which is known to be symptomatic of
termination problems [22].

Our current solution is simple, if brutal; we add one further restriction:

3. No type function call may occur inside another type function call in a type
definition clause.

Sadly, this restriction renders illegal a class of useful (usually closed) functions,
e.g.:

type instance Mult Z m = Z
type instance Mult (S n) m = Sum (Mult n m) m

Perhaps a more relaxed rule would suffice, a question we leave for future work.

3.5 Type-directed compilation

In a type-directed compiler, the type checker’s task goes beyond providing a
simple yes (the program is well-typed) or no (it’s not). It must also generate the

243

necessary type information to enable the desugaring of the source language into
the strongly-typed intermediate language. Hence, we adapt our type checking
algorithm to generate type information for System FC [23]. This is an extension
of System F, which has been specifically designed as a practical compiler backed
for Haskell, and is in actual use in GHC.

Encoding System FC already has the essential ingredients, type functions and
equality coercions, which have already proven their usefulness for encoding GADTs
and associated type synonyms.

System FC ’s type functions and their definition are essentially identical to
those in the source language, but the equality coercions deserve a little expla-
nation. Thanks to its syntax-directedness, type checking in System FC is much
cheaper than in Haskell: declared and inferred types are checked for syntactic
equivalence, e.g. Int ≡ Int.

However, the inference of non-syntactical equivalence proofs, like F Int ∼
Bool, is problematic in System FC . The reason is that the set of equational
axioms in System FC may be inconsistent. In particular, the internally consistent
set of type function clauses may be at odds with the newtype axioms.

Example 1. The newtype X = Int is encoded in System FC as an axiom X∼Int,
which conflicts with the type function:

type instance F X = Char
type instance F Int = Bool

We can show that F X is both equal to Char and Bool, the former via the first
clause of F and the latter via the newtype axiom and the second clause.

Fortunately, it is not necessary to repeat a proof that was already made by
the Haskell type checker. The Haskell type checker can create a witness γ for
the proof. Now the System FC type checker can simply check the proof, based
on its witness, rather than to infer it anew. This avoids the unsoundness pitfall
and, as a bonus, checking a proof is also much cheaper than inferring it.

In System FC , evidence is represented by a coercion γ, a special form of types
whose kind is an equation, e.g. γ : F Int∼Bool means that γ is evidence for the
equation F Int∼Bool. Coercion constants are denoted C and coercion variables
co.

In System FC , a unique coercion constant is associated with every type func-
tion clause, e.g. C : type instance F Int = Bool. Similarly, a given equa-
tional constraint, translates to a coercion variable, e.g.

id :: forall a b . a ~ b => a -> b
id = \x -> x

is encoded in System FC as:

id :: forall a b . a∼ b => a -> b
id x = id = Λ(a:*).Λ(b:*).Λ(co:a∼ b).λ(x:a).(...)

244

In order to type check an expression x whose inferred and expected types are
a and b respectively, it has to be cast with the appropriate the evidence: e I γ
where γ has kind a∼ b. Because types are eventually erased, these casts do not
incur any runtime overhead.

Example 2. The full encoding of the above id function in System FC is:

id = Λ(a:*).Λ(b:*).Λ(co:a∼ b).λ(x:a).(x I co)

Complex coercions can be constructed from primitive coercions with coercion
constructors:

– sym γ has kind a∼ b if γ has kind a∼ b.
– γ1 ◦ γ2 has kind a∼ c if γ1 has kind a∼ b and γ2 has kind b∼ c.
– T γ has kind T a∼ T b if γ has kind a∼ b, where T is a type constructor.
– T γ has kind T a∼ T b if γ has kind a∼ b, where T is a type constructor.
– decompT,i γ has kind ai ∼ bi if γ has kind T ā ∼ T b̄, where T is a type

constructor.

Example 3. Using the previously defined type function F, the program:

main :: F Int
main = id True

is encoded in System FC as:

main :: F Int
main = id @ Bool @ (F Int) @ (sym C) True

where type applications are denoted by @.

Coercion generation Given the appropriate coercions, the System FC encoding
of a Haskell program is a pretty straightforward matter. The hard part is of
course the generation of these appropriate coercions, a task of the Haskell type
checker.

Whenever the Haskell type checker constructs a wanted equation τ1∼ τ2, i.e.
to equate the inferred and expected types τ1 and τ2 of an expression e:

1. it creates a fresh unknown coercion γ of kind τ1 ∼ τ2,
2. it inserts a cast in the code: e I γ, and
3. it associates the coercion with the wanted equation, denoted γ : τ1 ∼ τ2.

Whenever the type checker discharges a wanted equation, it fills in the un-
known coercion, e.g. γ := γ′ where γ′ has the same kind as γ. This is the hard
part: how do we track the coercions of the top-level and given equations through
the rewriting process of our type checking algorithm?

Firstly, it’s not a simple matter of matching up some given equation with
a whole wanted equation. Our algorithm is based on rewriting individually the
left- and right-hand sides of a wanted equation, i.e. τ1 �∗ τ and τ2 �∗ τ , to
obtain a trivial equation of the form τ ∼ τ .

Hence, we must construct two coercions γ1 and γ2, one to justify each rewrit-
ing, i.e. γ1 : τ1∼τ and γ2 : τ2∼τ . From these two coercions we can then determine
the unknown coercion: γ := γ1 ◦ sym γ2.

245

Example 4. Given these two clauses:

C1 : type instance F Int = Bool
C2 : type instance F Char = Bool

the type checker rewrites the left- and right-hand sides of the wanted equation
γ : F Int ∼ F Char to Bool with coercions C1 and C2 respectively. Hence, the
unknown coercion γ is determined as C1 ◦ sym C2.

Secondly, we have to account for the completion phase. In the completion
phase, the given equations are transformed. Hence, it’s corresponding evidence
has to be transformed accordingly. For that purpose, all the steps in the com-
pletion algorithm of Section 3.3 have to be augmented with coercion transfor-
mations. For example:

– γ : Bool∼ F Int transformed with the Swap step, becomes sym γ : F Int∼
Bool,

– γ : (F a,F b)∼(Int,Bool) decomposed with Decomp, becomes decomp(,),1 γ :
F a∼ Int and decomp(,),2 γ : F b∼ Bool.

4 Type functions versus functional dependencies

One of the most hotly debated questions in the latest standardisation process of
the Haskell language (Haskell Prime [17]) is:

Should Haskell Prime adopt either functional dependencies or associated
type synonyms?

There is little sense in providing two features for expressing functional relations.
The above question now subsumed by a new one:

Should Haskell Prime adopt either functional dependencies or type func-
tions?

We see three possible reasons for preferring type functions:

1. Type functions are inherently more familiar to functional programmers: it is
a small step from functions at the value level to functions at the type level.

2. Type functions have their uses outside of type classes. Similar encodings
with functional dependencies are rather bloated.

3. While functional dependencies have been around for quite a while now, it
seems type checking for them is still rather ill-understood. In contrast, our
prototype implementation of type functions type checks has no problems
with GHC’s open bugs related to functional dependencies.

However, before we consider the question from the point of view of language
and compiler design (as the above arguments do), we first have to study a more
pressing matter:

246

Is either of functional dependencies or type functions more expressive
than the other?

While we do not yet have a formal result, we claim that both language features
are indeed equally expressive. In the remainder of this section we justify our claim
constructively and present translations both ways. Hence, language designers
and compiler writers can happily disagree: the first group gets to choose what
language feature to program in and the second group what language feature to
implement.

4.1 From functional dependencies to type functions

We claim that every program involving functional dependencies can be re-expressed
to one involving only type functions. This can often by done in an idiomatic
way; for example, consider the way in which we re-expressed the two-parameter
Collects class using a single-parameter class together with a type function
(Section 2.1). But it is less clear how to translate classes with multiple or bi-
directional functional dependencies, such as

class C a b | a -> b, b -> a where ..

Furthermore, if one starts with an existing program, the idiomatic translation
is somewhat invasive because every occurrence of Collects must be changed
to remove a type parameter, and new equality constraints must sometimes be
added. For example,

merge :: (Collects c1 e, Collects c2 e) => c1 -> c2 -> c2

must become that of Section 2.4:

merge :: (Collects c1, Collects c2, Elem c1∼ Elem c2) => c1 -> c2 -> c2

Thus motivated, we have developed an alternative, minimally invasive trans-
lation scheme from functional dependencies to type functions. The scheme is
minimally invasive because it only affects class and instance declarations,
and leaves all else untouched.

It works as follows. In the class declaration each functional dependency
ā→ b is replaced by: (1) a new (associated) type function F ā and (2) a context
constraint F ā ∼ b. In every instance the proper type function instance is
added.

Example 5. The transformed type class for collections is:

class Elem c∼ e => Collects c e where
type Elem c

instance Collects [e] e where
type Elem [e] = e

instance Collects BitSet Char where
type Elem BitSet = Char

247

4.2 From type functions to functional dependencies

At first sight, the second part of the question should be answered negatively: as
type functions do not have to be associated with type classes they are strictly
more expressive. However, we can of course consider a fresh type class with
functional dependencies (but no methods) to replace a stand-alone type family.

Example 6. The stand-alone type function Sum could be replaced by:

class Sum a b c | a b -> c

instance Sum Zero b b
instance Sum a b c => Sum (Succ a) b (Succ c)

In general, we can replace an n-ary type function with an (n + 1)-ary type
class, with a functional dependency from the n first arguments to the last one.
Every function instance becomes a class instance where the n arguments of the
LHS make up the n first arguments and the RHS becomes the (n+1)th argument.
Any function calls in the RHS have to be flattened into relational form in the
instance context.

Matters become more complicated when data types are involved. For exam-
ple, the following is perfectly legal in our system:

data T c = MkT [Elem c]

That is, a value of type T c is a MkT constructor wrapping a list of elements of
collection type c. Notice that no type-class constraints are involved here. It is
unclear how to translate this to functional dependencies. Certainly, we must add
a new type parameter to the data type T, but then we need a way to express the
connection between the two parameters. Something like this, perhaps?

data Collects c e => T c e = MkT [e]

But it is not clear that the Collects c e context on this declaration has the
“right” effect. Similar complications arise with type synonyms and newtypes;
see [8, Chapter 5]. A substantial advantage of our approach is that these com-
plications go away.

5 Related work

Existing languages with type functions differ on various accounts from Haskell
type functions. They only offer a fixed set of predefined functions (e.g. ATS
[6]), type checking is incomplete (e.g. Cayenne [1], Epigram [15], Omega [21])
or the programmer has to construct the proofs himself (e.g. LH [14]). Moreover,
all these languages assume that type functions are closed. More closely related
to our work is the Chameleon system described in [25]. Chameleon makes use
of the Constraint Handling Rules (CHR) [9] formalism for the specification of
type class and type improvement relations. CHR is a committed-choice language

248

consisting of constraint rewrite rules. We expect to model open type functions
via CHR rewrite rules which hopefully allows us to transfer some of the existing
CHR type inference results [22] to the type function setting. The hard part so
far has been modelling the treatment of evidence in CHR, which is reasonably
straightforward in our current TRS formalism.

Both Neubauer et al. [16] and Diatchki [8] propose a functional notation for
type classes with a functional dependencies. However, this notation is essentially
syntactical sugar for the conventional relational notation of type classes. So these
approaches gain the convenience of a functional notation, but miss the other
advantages of our approach, especially concerning the use of type functions in
the definition of data types.

6 Conclusion & future work

We have presented type functions, open functions at the type level. While they’re
equally expressive as functional dependencies when used with type classes, type
functions can also be put to good use with GADTs and phantom types. We
sketched a type checking strategy based on completion and term rewriting. Our
implementation of type functions is available in the GHC HEAD branch, and is
documented at http://haskell.org/haskellwiki/GHC/Type_families.

In future work we would like to extend the decidable class of type functions.
It seems that closed type functions would allow us to relax a number of cur-
rent modularity restrictions. Moreover, they should allow for additional proof
strength. For example, we cannot currently show that Sum a Zero∼ a because
Sum is an open function. Valid extensions of the function, like Sum Int Zero =
Bool, do not satisfy this property.

The further comparison of functional dependencies and type functions is of
great interest. We believe that type functions are a better choice, from the point
of view of both language design and type checking.

Finally, the performance of the our type checking algorithm deserves further
attention. In particular we should establish its worst and average time complex-
ities, and the impact on programs that do not involve type functions.

Acknowledgments

We would like to thank Roman Leshchinskiy for his comments and for uprooting
bugs in our preliminary implementation, and James Chapman for explaining the
current state of Epigram.

Part of this work was conducted during an internship of Tom Schrijvers at
Microsoft Research Cambridge.

References

1. L. Augustsson. Cayenne - a language with dependent types. In Proc. of ICFP’98,
pages 239–250. ACM Press, 1998.

249

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

3. W. Boone. The word problem. Annals of Mathematics, 70:207–265, 1959.
4. M. Chakravarty, G. Keller, S. Peyton Jones, and S. Marlow. Associated types with

class. In ACM Symposium on Principles of Programming Languages (POPL’05).
ACM, 2005.

5. M. M. T. Chakravarty, G. Keller, and S. P. Jones. Associated type synonyms. In
ICFP ’05: Proceedings of the tenth ACM SIGPLAN international conference on
Functional programming, pages 241–253, New York, NY, USA, 2005. ACM Press.

6. C. Chen and H. Xi. Combining programming with theorem proving. In Proc. of
ICFP’05, pages 66–77. ACM Press, 2005.

7. S. Decorte, D. D. Schreye, and M. Fabris. Automatic inference of norms: a miss-
ing link in automatic termination analysis. In ILPS ’93: Proceedings of the 1993
international symposium on Logic programming, pages 420–436, Cambridge, MA,
USA, 1993. MIT Press.

8. I. S. Diatchki. High-level abstractions for low-level programming. PhD thesis, OGI
School of Science & Engineering, May 2007.

9. T. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming, 37(1–3):95–138, 1998.

10. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated Termination
Proofs with AProVE. In Proceedings of the 15th International Conference on
Rewriting Techniques and Applications (RTA-04), volume 3091 of Lecture Notes
in Computer Science, pages 210–220, Aachen, Germany, 2004.

11. R. Hinze. Fun with phantom types. In J. Gibbons and O. de Moor, editors, The Fun
of Programming, pages 245–262. Palgrave Macmillan, 2003. ISBN 1-4039-0772-2
hardback, ISBN 0-333-99285-7 paperback.

12. M. P. Jones. Type classes with functional dependencies. In Proceedings of the
9th European Symposium on Programming (ESOP 2000), number 1782 in Lecture
Notes in Computer Science. Springer-Verlag, 2000.

13. D. Knuth and P. Bendix. Simple word problems in universal algebras. Computa-
tional Problems in Abstract Algebra, pages 263–297, 1970.

14. D. R. Licata and R. Harper. A formulation of Dependent ML with explicit equality
proofs. Technical Report CMU-CS-05-178, Carnegie Mellon University Department
of Computer Science, 2005.

15. C. McBride. Epigram: A dependently typed functional programming language.
http://www.dur.ac.uk/CARG/epigram/.

16. M. Neubauer, P. Thiemann, M. Gasbichler, and M. Sperber. A functional notation
for functional dependencies. In Proceedings of the 2001 Haskell Workshop, 2001.

17. S. Peyton-Jones et al. The Haskell Prime Report, 2007. Working draft.
18. S. Peyton Jones, D. Vytiniotis, S. Weirich, and M. Shields. Practical type inference

for arbitrary-rank types. Journal of Functional Programming, 17:1–82, Jan. 2007.
19. D. A. Plaisted and A. Sattler-Klein. Proof lengths for equational completion. Inf.

Comput., 125(2):154–170, 1996.
20. T. Schrijvers, M. Sulzmann, S. Peyton-Jones, and M. Chakravarty. Type checking

for type functions. Draft report available from the authors, July 2007.
21. T. Sheard. Type-level computation using narrowing in Omega. In Proceedings

of the Programming Languages meets Program Verification (PLPV 2006), volume
174 of Electronic Notes in Computer Science, pages 105–128, 2006.

22. P. J. Stuckey and M. Sulzmann. A theory of overloading. ACM Transactions on
Programming Languages and Systems (TOPLAS), 27(6):1–54, 2005.

250

23. M. Sulzmann, M. M. T. Chakravarty, S. P. Jones, and K. Donnelly. System F with
type equality coercions. In TLDI ’07: Proceedings of the 2007 ACM SIGPLAN
international workshop on Types in languages design and implementation, pages
53–66, New York, NY, USA, 2007. ACM Press.

24. M. Sulzmann, T. Schrijvers, and P. J. Stuckey. Type inference for GADTs via
Herbrand constraint abduction. Manuscript, July 2006.

25. M. Sulzmann, J. Wazny, and P.J.Stuckey. A framework for extended algebraic data
types. In Proc. of FLOPS’06, volume 3945 of LNCS, pages 47–64. Springer-Verlag,
2006.

251

Transparant
Ajax and Client-Site Evaluation

of
iTasks

– Draft Version –

Rinus Plasmeijer, Jan Martin Jansen, Pieter Koopman, and Peter Achten

Radboud University Nijmegen, Netherlands
rinus@cs.ru.nl, jm.jansen.04@nlda.nl, pieter@cs.ru.nl, p.achten@cs.ru.nl

Abstract

The iTask system is a combinator library written in Clean which allows the spec-
ification of multi-user workflow systems for the web. The iTask system generates
forms that have to be filled in and submitted by the user. Each user has a set
of tasks that can be processed in any order. The submission of a form might
terminate existing tasks or create new tasks for the user herself as well as for
other users. As a consequence a single event can cause a very complex state
change on the server and can effect the work of many other users.

The advantages of using a browser as interface to a workflow system created
with the iTask library is that no software has to be installed at the client site and
that the look and feel of the GUI is familiar to every user. A drawback of this
architecture is that the response might become rather slow when there are many
users and many tasks. For each and every event on the client a message is sent to
the server over the world wide web. The server processes the event and generates
a new web-page for the user containing all her new tasks. For the calculation of
the set of new tasks, the state of all other tasks has to be examined. Due to the
delay of the world wide web and the creation, transportation and rendering of
the complete new page by the browser, the response of a workflow system can
become relatively slow.

In this paper we present two solutions for dealing with this performance
problem.

First we introduce a combinator ‘UseAjax’ that cause the workflow system
to use Ajax technology for handling a (sub)task. This has as consequence that
only a part of the web page is updated instead of the creation, sending and
rendering of an entire new page. The advantage of this extension is not only a
smoother reaction in the browser on changes being made. Also the efficiency for
large workflow systems is commonly improved in this way because most of the
time only a smaller, for this (sub)task relevant, part of the current state needs
to be recalculated.

252

For the definition of the workflow system a single annotation ‘UseAjax’ is
sufficient. The implementation of this feature in the iTask library requires a
Java script that runs on the client as well as a call-back function that handles
the event. For the implementation this requires the possibility to store Clean
functions temporarily in a web page as well as the possibility to store them in a
persistent store at the server site such as in a file or in a database.

The second extension is another annotation, ‘OnTheClient’, which allows
client site evaluation of tasks.

Since no call at all has to be made to the server when such a task is evaluated,
there is no web communication overhead anymore as is the case when Ajax
technology is being used. For the implementation of this feature one needs to be
able to execute the tasks specified in Clean in the browser at the client site. We
realize this with an interpreter for Clean code running in the browser. Therefore
Clean is compiled to Sapl and this code is loaded into the browser together with
the compact and efficient Sapl interpreter. Of course, code interpreted by the
Sapl interpreter running in the browser is not as efficient as the execution of
compiled Clean code at the server. So, there is also an efficiency penalty when
‘OnTheClient’ is chosen instead of ‘UseAjax’.

By choosing one of the annotations, the programmer can define which eval-
uation method preferably should be used for a certain (set of) tasks.

Whenever evaluation ‘OnTheClient’ is not possible for some reason (e.g. when
a database needs to be inspected on the server) the system can automatically
decide to ‘UseAjax’ instead.

2

253

Static inference
of non-monotonic polynomial sized types

Olha Shkaravska, Marko van Eekelen

Institute for Computing and Information Sciences
Radboud University Nijmegen
{shkarav, marko}@cs.ru.nl

Extended Abstract

This work is done in the context of the NWO-funded1 AHA-project [5] which
studies heap space analysis. In this paper we consider first-order function defini-
tions over lists such that the sizes of outputs polynomially depend on the sizes
of inputs. An example of such program is a standard definition for ++, append-
ing two lists of the same type. Size dependencies we study are not necessarily
linear, as in Pareto’s approach [2], or monotonic as in [7] and for polynomial
interpretations [1].

In [3] we introduced a type system with static type checking and with dy-
namic type inference based on the fact that a polynomial is defined by a finite
number of points on its graph. Running tests of a given program on an appro-
priate set of inputs (see [6] for the principles of choice of inputs) one obtains a
finite collection of test data that defines a system of linear equations. Its solution
is the vector of coefficients of the polynomial expressing the hypothetical size
dependency. There are several size polynomials if the output type is a nested
list. The polynomials annotate corresponding underlying first-order types and
these sized types are checked by a type-checker. If the type-checker rejects the
first-order type, one continues the procedure for a polynomial of a higher degree.

The procedure non-terminates in two cases: either a program under consid-
eration does not terminate on the proposed test inputs, or it is not well-typed.

In this paper we “lift” the non-termination issue from the level of a code
to the level of types. This makes the approach uniform and we can control
termination. Given a first-order function definition, a standard type-inference
procedure ends up with a set of (recurrent) relations for size dependencies. In
general, recurrences derived by a standard type-inference procedure may be non-
linear and multivariate (see [4] for the example). It is very unlikely that there
exists a solver that solves all types of them. However, once one assumes that
the solution is a polynomial, one may statically “unfold” the recurrences to
obtain values of the size functions(s), compute the coefficients and type-check
the resulting polynomials.

1 This project is sponsored by the Netherlands Organization for Scientific Research
(NWO) under grantnr. 612.063.511.

254

The recurrence relations fully define the output size dependencies: if the func-
tion definition has a sized type, then its size annotations solves the recurrences,
and, vice verse, if the recurrence has a solution then it annotates the output
type. This implies, that if the function definition does have a sized type with
unique polynomial size annotations of given degrees, then the recurrence defines
it uniquely, i.e. with this recurrence one is able to evaluate some points on the
graph of the polynomial that define this polynomial uniquely. Indeed, if the re-
currences does not give enough points to define a polynomial of a given degree,
then either it is of a lower degree, or the size annotations are not unique, or they
are not polynomial.

To illustrate our idea, consider as an example the function diff(x, y) with
the size polynomial p(n,m) = n−m that non-terminates if |y| > |x|:

diff [] [] =[]
diff [] xs:ys = diff [] xs:ys (*non-terminating branch!*)
diff xs:ys [] = xs:ys
diff xs:ys xxs:yys = diff ys yys

To continue, we need to recall some ML-style typing rules. A typing judgment
is a relation of the form D; Γ `Σ e : τ which means that if the free program
variables of the expression e have the types defined by Γ , and the functions
called have the types defined by Σ, and the size constraints D are satisfied, then
e will be evaluated to a value of type τ , if it terminates. For example:

D ` p = p′ + 1

D; Γ, hd : τ, tl : [τ]p
′ `Σ cons(hd , tl) :[τ]p

Cons

Γ (x) = Int D; Γ `Σ et :τ D; Γ `Σ ef :τ
D; Γ `Σ if x then et else ef :τ If

p = 0, D; Γ, x : [τ ′]p `Σ enil :τ
hd , tl 6∈ dom(Γ) D; Γ, hd : τ ′, x : [τ ′]p, tl : [τ ′]p−1 `Σ econs :τ

D; Γ, x : [τ ′]p `Σ match x with | nil ⇒ enil

| cons(hd , tl) ⇒ econs

:τ
Match

Sized type checking eventually amounts to checking entailments of the form
D ` p = p′, which means that p = p′ is derivable from D in the axiomatics
of the ring of integers. Because p and p′ are known polynomials of universally
quantified size variables, comparing them by a type-checker is straightforward.
A syntactical condition that prohibits let-bindings before pattern matching was
shown to be necessary and sufficient to make type checking decidable for this
system [3].
We want to infer diff’s sized type [a]n×[a]m −→ [a](n−m). Recurrence equations
for its size function are

255

p(0, 0) = 0 (1)
p(0,m) = p(0,m) (2)
p(n, 0) = n (3)
p(n,m) = p(n− 1,m− 1) (4)

Using, for instance, diagonal parsing of the space N2, we see that we can
compute p(0, 0) = 0, p(1, 0) = 1 p(1, 1) = 0. This is suffice to obtain a, b, c for
p(x, y) = ax + by + c. Solving the corresponding system

0a + 0b + c = p(0, 0) = 0
a + 0b + c = p(1, 0) = 1
a + b + c = p(1, 1) = 0

gives a = 1, b = −1, c = 0. Note, that due to diagonal search the nodes satisfy
the configuration that assures the uniqueness of the solution of the system of
linear equations for a, b, c.

In the first version of the polynomial type-inference procedure we just use
the knowledge that with careful use of the recurrent rules one can eventually
compute enough points to define the size polynomial, if it exists. Using, for
instance, diagonal ordering of points on N2, one adds more and more points to
the set of terminating tests, and stops once the condition of the uniqueness of
the solution of the system of linear equations is fulfilled [6]. This is checkable by
finite search, but it is very exhaustive. We study possible optimisations of the
procedure.

References

1. J-Y Marion and R. Péchoux. Resource analysis by sup-interpretation. In FLOPS,
volume 3945 of Lecture Notes in Computer Science, pages 163–176. Springer, 2006.

2. L. Pareto. Sized Types. Chalmers University of Technology, 1998. Dissertation for
the Licentiate Degree in Computing Science.

3. O. Shkaravska, R. van Kesteren, and M. van Eekelen. Polynomial size analysis for
first-order functions. In S. Ronchi Della Rocca, editor, Typed Lambda Calculi and
Applications (TLCA’2007), Paris, France, volume 4583 of LNCS, pages 351 – 366.
Springer, 2007.

4. O. Shkaravska, R. van Kesteren, and M. van Eekelen. Polynomial size analysis of
first-order functions. Technical Report ICIS-R07004, Radboud University Nijmegen,
December 2007. http://www.cs.ru.nl/icis/Research.

5. M. van Eekelen, O. Shkaravska, R. van Kesteren, B. Jacobs, E. Poll, and S. Smetsers.
AHA: Amortized Heap Space Usage Analysis. In Marco Morazán, editor, Trends in
Functional Programming 8: Selected Papers of the 8th International Symposium on
Trends in Functional Programming (TFP07), New York, USA. Intellect Publishers,
UK, 2007. to appear.

6. R. van Kesteren, O. Shkaravska, and M. van Eekelen. Inferring static non-
monotonically sized types through testing. In Rachid Echahed, editor, 16th Inter-
national Workshop on Functional and (Constraint) Logic Programming (WFLP07),
Paris, France, pages 123 – 139. CNAM, France, 2007.

256

7. P. B. Vasconcelos and K. Hammond. Inferring cost equations for recursive, poly-
morphic and higher-order functional programs. In P. Trinder, G. Michaelson,
and R. Peña, editors, Implementation of Functional Languages: 15th International
Workshop, IFL 2003, Edinburgh, UK, September 8–11, 2003. Revised Papers, vol-
ume 3145 of Lecture Notes in Computer Science, pages 86–101. Springer-Verlag,
Berlin, 2004.

257

Efficient, Modular Tries

Sebastian Fischer and Frank Huch
University of Kiel, Germany

{sebf,fhu}@informatik.uni-kiel.de

Abstract. Tries are known to be an efficient data structure for storing
key value maps. Operations like insert, lookup, and delete can be im-
plemented as linear algorithms with respect to the size of the key and
independently of the size of the map.

However, all implementations of tries presented so far have drawbacks in
practical applications. The paper analyzes the existing proposals of trie
implementations, develops optimizations, such that the resulting imple-
mentation can compete with balanced search trees and in many cases
is even faster. Finally, the paper presents a modularized implementa-
tion of tries, which makes use of multi-parameter classes with functional
dependencies.

1 Introduction

Tries were originally invented by Axel Thue in 1912 and used to efficiently store
strings, conf. [5]. The idea is to collect strings in a tree data structure, such that
common prefixes are shared. The degree of branching within the tree is restricted
to the size of the alphabet. For instance, the following set of strings

{hat, home, hare, fun, funk}

can be represented by the following trie, where the elements within the set are
marked by a double circle:

e

m n

u

k

a

t r

h

e

f

o

The access to a string within the trie is linear with respect to the length (size)
of the string.

In Haskell such a trie data structure can be implemented as follows1:

1 For simplicity we restrict to an alphabet (Sigma) with only three letters.

258

data Sigma = A | B | C

type Str = [Sigma]

data SigmaT a = SigmaT (Maybe a) (Maybe a) (Maybe a)

-- for A for B for C

data StrT a = StrT (Maybe a) (Maybe (SigmaT (StrT a)))

-- for [] for (:)

We define a trie data structure (SigmaT and StrT) for every involved data struc-
ture. Each trie data structure has a single constructor. The alternative construc-
tors of the underlying data structure (e.g., A, B, C) are represented as arguments
within the trie structure, since each of them may be present within the repre-
sented key set. Since a key can be present or not within a trie we wrap every
argument of the trie structure with a Maybe type. If a constructor of the under-
lying data structure takes arguments, like (:) for Str, corresponding tries are
nested, such that the argument values can be inserted into the trie successively.

For instance, a trie for the set of words {[A],[A,B],[B]} is represented by
the following Haskell value:

StrT Nothing

(Just (SigmaT (Just (StrT (Just ())

(Just (SigmaT Nothing

(Just (StrT (Just ())

Nothing))

Nothing))))

(Just (StrT (Just ())

Nothing))

Nothing))

Operations for manipulating tries will be given later in this paper.
A generalized variant of this trie structure was proposed in [1]. Similarly to

strings, it allows arbitrary data structures as key within a trie. In this paper, we
use a very simple tree structure to demonstrate the idea of generalized tries:

data Tree = Leaf | Node Tree Tree

data TreeT a = TreeT (Maybe a) (Maybe (TreeT (TreeT a)))

-- for Leaf Node left subtree right subtree

The implementation uses non-uniform recursive types (a nested data type) which
requires polymorphic recursion in functions over this type.

2 Tries by Okasaki

In his famous book “Purely Functional Data Structures” [6] Okasaki presents an
implementation of string tries and generalized tries. The algorithms are presented
as ML implementation using functors as well as a Haskell implementation using
multi-parameter classes. In this paper we simplify his Haskell implementation
such that special access functions are defined for every trie type and we do not

259

provide tries for polymorphic data types. This simplification will make it easier
to analyze and optimize the implementation. We will later generalize our results
with a class framework, although simpler than his framework, as well.

The idea behind Okasakis implementation is slightly different than presented
in Section 1. He avoids the Maybe constructor for constructors with arity larger
than zero within the trie data structure, i.e.:

data StrT a = StrT (Maybe a) (SigmaT (StrT a))

-- for [] for (:)

In his framework, a trie implementation provides three functions:

– empty for the construction of an empty trie,
– lup for looking up the value a key is bound to, and
– bind to bind a key to a value.

For SigmaT the implementation of these functions is straight forward:

emptySigmaT :: SigmaT a

emptySigmaT = SigmaT Nothing Nothing Nothing

lupSigma :: Sigma -> SigmaT a -> Maybe a

lupSigma A (SigmaT ma _ _) = ma

lupSigma B (SigmaT _ mb _) = mb

lupSigma C (SigmaT _ _ mc) = mc

bindSigma :: Sigma -> a -> SigmaT a -> SigmaT a

bindSigma A v (SigmaT _ mb mc) = SigmaT (Just v) mb mc

bindSigma B v (SigmaT ma _ mc) = SigmaT ma (Just v) mc

bindSigma C v (SigmaT ma mb _) = SigmaT ma mb (Just v)

For StrT the implementation becomes a bit trickier.

emptyStrT :: StrT a

emptyStrT = StrT Nothing emptySigmaT

lupStr :: Str -> StrT a -> Maybe a

lupStr [] (StrT ma _) = ma

lupStr (a:as) (StrT _ sigmaT) = lupSigma a sigmaT >>= lupStr as

Looking up a nonempty Str successively looks up the two arguments of (:) in
the corresponding sub-trie. For the first argument (of type Sigma), we use the
corresponding lup function for SigmaT which returns a value of type Maybe StrT.
For a successful lookup we continue looking up the remaining Str. This can be
elegantly expressed by the bind operator (>>=) of the Maybe monad.

Binding a Str works similarly.

bindStr :: Str -> a -> StrT a -> StrT a

bindStr [] v (StrT _ sigmaT) = StrT (Just v) sigmaT

bindStr (a:as) v (StrT ma sigmaT) =

let t = maybe emptyStrT id (lupSigma a sigmaT)

t’ = bindStr as v t in

StrT ma (bindSigma a t’ sigmaT)

260

For a nonempty Str, we first look up the trie for the first letter (t), bind the re-
maining Str within this trie (t"), and finally bind the first letter to the modified
trie. If the trie does not contain an entry for the first letter yet, then we create
a new empty trie. This successively extends the trie for new keys.

Unfortunately, this implementation has some drawbacks, which become clear
for the generalization of the presented technique to arbitrary key types. We con-
sider a simple tree type to be used as keys within a trie:

data Tree = Empty | Node Tree Tree

Similar to the definitions for Str [6] proposes the following trie implementation
for this data structure:

data TreeT a = TreeT (Maybe a) (TreeT (TreeT a))

emptyTreeT :: TreeT a

emptyTreeT = TreeT Nothing emptyTreeT

lupTree :: Tree -> TreeT a -> Maybe a

lupTree Empty (TreeT lT nT) = lT

lupTree (Node l r) (TreeT lT nT) = lupTree l nT >>= lupTree r

bindTree :: Tree -> a -> TreeT a -> TreeT a

bindTree Empty x (TreeT lT nT) = TreeT (Just x) nT

bindTree (Node l r) x (TreeT lT nT) =

let t = maybe emptyTreeT id (lupTree l nT)

t’ = bindTree r x t in

TreeT lT (bindTree l t’ nT)

The functions lupTree and bindTree recursively access the nested data type TreeT

which requires polymorphic recursion, for which in general type inference is un-
decidable. Haskell 98 provides polymorphic recursion if a type signature is given,
such that type checking is sufficient.

Unfortunately, with this code several disadvantages of the proposed trie im-
plementation can be identified:

– The trie structure is infinite (conf. the definition of emptyTreeT). Hence, the
implementation cannot be used in a strict language like ML. This problem
occurs whenever a constructor of the key data type (here Node) is recursive
in its first argument. The ML example in [6] avoids this problem by an
additional value for Nodes within the tree as a first argument.
Although the infinite trie structure works fine in Haskell, it has another
disadvantage, if one extends the trie signature with a function unbind to
“delete” keys from the trie:

– A function for unbinding key could be defined as follows:

unbindTree :: Tree -> TreeT a -> TreeT a

unbindTree L (TreeT lT nT) = TreeT Nothing nT

unbindTree (N l r) (TreeT lT nT) =

TreeT lT (maybe nT (\t1 -> bindTree l (unbindTree r t1) nT)

(lupTree l nT))

261

With this function it is not possible to really “delete” keys from a trie. The
trie structure does not shrink. We can only associate the unbound key to
Nothing.
This can cause memory problems, e.g., when we encode a set and successively
add and remove elements from the set.

– In worst-case, the function bindTree and unbindTree are exponential with
respect to the key: for every Node its left sub-tree is looked-up and then
bound, which means traversed two times. Since this occurs in every recursive
call of bindTree, we obtain exponential worst-case complexity. The same
holds for unbind.

To overcome these drawbacks we keep the additional Maybe constructor within
the definition of the trie data structure. In a second step, we will optimize this
structure and avoid these additional Maybe values in Section 4.

3 Tidy Tries

As a first step, we extend the trie structure with a Maybe type again, such that
the trie can be terminated everywhere. This has several advantages:

– We can define linear bind and unbind and unbind operations,
– we have a finite representation for every trie which is also preferable for a

strict language, and
– as a consequence we are able to check whether complete subtrees are empty

when unbinding keys and cut off these sub-trees.

3.1 Linear Operations

As a first step, we improve the efficiency of binding and unbinding keys. Instead
of looking up sub-tries and inserting these trees again we pass continuations
through the trie, which finally modify the trie in the relevant positions. Instead
of defining functions bind and unbind we can define a more general and flexible
update function:

upTree :: Tree -> (Maybe a -> Maybe a) -> TreeT a -> TreeT a

upTree Leaf up (TreeT lT nT) = TreeT (up lT) nT

upTree (Node l r) up (TreeT lT nT) =

TreeT lT ((Just . upTree l (Just . upTree r up . ensureTreeT) .

ensureTreeT) nT)

ensureTreeT :: Maybe TreeT -> TreeT

ensureTreeT Nothing = emptyTreeT

ensureTreeT (Just t) = t

The key idea is that we can construct a special update function for each level with
the nested data type. The update function of the outer recursive call of upTree

modifies a TreeT (it has type Maybe (TreeT a) -> Maybe (TreeT a)), while we use
the original update function up :: Maybe a -> Maybe a in the inner recursive call.

262

The function ensureTreeT generates an empty trie for branches terminating with
Nothing. This extends the trie structure for new keys. Additionally, the result of
upTree has to be extended to a Maybe type by applying Just.

With this definition, we can easily implement Okasakis interface by means
of the more general function upTree:

bindTree :: Tree -> a -> TreeT a -> TreeT a

bindTree t v = upTree t (const (Just v))

unbindTree :: Tree -> TreeT a -> TreeT a

unbindTree t = upTree t (const Nothing)

3.2 Collapsing Tries

As a next step we can optimize the upTree function such that when unbinding a
value, empty sub-tries are collapsed. In other words, the trie structure is guar-
anteed to be as small as possible. If a key is deleted from the trie and there
exists no larger tree with the same prefix within the trie, then the trie should
contain a value of the form TreeT Nothing Nothing. Hence, instead of simply ap-
plying Just to this trie, we can collapse it in this case and return Nothing instead:

upTree (Node l r) up (TreeT lT nT) =

tidyTreeT (TreeT lT ((tidyTreeT . upTree l (tidyTreeT . upDTree r up .

ensureTreeT) .

ensureTreeT) nT))

tidyTreeT :: TreeT -> Maybe TreeT

tidyTreeT (TreeT Nothing Nothing) = Nothing

tidyTreeT t = Just t

Although this implementation via a more general function upTree is quite ele-
gant it has some overhead to a direct definition of bind and unbind: if the user
unbinds a key for which no binding exists, then a Nothing value for this key is
first added to the trie and deleted again afterwards. This can be avoided with
the definition of a special function upDTree for deleting values:

upDTree (Node l r) up (TreeT lT nT) =

tidyTreeT (TreeT lT ((tidyTreeT .

upDTree l (liftToMaybe (tidyTreeT .

upTree r up)))

nT))

liftToMaybe :: (TreeT a -> TreeT a) -> Maybe (TreeT a)

-> Maybe (TreeT a)

liftToMaybe f Nothing = Nothing

liftToMaybe f (Just tr) = Just (f tr)

The function liftToMaybe applies its functional argument (the recursive call)
only to existing tries. Otherwise the recursion is directly stopped and Nothing is
returned.

263

Similarly, we can avoid checking whether the tree can be collapsed when
inserting a new or updating an existing value with the first definition of upTree

which uses Just instead of tidyTreeT.

4 Avoid Maybes again

In comparison to Okasakis tries, the additional Maybe constructors consume more
memory, as the following trie for the key Node (Node Leaf Leaf) Leaf shows:

TreeT Nothing

(Just (TreeT Nothing

(Just (TreeT (Just (TreeT (Just TreeT (Just value))

Nothing)

Nothing)

Nothing))))

The underlines constructors would be avoided in Okasakis implementation. The
Just constructors do not occur at all, while the Nothing constructors, are repre-
sented by empty infinite trees. Is it possible, to avoid these additional construc-
tors without losing the opportunities of our implementation?

As a solution, we can push the Maybe constructor into the following trie data
type by adding a constructor for the empty trie:

data TreeT a = TreeT (Maybe a) (TreeT (TreeT a))

| NoTreeT

Then the superfluous Just constructors can be omitted and we can use NoTreeT

instead of Nothing. For the key Node (Node Leaf Leaf) Leaf we obtain the fol-
lowing trie:

TreeT Nothing

(TreeT Nothing

(TreeT (Just (TreeT (Just TreeT (Just value))

NoTreeT)

NoTreeT)

NoTreeT))

The functions for accessing the trie can be modified as follows:

lookupTree :: Tree -> TreeT a -> Maybe a

lookupTree _ NoTreeT = Nothing

lookupTree Leaf (TreeT lT _) = lT

lookupTree (Node l r) (TreeT _ nT) = lookupTree l treeT >>= lookupTree r

upTree :: Tree -> (Maybe a -> Maybe a) -> TreeT a -> TreeT a

upTree t up NoTreeT = tidyTreeT (upTree t up (TreeT Nothing NoTreeT))

upTree Leaf up (TreeT lT nT) = tidyTreeT (TreeT (up lT) nT)

upTree (Node l r) up (TreeT lT nT) =

tidyTreeT (TreeT lT (tidyTreeT (upTree l (treeTToMaybe . tidyTreeT .

upTree r up . ensureTreeT)

nT)))

264

tidyTreeT :: TreeT a -> TreeT a

tidyTreeT (TreeT Nothing NoTreeT) = NoTreeT

tidyTreeT trie = trie

treeTToMaybe :: TreeT a -> Maybe (TreeT a)

treeTToMaybe NoTreeT = Nothing

treeTToMaybe trie = Just trie

5 Combining Tries

Operations combining two tries can be defined quite easily by traversing both
tries in parallel. For instance the union and the intersection of two tries can be
defined as follows:

unionTreeT :: TreeT a -> TreeT a -> TreeT a

unionTreeT NoTreeT t = t

unionTreeT t NoTreeT = t

unionTreeT (TreeT lT1 nT1) (TreeT lT2 nT2) =

TreeT (maybe lT2 (const lT1) lT1) (unionTreeT nT1 nT2)

intersectTreeT :: TreeT a -> TreeT a -> TreeT a

intersectTreeT NoTreeT t = NoTreeT

intersectTreeT t NoTreeT = NoTreeT

intersectTreeT (TreeT lT1 nT1) (TreeT lT2 nT2) =

tidyTreeT (TreeT (lT2 >> lT1) (intersectTreeT nT1 nT2))

In both algorithms the values of the first trie are preferred.

6 Comparison with Balanced Search Trees

The most popular data structure in functional programming for efficiently stor-
ing key-value pairs are balanced search trees (bst), like also provided by the mod-
ule Data.Map for the Glasgow Haskell Compiler [3]. Popular implementations are
red-black-trees or AVL trees. Hence, we should compare our trie implementation
with bsts.

It is not so straight forward, to compare the complexity of the manipulations
of the two different map implementations. For simplicity, we first concentrate
on lookup. In worst-case looking up a key in a bst takes O(log n) time, where
n is the size of the bst, i.e., the number of keys already stored. In contrast to
this, looking up a value in a trie is independent of the elements within the trie
and takes O(m), where m is the size of the key. Hence, both algorithms seem
incomparable. But taking a closer look at the bst we see that also in the bst
looking up a value is linear in the size of the key, since two keys have to be
compared at every layer of the bst. We obtain O(m · log n) for the bst. The trie
is more efficient.

265

Unfortunately, this only holds for keys bound in the map. If a key is not
bound, then the finite map can be more efficient than the trie. In worst-case (if
the key is a prefix of another key bound in the trie), it takes O(m) to detect
that the key is not bound. In contrast, in the bst it may be the case that we
detect the missing binding in log n steps, where only small parts of the keys
were compared. Our experiments show, that in practice none of the algorithms
is ahead in general.

For binding keys in the map, the situation is similar. If a key (or a similar
key) is already bound, then the trie implementation is more efficient (O(m) vs.
O(m · log n)). If the key is new, then the size of the key does not matter in the bst
implementation and the bst implementation is faster. Unbinding a key behaves
similar to lookup.

Combining maps with operations like union, intersection, or subtraction is
very simple and efficient in the trie implementation. Algorithms of the same com-
plexity (O(n + k), where n and k are the sizes of the two maps to be combined)
can be defined for bsts. However, these algorithms are quite complex and the
constants (e.g., for re-balancing the bst) slow down these operations in practice.

Our experiments so fare show, that it highly depends on the practical ap-
plication which map implementation is faster. We are still working on good
non-artifical benchmarks, resulting from practical applications and will hope-
fully finish them soon.

Besides efficiency, there are some more aspects we should consider when
comparing bsts and tries. Maps are often used to encode sets. Unfortunately,
bsts do not provide a unique representation of a set. Differently balanced trees
can represent the same set. This makes it difficult to define equality or a total
ordering for bsts. The only appropriate way seems to be a conversion to a list
and using a lexicographical ordering on this list. Unfortunately, this is inefficient
since this list has to be newly constructed for every comparison of two bsts. As a
consequence, it is not possible to efficiently encode sets of sets with bsts. Using
tries, this is no problem. Because there is only one unique trie representation for
a set, we can define a trie which uses a trie data type as key.

Another important aspect is the practical usability of the data type. If a pro-
grammer wants to use bsts, then they only has to define an ordering (instance
of class Ord) for their key type. For using tries, they has to define a compli-
cated trie data structure (for the data type and every data type occurring in
the data type) as well as complicate algorithms for every defined trie structure.
Since the definition of such data types and algorithms is quite automatic Ralf
Hinze proposed to use generic programming to generate these functions [4]. As
a consequence, a trie implementation can be used almost as easily as bsts in a
generic setting. Unfortunately, his generic trie implementation does not provide
as efficient operations as we presented them in this paper. Furthermore, it re-
quires a generic setting and is not directly applicable in Haskell. Therefore, we
also developed a general class framework for trie implementations, which allows
an elegant combination/definition of trie data structures.

266

Our class framework makes use of modern Haskell extensions, like multi-
parameter classes and functional dependencies [2] and provides special abstrac-
tions that make the definition of trie operations as simple as possible. Generically
deriving instances for user defined data types should be quite simple and could
for instance be implemented by means of Template Haskell [7], which we plan for
future work. Unfortunately, introducing a class context for tries has some over-
head with respect to efficiency. It remains to check whether this is acceptable in
practice.

References

1. Richard H. Connelly and F. Lockwood Morris. A generalization of the trie data
structure. Mathematical Structures in Computer Science, 5(3):381–418, 1995.

2. Gregory J. Duck, Simon L. Peyton Jones, Peter J. Stuckey, and Martin Sulz-
mann. Sound and decidable type inference for functional dependencies. In David A.
Schmidt, editor, Programming Languages and Systems, 13th European Symposium

on Programming, ESOP 2004, volume 2986 of Lecture Notes in Computer Science,
pages 49–63. Springer, April 2004.

3. The Glasgow Haskell compiler. \\http://www.haskell.org/ghc/.
4. Ralf Hinze. Generalizing generalized tries. Journal of Functional Programming,

10(4):327–351, 2000.
5. Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting and

Searching. Addison-Wesley Publishing Company, Boston, MA, USA, 1998.
6. Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,

Cambridge, UK, 1998.
7. Tim Sheard and Simon Peyton Jones. Template metaprogramming for Haskell. In

Haskell Workshop 2002, October 2002.

267

FunSETL–Functional Reporting For ERP
Systems

Michael Nissen and Ken Friis Larsen

Department of Computer Science, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen Ø, Denmark

michaeln@diku.dk and ken@friislarsen.net

Abstract. We present the FunSETL language which is a small func-
tional language. The purpose of FunSETL is twofold. First, we want to
describe a language that is suitable for generating reports in ERP sys-
tems. Second, we want the language to restricted enough so that we can
perform automatic incrementalisation. In this paper we describe the cur-
rent status of our project, which is that we have an implementation that
we can use to make experiments with and we present the encouraging
results of our preliminary experiments.

1 Introduction

Todays ERP systems like Microsoft Dynamics AX and Navision use multi pur-
pose programming languages and/or SQL queries to express reports, where re-
porting essentially means computing (simple) functions on large amount of data.
In Dynamics AX the multi purpose language X++ (see [1][p.91-118]) is used to
express reports and in Navision C/AL (see [2]) is used. Both X++ and C/AL are
state based (imperative) programming languages, which makes them even more
unfit to express reports on data, since a declarative approach seams more intu-
itive. Increasing competition in the business field and rapidly growing amount of
data in ERP systems has dictated the need for faster computation of reporting
functions and real time access to the results of all reports, ie. real time access to
business intelligence.

General purpose languages are used in ERP systems because sometimes SQL
is not expressive enough to support a specific report. Therefore we suggest that
ERP systems should contain a domain specific language in which to express
reports, ie. a language that has the power of SQL and furthermore it should also
be able to express the reports that SQL can not.

To increase the computation speed of reports, we would like to be able to
make automatic incrementalisation of reporting functions. That is, transform
the reporting function to equivalent functions, that does not need to traverse all
data every time they are computed. This transformation should be completely
automatic and transparent to the user. Thus, it becomes crucial to limit the
reporting language to only the necessary constructs.

We have defined a small functional language called FunSETL with the fol-
lowing properties:

268

2

1. It is a functional language.
We have opted for a functional (declarative) language, since the experience
from SQL is that it seems more productive when expressing reports. Also,
we believe, it makes it easier for non-programmers to learn.

2. FunSETL is strongly normalizing. That is, every program always terminates.
Again we have borrowed a design objective from SQL. While it is a limitation
of expressiveness, it is a desirable property. Simply because all reporting
programs ought terminate with a result, hence the programming language
might as guarantee this property.

3. It is possible to represent and iterative over large amount of data.
This property is central, when we need to compute functions over large
collections of data.

The above properties only apply to the pure FunSETL language. That is, it
is possible for FunSETL programs to call external methods and programs, and
thereby bypass the FunSETL properties. To ensure usability of the language any
to be able to conduct experiments where we integrate with real systems we have
integrated FunSETL with .NET by compiling FunSETL code to C# code.

2 Data Analysis

In an ERP system we need a module that can perform computational tasks e.g.
data analysis on the data stored by the ERP system (ie. computing reports).

This section will describe how our data analysis module will look like, both
from a users perspective and “under the hood” (internally). A very simplified
conceptual model of the architecture of our ERP system is shown in figure 1,
page 3.

The following sections will describe the architecture and how the data anal-
ysis module should interact with the users and database, and how it works
internally.

2.1 Architecture

In the heart of the architecture we have a database of events, ie. a log of every-
thing that has happened. Events can be committed by users (note that in this
context users also can be other automated systems) and they are filtered by a
module called Filtering & Decoration, which will not be described here, but the
module either accepts an event and commits it to the database or rejects the
event and informs the user.

When an event is committed to the database it is also passed to the data anal-
ysis module, ie. every newly committed event is passed to the analysis module
when it is committed by the Filtering & Decoration module.

This means that the data analysis module has access to all information at
commit time. Later we will get back to why this is important.

A user can interact in two ways with the Data analysis module. Either the
user can commit a report to the module, which is then stored in the report

269

3

repository, or the user can request the result of a report computed on the current
event database.

In our context a report is a program written in a report language called
FunSETL, which is a declarative programming language. Section 3, page 4 will
give a description of FunSETL.

Furthermore it should be noted that conceptually current ERP systems could
be considered as the event database and the filtering and decoration module, and
where we have a monotone growing event log. This means that the data analysis
module can be considered as a plug-in for current ERP systems.

Fig. 1. Overview of Architecture

2.2 Data Analysis “under the hood”

The data analysis module contains a report repository where all reports that
needs to be computed are stored.

When a report is committed it is then automatically incrementalized, ie. it is
transformed into a new report, that hopefully will not need to traverse all the
data in the event database every time it is computed. In Section 4, page 8 there
will be an explanation of incrementalization and the advantages it gives us.

The analysis module then incrementally maintains in real time the results of
the reports in the repository based on the events that are continuously added
to the event database, and handed to the analysis module. This means that we
have real time access to the results of all the reports.

Furthermore all the advanced incrementalization stuff is transparent to the
user, since the user only sees the declarative specification of the report that
he/she writes, and then the result of the report, when it is requested. The auto-
matically incrementalized versions of the reports are only used internally in the

270

4

τ ::= id | bool | int | real | date | τ1 + τ2 | {lab1 : τ1, . . . , labk : τk} | map(τ1, τ2) | mset(τ)

c ::= n | r | yyyy −mm− dd | true | false
binop ::= + | − | ∗ | / | = | <= | < | and | or | with | inter | union | diff | in | subset

unop ::= not | dom | toSet

e ::= x | e1 binop e2 | unop e | inL(e) as τ | inR(e) as τ |
valL(e) | valR(e) | {lab1 := e1, . . . , labk := ek} | #lab(e) | f(e1, . . . , em) |
[] as τ | e[e′] | e[e1 → e′1] |
{} as τ | if e1 then e2 else e3 | foreach (a, b → e1) e2 e3 | let x = e1 in e2 end

fdecl ::= fun id(x1 : t1, . . . , xm : tm) = e

p ::= fdecl1 . . . fdeclk

Where TVar is the set of type names, Var is the set of identifiers, FVar is the set of
function identifiers, Z is the set of (syntactic) integers and R is the set of (syntactic)
reals, k ≥ 1, m ≥ 0, n ∈ Z, r ∈ R, x ∈ Var , f ∈ FVar , and id ∈ TVar .

Fig. 2. FunSETL syntax

Data analysis module to provide real time access to the results of the reports in
the repository.

3 The FunSETL Language

Here the syntax of the language is defined together with a type-system and
semantics for type-correct programs. FunSETL is an explicitly typed language,
such that static analysis should become easier.

3.1 Syntax

As said in Section 1, FunSETL is a declarative (functional) language, which
means that the language does not contain statements but only expressions. The
syntax of FunSETL is described in Figure 2.

Before we continue to the type-system and the semantics, let us make an
informal description of the language constructs.

Simple Constants: n denotes integers, r denotes reals, yyyy−mm−dd denotes
dates and true and false are the boolean values.

Arithmetic operators: e1+e2, e1−e2, e1/e2 and e1∗e2 are the usual arithmetic
expressions the operators and can only be applied to integers and reals.

Logical operators: e1 and e2, e1 or e2 and not e has the usual semantics and
these operators can only be applied to boolean expressions.

Comparison operators: e1 = e2 denotes equality of e1 and e2 and equality
can only be applied to expressions of type integer, real, boolean or date.
e1 <= e2 and e1 < e2 are the “less than equal” and “less than” operators
and they can only be applied to integers and reals.

271

5

Sum-type construction/destruction: The inL(e) as τ and inR(e) as τ are
the sum-type constructors. τ should have the form τ1+τ2 and inL(e) as τ1+
τ2 constructs something of type τ1 + τ2 if e has type τ1. Symmetrically for
inR(e). valL(e) returns the value v if e evaluates to inL(v). Symmetrically
for valR(e).

Record construction/destruction: As usual {lab1 := e1, . . . , labk := ek} de-
notes the construction of a record with fields lab1, . . . , labk and #lab(e) re-
turns the lab field of e if e evaluates to a record with a field named lab.

Function Application: As usual f(e1, . . . , en) denotes the application of func-
tion f on arguments e1, . . . , en.

Multi-sets: {} as mset(τ) denotes the construction of an empty multi-set,
where added elements should have type τ . e1 with e2 means the resulting
multi-set of adding element e2 to the multi-set e1. e1 inter e2, e1 union e2

and e1 diff e2 means the intersection, union and difference of multi-sets e1

and e2. e1 in e2 returns whether or not element e1 is in multi-set e2 and
e1 subset e2 return whether or not multi-set e1 is a subset of multi-set e2.

Finite Map: [] as map(τ1, τ2) denotes the construction of an empty finite map
from elements of type τ1 to elements of type τ2. e[e′] is the lookup operation
on a finite map, ie. if e′ evaluates to v′ and e evaluates to a finite map with
a binding on v then the binding of v is returned. e[e1 → e2] denotes the
update operation on finite maps, ie. the finite map e is updated (overwritten
if a binding already exists) with the binding of e1 to e′1. dom(e) returns a
multi-set consisting of all elements in the domain of the finite map e and
toSet(e) returns a multi-set of pairs, where each pair denotes a binding from
argument to value in the finite map e.

Conditional: if e1 then e2 else e3 denotes the usual conditional expression.
Iteration: foreach (a, b → e1) e2 e3 is like the usual fold-left from SML (see

[4][p. 145-148]). Hence a, b → e1 should be viewed as a lambda expression,
ie. an anonymous function with arguments a and b and function body e1.
b is the accumulating parameter with starting value e2 and the anonymous
function is then folded over the multi-set e3.

Let: let x = e1 in e2 end denotes the computation of e1, where the result is
bound to x and x can then be used in e2.

Furthermore we define some extra constructs on finite maps, which are just
syntactic sugar on some of the existing constructs:

Syntactic sugar: [e1 → e′1, . . . en → e′n] as map(τ1, τ2) is just syntactic sugar
for ([] as map(τ1, τ2))[e1 → e′1] . . . [en → e′n] and e[e1 → e′1, . . . , en → e′n] is
syntactic sugar for e[e1 → e′1] . . . [en → e′n].

A FunSETL program is a series of function declarations. In reality we would
like a program to be a series of function declarations together with an expression,
that can make use of the declared functions. So typically we will refer to a
series of declarations and an expression to be a program, but in order to handle
theoretical issues better the definition of a program is just a series of function
declarations.

272

6

TInt
Γ, ∆ ` n : int

TReal
Γ, ∆ ` r : real

TV ar
Γ, ∆ ` x : σ(x)

(x ∈ Dom(σ))

TDate
Γ, ∆ ` yyyy −mm− dd : date

(isdate(yyyy, mm, dd))

TTrue
Γ, ∆ ` true : bool

TFalse
Γ, ∆ ` false : bool

TIf
Γ, ∆ ` e1 : bool Γ, ∆ ` e2 : τ Γ, ∆ ` e3 : τ

Γ, ∆ ` if e1 then e2 else e3 : τ

TForeach
Γ, ∆ ` e2 : τ Γ, ∆ ` e3 : mset(τ ′) Γ, ∆[a → τ ′, b → τ] ` e1 : τ

Γ, ∆ ` foreach (a, b → e1) e2 e3 : τ

TLet
Γ, ∆ ` e1 : τ ′ Γ, ∆[x → τ ′] ` e2 : τ

Γ, ∆ ` let x = e1 in e2 end : τ

TApp
Γ, ∆ ` e1 : τ1 . . . Γ, ∆ ` en : τn

Γ, ∆ ` f(e1, . . . , en) : τ
(Γ (f) = ((τ1, . . . , τn), τ)

TFunc
Γ, [x1 → τ1, . . . , xn → τn] ` e : τ

Γ ` fun f(x1 : τ1, . . . , xn : τn) = e : Γ [f → ((τ1, . . . , τn), τ)]

TProg
[] ` fdecl1 : Γ1 Γ1 ` fdecl2 : Γ2 . . . Γn−1 ` fdecln : Γn

` fdecl1 . . . fdecln : Γn

Fig. 3. Type judgments for FunSETL

3.2 Type-system

Now that we have defined the syntax of the FunSETL language we would like
to restrict the number of legal programs, by putting a type system on FunSETL
programs. Figure 3 shows the type judgments for FunSETL. The judgment for
typing of expressions has the form Γ,∆ ` e : τ , where Γ is an environment that
describes the types of functions, ∆ is an environment that described the types
of variables and τ is the type of e.

There is not anything surprising in the typing judgments, except that in the
TProg rule only functions that are defined before a given function can be called
from that function. That is, the type systems ensures that there is no recursion
in the language.

3.3 Semantics

In this section we define the semantics of FunSETL programs, and furthermore
we prove that all typeable FunSETL programs terminates with a value. The
semantics is given as a big-step operational semantics.

273

7

SConst
p, δ ` c ⇓ c

SV ar
p, δ ` x ⇓ δ(x)

(x ∈ Dom(δ))

SIfTrue
p, δ ` e1 ⇓ true p, δ ` e2 ⇓ v

p, δ ` if e1 then e2 else e3 ⇓ v

SIfFalse
p, δ ` e1 ⇓ false p, δ ` e3 ⇓ v

p, δ ` if e1 then e2 else e3 ⇓ v

SLet
p, δ ` e1 ⇓ v′ p, δ[x → v′] ` e2 ⇓ v

p, δ ` let x = e1 in e2 end ⇓ v

SApp
p, δ ` e1 ⇓ v1 . . . p, δ ` en ⇓ vn p, [x1 → v1, . . . , xn → vn] ` ef ⇓ v

p, δ ` f(e1, . . . , en) ⇓ v
(fun f(x1 : τ1, . . . , xn : τn) = ef ∈ p)

SForeach1
p, δ `fold foreach (a, b → e1) v {} ⇓ v

SForeach2
p, δ[a → v1, b → v′] ` e1 ⇓ v′′ p, δ `fold foreach (a, b → e1) v′′ {v2, . . . , vn}

p, δ `fold foreach (a, b → e1) v′ {v1, . . . , vn}

SForeach3
p, δ ` e2 ⇓ v′ p, δ ` e3 ⇓ {v1, . . . , vn} p, δ `fold foreach (a, b → e1) v′ {v1, . . . , vn} ⇓ v

p, δ ` foreach (a, b → e1) e2 e3 ⇓ v

Fig. 4. Operational semantics for FunSETL

First we need to define values, v. The syntax of FunSETL values are:

v ::= c | inL(v) | inR(v) | {lab1 := v1, . . . , labn := vn} |
[v1 → v′1, . . . , vn → v′n] | {v1, . . . , vn}

Figure 4 contains the judgments defining the operational semantics for Fun-
SETL. The judgment for the operational semantics has the form p, δ ` e ⇓ v,
which means that the expression e will evaluate to the value v in program context
p and where δ is mapping from variables to values.

The intention in the definition of the semantics is that if ` p : Γ and Γ,∆ `
e : τ then for all mappings δ of variables to values of a certain type given by ∆
(written δ ∈ Dom(∆)) then there exists a unique v such that p, δ ` e ⇓ v where
v has type τ . This is proven formally in this section.

Now that we have defined the semantics of FunSETL programs, we need to
make sure that it is a reasonable semantics, ie. that it is deterministic, typepre-
serving and as promised earlier that it is strongly normalizing.

Theorem 1 (The semantics is deterministic). Assume ` p : Γ and assume
that Γ,∆ ` e : t then for all δ ∈ Dom(∆) we have

p, δ ` e ⇓ v ∧ p, δ ` e ⇓ v′ ⇒ v = v′

Proof: See B.1.
Before we can prove the theorem that every program terminates with a value,

we need to introduce call-graphs.

274

8

Definition 1 (Call-graph). Assume ` p : Γ , where p = fd1 . . . fdn. Then the
call-graph G = (V,E) of p is defined as

V = {fd1, . . . , fdn}
E = {(fdi, fdj)|The body of fdi contains a call to the function declared by fdj}

We now prove formally that FunSETL does not contain recursion, by showing
that the call-graph of a type-correct program is a directed acyclic graph (DAG).

Theorem 2 (FunSETL call-graphs are DAGs). Assume ` p : Γ then the
call-graph G of p is a DAG.

Proof: See B.2.
We need these call-graphs to make an ordering on FunSETL expressions that

will allow us to prove by induction on this ordering that every FunSETL program
is strongly normalizing. To define this ordering we need to define the call-height
of a FunSETL expression.

Definition 2 (Call-height). Assume p = fd1 . . . fdn, ` p : Γ and Γ,∆ ` e : τ
then

callheight(e) = max{h | fdi is called from e and h is the height of the call-graph starting from node fdi}

Since we know that there is no recursion in FunSETL it seems reasonable to
order expressions on the maximum number of function calls in any computation
path and then secondary look at the size of the expression.

Definition 3 (Ordering on expressions). Assume ` p : Γ , Γ,∆ ` e : τ and
∆′, Γ ` e′ : τ ′. Let as usual |e| denote the syntactic size of the expression e then

e ≺ e′ iff callheight(e) < callheight(e′)∨(callheight(e) = callheight(e′) ∧ |e| < |e′|)

This enables us to prove the theorem:

Theorem 3 (Every program terminates with a value). Assume ` p : Γ
and assume that Γ,∆ ` e : τ . Then for all δ ∈ Dom(∆) there exists v such that

p, δ ` e ⇓ v ∧ Γ, [] ` v : τ

Proof: See B.3.

4 Incremental functions

In this section we will see what is meant by a function’s incremental counterpart.
This will be described together with an example of an incremental program.

Furthermore we shall describe why incremental programs are interesting in
relation to ERP systems.

275

9

4.1 Definition of incremental functions

Let us first define what is meant by an incremental function:

Definition 4. Incremental function.
Assume f is a function and ⊕ an update operation then a program f ′ that com-
putes f(x⊕y) by making use of the value of f(x) is called an incremental function
(incremental version of f with respect to the update operation ⊕). Furthermore
we also allow that the incremental version makes use of the original input. Hence
we want the following implication to hold for all x, all y and all r:

r = f(x) ⇒ f ′(x, y, r) = f(x⊕ y)

The definition above may be extended, because in some cases the intermediate
results of the computation of f(x) can be used in an incremental computation
of f(x⊕ y), but for now it is sufficient with the above definition.

Furthermore the definition says nothing about the running time of the func-
tions and their incremental counterparts, but the idea is that by incrementalizing
a function we should gain an asymptotic speedup in the computation time when
we try to compute f(x⊕ y) from f(x).

Let us now see an example of function and its incremental counterpart.

Example 1. In Fig. 5 we see a function SumClass1 which as input takes a mul-
tiset of records with fields accountnr, amount and time. SumClass1 computes
the sum of all amounts of records satisfying that the accountnumber is between
1000 and 1999 and where time is between 2007− 01− 01 and 2007− 12− 31 (we
name the conditions for being added to the sum the filter condition).

We want to incrementalize SumClass1 such that, if we add one element to
the multi-set of integers then we can compute the new sum based on the filter
condition and the old result. Ie. we incrementalize with respect to the update
operation with on multi-sets and get the function seen in Fig 6.

1: type event = {accountnr : int, amount : real, time : date}
2:
3: fun filter(e : event) =
4: let accnr = #accountnr(e) in
5: let ti = #time(e) in
6: 1000 <= accnr and accnr <= 1999 and
7: 2007− 01− 01 <= ti and ti <= 2007− 12− 31
8: end end
9:

10: fun SumClass1(events : mset(event)) =
11: foreach (event, sum =>
12: if filter(event) then #amount(event) + sum else sum) 0.0 events

Fig. 5. Non-incremental financial function

276

10

1: type event = {accountnr : int, amount : real, time : date}
2:
3: fun filter(e : event) =
4: let accnr = #accountnr(e) in
5: let ti = #time(e) in
6: 1000 <= accnr and accnr <= 1999 and
7: 2007− 01− 01 <= ti and ti <= 2007− 12− 31
8: end end
9:

10: fun SumClass1′(events : mset(event), enew, sum) =
11: if filter(enew) then #amount(enew) + sum else sum

Fig. 6. Incremental financial function

Let us discuss the example informally. Using any reasonable measure of run-
ning time of FunSETL programs, we would expect that the SumClass1 func-
tion has running time proportional to the number of elements in the multi-set
(because of the foreach operation). Furthermore we would expect that the
SumClass1′ function can be computed in constant time, since we have elimi-
nated the foreach operation, ie. we have gained an asymptotic speedup in the
computation time when trying to compute SumClass1(x with y) if we already
know the value of SumClass1(x) (otherwise we have gained nothing).

4.2 Automatic incrementalization

As we saw above, we could hand code an incremental version of a function with
respect to some update operation, but it would be really interesting, if we could
automatize the process of incrementalization of FunSETL functions.

There has been made a lot of work in the field of incrementalization of pro-
grams, where semantics preserving transformations are used to construct the
incremental counterpart of a function. Among the most interesting work can be
mentioned [5] and [6].

In [5] there is a description of an incrementalization process for a functional
language with mutual recursion, ie. a language which is more general that Fun-
SETL. The incrementalization process is split in three steps:

(i) Caching all intermediate results.
In the hand coded example we saw earlier, we did not use any intermediate
results, but they can often be used when trying to make a more efficient
version of a program, fx. when computing the average of a multi-set of
integers. When adding an element to the multi-set we are not able to com-
pute the new average from the old average and the recently added element.
Hence this part of the process produces from a function f a new function f̂ ,
which returns the return value of f together with the intermediate results
computed by f .

(ii) Incrementalization

277

11

This step incrementalizes the function f̂ from the previous step, with re-
spect to an update operation ⊕. This step is performed by doing semantics
preserving program transformations and by using the intermediate results.
The result of this stage is called f̂ ′.

(iii) Pruning
In this stage the intermediate results, which are not used by f̂ ′ will be
removed producing a new function f ′, which is a incremental version of f
returning only the necessary intermediate results to compute efficiently.

The incrementalization process incrementalizes a program with respect to a
given operation.

Steps (i) and (iii) can be made fully automatic, but step ii is a bit more
involved. Depending on how powerful the incrementalizer engine will be made it
will vary from automatic to semi-automatic. Our hope is that because we have
chosen a language without full recursion then it will be possible to make an
incrementalizer which is both powerful and fully automatic.

4.3 Incremental functions in ERP systems

In this section we will discuss why incremental computations is interesting in
relation to ERP systems.

ERP systems contains a lot of reports that presents the computation of some
analytical/financial function. Typically these functions are computed by iterat-
ing over large collections of data (usually all the rows from a big database table),
and it is suitable to make incremental versions of functions like these.

In section 5 we will see an implementation of the Microsoft Dynamics AX
financial statement in FunSETL. There are many advantages when using incre-
mental computations and automatic incrementalization. Among the most im-
portant we have:

– Efficiency improvement on programs.
– Simpler looking programs.
– Reduce the number of errors induced by humans.
– Gain reduction in programming time.

As we have seen in the small example, a program running in linear time have
an incremental counterpart, which run in constant time. This seems to be the
case with many computations in ERP systems, since many reports does not have
internal dependencies between the data when a report is computed. This means
that, if the incremental counterpart is used we can get real time computations
of many reports in ERP systems, which today is usually computed by a nightly
bachrun. Hence if the incremental programs are used, one will also be able to
set alerts and put triggers on reports, since they are computed in real time and
on the fly.

Furthermore if automatic incrementalization techniques are used, another
side-effect will be that we get simpler looking programs, because the incremen-
talizing software can be used as a front-end to the compiler and hence we do not
need to look at the incrementalized code.

278

12

Automatic incrementalization will probably also lead to fewer programming
errors and a reduction in programming time, since the non-incremental programs
are often easier to write.

5 Application of FunSETL

This section will show how the Financial statement from Microsoft Dynamics
AX can be implemented in FunSETL.

5.1 Microsoft Dynamics AX Financial Statement

The Microsoft Dynamics AX ERP system contains a database with a lot of
tables, and the Financial statement makes use of only a couple of these tables.

The Financial statement is in principle an aggregate function, which aggre-
gates information on different financial accounts. Dynamics AX has an account-
ing system where accounts are numbered from 0 and up. The financial statement
computes the following information

– Sumclass computations (balance of account intervals X000 − X999, where
X = 1, 2, 3, 4, 5, 6, 7, 8 and from 9000 and up. These summation data are
named SumclassX for each X.

– Assets and liabilities
– Other summation data.

All these numbers have in common that they are aggregate information on the
Microsoft Dynamics AX table, which contains all transactional data on the dif-
ferent accounts in the system.

5.2 Implementation of Financial Statement in FunSETL

In Section C, page 19 we see an implementation of the financial statement func-
tion which is computed by Microsoft Dynamics AX 4.0.

The FunSETL implementation is based on the code which can be viewed
from Microsoft Dynamics Application Object Tree and furthermore the imple-
mentation has been made, such that it was possible for a demo version of our
incrementalization engine to incrementalize the program.

The incrementalization engine we have been using so far requires, that the
code is written in a specific way in order to make the automatic incremental-
ization. Therefore the code is not in the shortest and simplest form. The incre-
mentalized version of the code is not included, since it is almost unreadable and
longer than the code of the Financial statement and it is written in an earlier
version of the FunSETL syntax.

Furthermore we have made a couple of simplifications, since the database
table in Dynamics AX 4.0 containing all the transactional data contains more
columns than necessary when computing the Financial statement. Therefore we
have made a projection on the transaction table, such that each transaction only

279

13

contains accountnr, amount and date. accountnr is the number of the account
where there has been made a transaction of amount on date. Actually the exam-
ple in Section 4 (a non incremental and incremental version of a function named
SumClass1) is a part of the Financial statement, where we have hard-coded the
interval dates.

5.3 The Experiment

This section will discuss an experiment on the performance of the Financial
statement. To make the experiment we have retrieved a database with 200.000
events from a real company.

The experiment contains two parts

1. Computing the Financial statement on a database with 100.000 events and
comparing the results of the non-incremental and incremental version of the
Financial statement.

2. Adding 10 events to database containing 100.000 and recomputing the Fi-
nancial statement after adding every event and then comparing the results
of the non-incremental and incremental version.

ad 1: In figure 7 we see the number of different FunSETL operations used
to compute the Financial statement on a database with 100.000 events and the
quotient between the numbers. As we can see the incremental version of the
program is slower than the non-incremental version. When incrementalizing the
Financial statement we introduce some overhead, because the result of the Fi-
nancial statement is available between each event in the incremental case, where
as it is only available in the non-incremental case after the 100.000 events and it
instantly becomes obsolete, when there is added a new event to the database.

Operation non-incremental incremental inc. / non-inc

Arithmetic 13.291.113 18.991.112 1,42

Record 10.082.682 14.382.682 1,42

Map 198.677 1.198.677 6,03

Control 5.296.707 8.596.707 1,62

Fig. 7. Financial statement on 100K event database

ad 2: In figure 8 we see the number of FunSETL operations used when adding
10 events to the database with 100.000 events and then computing the result
of the Financial statement between every addition of an event. The number of
operations used in the non-incremental program is around 11 times as big as
the number of operations used, when computing the Financial statement on
the database consisting of 100.000 events. This is not surprising because the
non-incremental version will run through all the data every time the Financial
statement is computed, since it has running time linear in the number of events.

280

14

The number of operations used in the incremental program, when adding 10
events, is not many more than the number of operations used, when comput-
ing the Financial statement on the database with 100.000 events. This is also
not surprising, because we expect that the incremental version only need con-
stant time to recompute the Financial statement, when we add one event to the
database.

From the quotient between the number of operations used in the non-incremental
and incremental programs we can see, that there is a slight overhead in main-
taining the Financial statement incrementally. However, if we want to query the
ERP system for the Financial statement more than once, we see that the number
of operations used increases dramatically, if we not use the incremental version.
Hence, we are able to benefit from maintaining the result incrementally.

If we compare our implementation of the Financial statement to the imple-
mentation given in Dynamics AX, we can see that the Dynamics AX code has
the same time-complexity as the non-incremental version of the Financial state-
ment implemented in FunSETL. Hence, there is really room for improvement
in the time usage! But our program is a bit bigger than the implementation in
Dynamics AX. We would be able to express the Financial statement in fewer
lines, but then we were not able to automatically incrementalize the code, ie. we
need to make a much better automatic incrementalization engine.

Operation non-Incremental Incremental Inc. / non-Inc

Arithmetic 146.209.118 18.992.932 0,13

Record 110.915.057 14.384.122 0,13

Map 2.185.557 1.198.797 0,55

Control 58.266.692 8.597.567 0,15

Fig. 8. Adding 10 events to 100K event database

6 Summary & Future work

In this paper we have given a rough sketch of the architecture of the next gen-
eration of ERP systems.

Particularly we have been interested in the Data analysis aspect of the ERP
system, and how it should work. Therefore this paper proposes the next gener-
ation of ERP systems should have the following properties:

– There system should contain a domain specific language to express reports,
and the language should be powerful enough to eliminate the need for general
purpose languages.
This paper proposes the language FunSETL described in Section 3, which
is thought to have the desired properties. In section 5 we made an empirical

281

15

study and implemented an existing ERP system report using FunSETL and
used the implementation of a real dataset.

– The system should support real time access to all business intelligence.
This is the most important property of the system. Microsoft Navision con-
tains some aspects of this, since some reports are maintained using the SIFT
technology. We have proposed a generalization of the SIFT technology.

Currently we have an implementation of a compiler from FunSETL to C#,
ie. FunSETL runs on .NET. The next steps in the development of the next
generation ERP system will be

– Implement a prototype of the architecture.
– Futher develop the incrementalization algorithm.
– Improve the userbility of the language

Acknowledgements

Many of the idead presented in this article have been developed in close coop-
eration with Professor Fritz Henglein. Also, Daniel Brixensen’s master thesis[3]
paved the road for us by mking the first version of FunSETL and enabling us to
perform the experiments presented in Section 5.

A Literature

References

1. [GPO+06] Inside Microsoft Dynamics AX 4.0
Arthur Greef, Michael Fruergaard Pontoppidan, Lars Dragheim Olsen, and experts
from the Microsoft Dynamics AX team
ISBN: 0-7356-2257-4
Microsoft Press

2. http://www.consultec.es/DocTutoriales/Introduction to CAL Programming.pdf
3. [DB05] Inkrementelle Metoder til REA-Baseret Rapportering

Daniel Brixen
Master Thesis, Department of Computer Science, University of Copenhagen
http://www.charme.dk/detkanendatalog/Specialer/danielbrixenspeciale.pdf

4. [HR99] Introduction to Programming Using SML
Michael R. Hansen & Hans Rischel
ISBN: 0-20139820-6
Biddles Ltd., Guildford and King’s Lynn

5. [LST98] Static Caching for Incremental Computation
Yanhong A. Liu, Scott D. Stoller & Tim Teitelbaum
ISSN: 0164-0925
ACM Press

6. [RP81] Formal Differentiation: A Program Synthesis Technique
Robert Paige
ISBN: 0-83571213-3
UNI Research Press

282

16

B Proofs

B.1 The semantics is deterministic

Theorem 4. The semantics is deterministic.
Assume ` p : Γ and assume that Γ,∆ ` e : t then for all δ ∈ Dom(∆) we have

p, δ ` e ⇓ v ∧ p, δ ` e ⇓ v′ ⇒ v = v′

Proof: Not done yet, and requires that the functions used i foreach expressions
are commutative.

B.2 Call-graph is a Dag

Theorem 5. FunSETL call-graphs are DAGs.
Assume ` p : Γ then the call-graph G of p is a DAG.

Proof: Induction on |p| (|p| is the number of function declarations in p)
|p| = 0: Trivial, since the typesystem does not allow programs without any
function declarations. This completes the basis case of the induction.
|p| > 0: Write p = fd1 . . . fdn. Since ` p : Γ we have a derivation

[] ` fd1 : Γ1 . . . Γn−1 ` fdn−1 : Γn−1 Γn−1 ` fdn : Γ

` fd1 . . . fdn : Γ

Hence for p′ = fd1 . . . fdn−1 we can make the derivation

[] ` fd1 : Γ1 . . . Γn−2 ` fdn−1 : Γn−1

` fd1 . . . fdn−1 : Γn−1

By induction we get that the call-graph of p′ is a DAG.
To see that the call-graph of p is a DAG we only need to make sure that the

body of fdn only contains calls to the functions declared in fd1 . . . fdn−1 and
not to itself.

But since we have a derivation of Γn−1 ` fdn : Γn and since Γn−1 can not
contain a binding of the function declared in fdn then the function declared in
fdn can not contain a call to itself. Hence the call-graph of p is a DAG. �

B.3 The semantics is strongly normalizing

Theorem 6. Every program terminates with a value.
Assume ` p : Γ and assume that Γ,∆ ` e : τ . Then for all δ ∈ Dom(∆) there
exists v such that

p, δ ` e ⇓ v ∧ Γ, [] ` v : τ

283

17

Proof: By induction on the relation ≺.
We split the proof depending on the structure of e.
e = c: The theorem trivially holds, since all constants c are values.
e = if e1 then e2 else e3: Since Γ,∆ ` if e1 then e2 else e3 we have derivations
of:

Γ, ∆ ` e1 : bool

Γ, ∆ ` e2 : τ

Γ, ∆ ` e3 : τ

Because e1 ≺ e,e2 ≺ e and e3 ≺ e we get by induction that for all δ ∈ Dom(∆)
there exists v1, v2 and v3 such that

p, δ ` e1 ⇓ v1 Γ, [] ` v1 : bool

p, δ ` e2 ⇓ v2 Γ, [] ` v2 : τ

p, δ ` e3 ⇓ v3 Γ, [] ` v3 : τ

We now split the proof depending on v1.
v1 = true: Hence we can make the derivation

p, δ ` e1 ⇓ true p, δ ` e2 ⇓ v2

p, δ ` if e1 then e2 else e3 ⇓ v2

Since Γ, [] ` v:τ we have completed this sub-case.
v2 = false: Symmetric, which completes this case.
e = f(e1, . . . , en): Since Γ,∆ ` e : τ the derivation must have the form

Γ,∆ ` e1 : τ1 . . . Γ,∆ ` en : τn

Γ,∆ ` f(e1, . . . , en) : τ
(Γ (f) = ((τ1, . . . , τn), τ))

Since ` p : Γ we must have fun f(x1 : τ1, . . . , xn : τn) = e′ ∈ P . By Theorem 2
the call-graph of p is a DAG and hence

callheight(e′) < callheight(f(e1, . . . , en))

This means that e′ ≺ f(e1, . . . , en). Since ` p : Γ we have a derivation of

Γ ′ ` fun f(x1 : τ1, . . . , xn : τn) = e′ : Γ ′[f → ((τ1, . . . , τn), τ)] (1)

for some Γ ′ ⊂ Γ . (1) gives us a derivation of

Γ ′, [x1 → τ1, . . . , xn → τn] ` e′ : τ.

Since Γ ′ ⊂ Γ then clearly

Γ, [x1 → τ1, . . . , xn → τn] ` e′ : τ (2)

because we must be able to prove the same, when adding more function decla-
rations to the environment (this will however not be proven formally, since it is

284

18

intuitively clear).
Clearly callheight(ei) ≤ callheight(e) and since |ei| < |e| for i = 1, . . . , n we get
that ei ≺ e for i = 1, . . . , n. Hence by induction we get that there exist v1, . . . , vn

such that
p, δ ` ei ⇓ vi Γ, [] ` vi : τi for i = 1, . . . , n

Using induction on (2) we get that for all δ′ ∈ Dom([x1 → τ1, . . . , xn → τn])
there exists v such that

p, δ′ ` e′ ⇓ v ∧ Γ, [] ` v : τ

Use δ′ = [x1 → v1, . . . , xn → vn], ie. there exists v such that

p, [x1 → v1, . . . , xn → vn] ` e′ ⇓ v Γ, [] ` v : τ

Hence we can make the derivation

p, δ ` e1 ⇓ v1 . . . p, δ ` en ⇓ vn p, [x1 → v1, . . . , xn → vn] ` e′ ⇓ v

p, δ ` f(e1, . . . , en) ⇓ v
(fun f(x1 : τ1, . . . , xn : τn) = e′ ∈ p)

Since we already know that Γ, [] ` v : τ we have completed this case.
e = let x = e1 in e2 end: Since Γ,∆ ` let x = e1 in e2 end : τ we have
derivations of

Γ,∆ ` e1 : τ ′

Γ,∆[x → τ ′] ` e2 : τ

for some τ ′. Since e1 ≺ e and e2 ≺ e we get by induction that there exist v1 and
v2 such that

p, δ ` e1 ⇓ v1 Γ, [] ` v1 : τ ′

p, δ[x → v1] ` e2 ⇓ v2 Γ, [] ` v2 : τ

Hence we can make the derivation

p, δ ` e1 ⇓ v1 p, δ[x → v1] ` e2 ⇓ v2

p, δ ` let x = e1 in e2 end ⇓ v2

Since we already know that Γ, [] ` v2 : τ we have completed this case.
e = foreach (a, b → e1) e2 e3: Since Γ,∆ ` foreach (a, b → e1) e2 e3 : τ we get
that there is derivations of

Γ,∆ ` e2 : τ

Γ,∆ ` e3 : mset(τ ′)
Γ,∆[a → τ ′, b → τ] ` e1 : τ

for some τ ′. Since e1 ≺ e, e2 ≺ e and e3 ≺ e we get that there exist v2 and v3

such that

p, δ ` e2 ⇓ v2 Γ, [] ` v2 : τ (3)
p, δ ` e3 ⇓ v3 Γ, [] ` v3 : mset(τ ′) (4)

285

19

and for all δ′ ∈ Dom(∆[a → τ ′, b → τ]) there exists v such that

p, δ′ ` e1 ⇓ v1 Γ, [] ` v1 : τ (5)

Since Γ, [] ` v3 : mset(τ ′) we must have v3 = {v′1, . . . , v′n} for some v′1, . . . , v
′
n.

We now show by induction on n that

∀v. Γ, [] ` v : τ ∃v. Γ, [] ` v : τ∧p, δ `fold foreach (a, b → e1) v {v′1, . . . , v′n} ⇓ v
(6)

n = 0: Assume we are given v such that Γ, [] ` v : τ . Hence we can make the
derivation

p, δ `fold foreach (a, b → e1) v {} ⇓ v

Since we have assumed that Γ, [] ` v : τ we have completed the basis case of the
induction.
n > 0: Assume we are given v such that Γ, [] ` v : τ . By (5) we get for some v1

that
p, δ[a → v′1, b → v] ` e1 ⇓ v1 Γ, [] ` v1 : τ

By induction we get that there exist v such that

p, δ `fold foreach (a, b → e1) v1 {v′2, . . . , v′n} ⇓ v Γ, [] ` v : τ ′

Ie. we can make the derivation

p, δ[a → v′1, b → v] ` e1 ⇓ v1 p, δ `fold foreach (a, b → e1) v1 {v′2, . . . , v′n} ⇓ v

p, δ `fold foreach (a, b → e1) v {v′1, . . . , v′n} ⇓ v

which completes the proof by induction of (6).
Combining (3),(4) and (6) we get that there exist v such that we can make the
derivation

p, δ ` e2 ⇓ v2 p, δ ` e3 ⇓ {v′1, . . . , v′n} p, δ `fold foreach (a, b → e1) v2 {v′1, . . . , v′n}
p, δ ` foreach (a, b → e1) e2 e3 ⇓ v

where Γ, [] ` v : τ , which completes this case of proof. �

C Financial statement

1 type event = {accountnr : int , amount : r ea l , time : date}
type event s e t = mset (event)
type i n t e r v a l = { s t a r t da t e : date , enddate : date}
type classmap = map(int , r e a l)

6 fun i n I n t e r v a l (e : event , I : i n t e r v a l) =
#s ta r tda t e (I) <= #time (e) and #time (e) <= #enddate (I)

fun akt iv (e : event , I : i n t e r v a l) =
l e t

11 accnr = #accountnr (e)
in

i f ((0 <= accnr and accnr <= 449) or

286

20

(451 <= accnr and accnr <= 539) or
(541 <= accnr and accnr <= 679) or

16 (681 <= accnr and accnr <= 2999)) and
i n I n t e r v a l (e , I)

then #amount (e)
else 0 .0

end
21

fun ak t i v e r (E : eventset , I : i n t e r v a l) =
fo r each (a , b => b + akt iv (a , I)) 0 . 0 E

26
fun pas s i v (e : event , I : i n t e r v a l) =

l e t
accnr = #accountnr (e)

in
31 i f ((3000 <= accnr and accnr <= 3999) or

(9000 <= accnr and accnr <= 999999)) and
i n I n t e r v a l (e , I)

then #amount (e)
else 0 .0

36 end

fun pa s s i v e r (E : eventset , I : i n t e r v a l) =
fo r each (a , b => b + pas s i v (a , I)) 0 .0 E

41

fun aufwandSub (e : event , I : i n t e r v a l) =
l e t

accnr = #accountnr (e)
46 in

i f (accnr = 450 or
accnr = 540 or
accnr = 680 or
(5000 <= accnr and accnr <= 7999) or

51 (8110 <= accnr and accnr <= 8299) or
(8351 <= accnr and accnr <= 8357) or
accnr = 8500) and

i n I n t e r v a l (e , I)
then #amount (e)

56 else 0 .0
end

fun aufwand (E : eventset , I : i n t e r v a l) =
fo r each (a , b => b + aufwandSub (a , I)) 0 .0 E

61
fun ertragSub (e : event , I : i n t e r v a l) =

l e t
accnr = #accountnr (e)

in
66 i f ((4000 <= accnr and accnr <= 4999) or

(8010 <= accnr and accnr <= 8100) or
accnr = 8300 or
accnr = 8400 or
accnr = 8450 or

71 (8600 <= accnr and accnr <= 8970)) and
i n I n t e r v a l (e , I)

then #amount (e)
else 0 .0

end
76

fun e r t r ag (E : eventset , I : i n t e r v a l) =
fo r each (a , b => b + ertragSub (a , I)) 0 .0 E

81 fun bestandsKontenSub (e : event , I : i n t e r v a l) =
l e t

287

21

accnr = #accountnr (e)
in

i f ((0 <= accnr and accnr <= 449) or
86 (451 <= accnr and accnr <= 539) or

(541 <= accnr and accnr <= 679) or
(681 <= accnr and accnr <= 3999)) and

i n I n t e r v a l (e , I)
then #amount (e)

91 else 0 .0
end

fun bestandsKonten (E : eventset , I : i n t e r v a l) =
fo r each (a , b => b + bestandsKontenSub (a , I)) 0 . 0 E

96
fun er fo lgsKontenSub (e : event , I : i n t e r v a l) =

l e t
accnr = #accountnr (e)

in
101 i f (accnr = 450 or

accnr = 540 or
accnr = 680 or

(4000 <= accnr and accnr <= 8999)) and
i n I n t e r v a l (e , I)

106 then #amount (e)
else 0 .0

end

fun er fo lg sKonten (E : eventset , I : i n t e r v a l) =
111 fo r each (a , b => b + erfo lgsKontenSub (a , I)) 0 .0 E

fun ge tC la s s (e : event) =
116 l e t

accnr = #accountnr (e) / 1000
in

i f accnr <= 9
then accnr

121 else 9
end

fun SumClassesSub (e : event , I : i n t e r va l , f : c lassmap) =
i f i n I n t e r v a l (e , I)

126 then let
c = getC la s s (e)

in
f [c −> f [c] + #amount (e)]

end
131 else f

fun SumClasses (E : eventset , I : i n t e r v a l) =
fo r each (e , f => SumClassesSub (e , I , f)) ([0 −> 0 . 0 , 1 −> 0 . 0 , 2 −> 0 . 0 ,

3 −> 0 . 0 , 4 −> 0 . 0 , 5 −> 0 . 0 ,
136 6 −> 0 . 0 , 7 −> 0 . 0 , 8 −> 0 . 0 ,

9 −> 0 . 0] as classmap) E

141 fun sumAmountsSub(e : event , I : i n t e r v a l) =
i f i n I n t e r v a l (e , I)
then #amount (e)
else 0 .0

146 fun sumAmounts (E : eventset , I : i n t e r v a l) =
fo r each (e , s => s + sumAmountsSub(e , I)) 0 .0 E

fun nrOfEventsSub (e : event , I : i n t e r v a l) =
i f i n I n t e r v a l (e , I)

151 then 1 .0

288

22

else 0 .0

fun nrOfEvents (E : eventset , I : i n t e r v a l) =
fo r each (e , c => c + nrOfEventsSub (e , I)) 0 . 0 E

156

fun getReturn (aa : r ea l , ab : r e a l) =
i f ab = 0 .0
then 0 .0

161 else aa / ab

fun averageAmount (E : eventset , I : i n t e r v a l) =
l e t suma = sumAmounts (E, I) in
let nre = nrOfEvents (E, I) in

166 getReturn (suma , nre)
end end

fun Financ ia lStatement (E : eventset , I : i n t e r v a l) =
171 l e t f = SumClasses (E, I) in

let ak t i v e r = ak t i v e r (E, I) in
let pa s s i v e r = pa s s i v e r (E, I) in
let aufwand = aufwand (E, I) in
let e r t r ag = e r t r ag (E, I) in

176 l e t bestandskonten = bestandsKonten (E, I) in
let e r f o l g s kon t en = er fo lg sKonten (E, I) in
let average = averageAmount (E, I) in
{SumClass0 := f [0] ,
SumClass1 := f [1] ,

181 SumClass2 := f [2] ,
SumClass3 := f [3] ,
SumClass4 := f [4] ,
SumClass5 := f [5] ,
SumClass6 := f [6] ,

186 SumClass7 := f [7] ,
SumClass8 := f [8] ,
SumClass9 := f [9] ,
Akt iver := akt iver ,
Pas s ive r := pas s ive r ,

191 Aufwand := aufwand ,
Ertrag := ert rag ,
BestandsKonten := bestandskonten ,
Erfo lgsKonten := er f o l g skonten ,
Average := average }

196 end end end end
end end end end

289

The Reduceron:

Widening the von Neumann Bottleneck for Graph

Reduction using an FPGA

Matthew Naylor and Colin Runciman

University of York, UK
{mfn,colin}@cs.york.ac.uk

Abstract. For the task of graph reduction, modern PCs are limited in
speed not by their fast and perhaps numerous processing units, but by the
rate that data can flow to and from a single and relatively slow memory
unit. This limitation is known as the von Neumann bottleneck. This paper
argues that the von Neumann bottleneck in a graph reduction machine
can be effectively widened by using an FPGA. We present a prototype
of such a machine – the Reduceron – and give preliminary results for
several small Haskell programs running on it. The results suggest that
our prototype, when refined, will outperform a C implementation of the
same machine running on a modern PC by around a factor of five.

1 Introduction

The processing power of PCs has risen astonishingly over the past few decades,
and this trend looks set to continue with the introduction of multi-core CPUs.
However, increased processing power does not necessarily imply faster programs!
One reason for this is that the architecture of the PC remains very much von

Neumann, where execution speed is often limited by the rate that data can
flow to and from a single and relatively slow memory unit. Therefore many
programs, particularly memory intensive ones, do not benefit significantly by
simply increasing processing power.

A prime example of a memory intensive application is graph reduction [8],
the operational basis of any lazy functional language implementation. The core
operation of graph reduction is function unfolding, whereby a function appli-
cation f a1 · · · an is reduced to a fresh copy of f ’s body with its free variables
replaced by the arguments a1 · · · an. On a PC, unfolding a single function in this
way requires the sequential execution of many machine instructions. However,
this sequentialisation is merely a consequence of the von Neumann architecture,
not of any data dependencies in the reduction process.

In this paper, we introduce a non-von Neumann reduction machine, called
the Reduceron, and investigate how much faster function unfolding, and more
generally sequential graph reduction, can really be. Our machine is built using
an FPGA. Modern FPGAs contain hundreds of independent memory units called
block RAMs, each of which can be accessed in parallel. Combining this with the

290

ability to process large amounts of data in parallel, FPGAs can rapidly execute
the block read-modify-write memory operations that lie at the heart of function
unfolding.

FPGAs also have two other prime attractions. Firstly, compared to other
forms of custom computing, they have negligible development time overheads.
And secondly, they are an advancing yet fairly stable technology that is already
widely used in several areas of computing. So our reduction machine appears to
be a cheap and worthwhile investment in an existing and promising technology.

The work described here is work in progress. We report some initial promising
results from our prototype machine, showing that it runs several small Haskell
[9] programs within a factor of two of a C version of the machine running on a
modern PC, despite being clocked thirty times slower than the PC. The main
parallelisation opportunity in sequential graph reduction has not yet been ex-
ploited. We give reason to expect that this parallelisation, along with the use of
a more modern FPGA, will give a factor of seven speed-up. Our intention is to
implement this extension to our prototype machine for the final version of this
paper.

1.1 Road-map

This paper is structured as follows. Section 2 describes how Haskell programs are
compiled down to bytecode that the Reduceron executes. Section 3 describes how
this bytecode can be evaluated. Section 4 describes our FPGA implementation
of the Reduceron. Section 5 presents results, conclusions, and future work.

2 Compilation

This section describes the compilation of Haskell programs to Reduceron byte-
code. As a running example we use the following function for computing the
factorial of a given integer:

fact :: Int -> Int

fact n = if n == 1 then 1 else n * fact (n-1)

There are two main aims of our compilation scheme. First, we want to allow
the bytecode interpreter to be as simple as possible so that we can produce
an efficient and working FPGA implementation within a short period of time.
To achieve simplicity, we translate input programs to continuation passing style
(Section 2.2) so that the machine only needs to deal with function unfolding,
not data constructors and case expressions.

The second aim is to expose the parallelism in sequential graph reduction.
An earlier version of the Reduceron [6] was based on Turner’s combinators [12],
giving it a small set of basic instructions. Unfortunately, that version performed
only a small amount of work in clock cycle. Since our aim is to do as much work
as possible in each clock cycle, the Reduceron is now based on the much coarser
supercombinator [4] approach to reduction.

291

2.1 Desugaring and Compilation to Supercombinators

The first stage of compilation is to translate the input program to Yhc Core [3]
using the York Haskell Compiler [11]. The result is an equivalent but simplified
program in which expressions contain only function names, function applications,
data constructions, case expressions, and let expressions. All function definitions
are supercombinator definitions. In particular, they do not contain any lambda
abstractions. In our example, fact is already a supercombinator, but in Yhc
Core it now looks as follows:

fact n = case (==) n 1 of

True -> 1

False -> (*) n (fact ((-) n 1))

Here, infix applications have been made prefix, and the if expression has
been desugared to a case.

2.2 Church Encoding

The second stage eliminates all data constructions and case expressions from the
program. First, each data type d of the form

data d = c1 | · · · | cn

is replaced by a set of function definitions, one for each data constructor ci, of
the form

ci v1 · · · v#ci
w1 · · · wn = wi v1 · · · v#ci

where #c denotes the number of arguments taken by the constructor c. Each of
these newly introduced functions encodes one of the original data constructors
as a continuation.

Next, all default alternatives in case expressions are removed. Case expres-
sions in Yhc Core already have the property that the pattern in each alternative
is at most one constructor deep. So removing case defaults is simply a case of
enumerating all unmentioned constructors. Now each case expression has the
form

case e of {c1 v1 · · · v#c1
-> e1 ; · · · ; cn v1 · · · v#cn

-> en}

and can be straightforwardly translated to continuation passing style

e (λv1 · · · v#c1
-> e1) · · · (λv1 · · · v#cn

-> en)

Since this transformation reintroduces lambda abstractions, the lambda lifter is
reapplied to make all function definitions supercombinators once again. After
this stage of compilation, our factorial example looks as follows:

fact n = (==) n 1 1 ((*) n (fact ((-) n 1)))

292

fact = 〈1, 15, body〉
body = [Int 1, Ap a0, Int 1, Ap a1]

a0 = [Arg 0, Prim [==]]
a1 = [Fun "fact", Ap a2, Ap a3]

a2 = [Int 1, Ap a4]

a3 = [Arg 0, Prim [*]]
a4 = [Arg 0, Prim [-]]

Fig. 1. Result of compiling the fact function to Reduceron bytecode.

2.3 Primitive Values to Continuations

So far, values of primitive data types, such as Int, have not been affected. But
in the third stage of compilation, primitive values are turned into continuations.
The idea is to treat each primitive integer n as if it were the Haskell function

λk -> seq n (k n)

For this to make sense, primitive function applications of the form p n m

are translated to m (n p). Then when it comes to evaluate the primitive p, it is
known that the top two elements of the stack are the fully evaluated arguments
of p. This translation smooths the way for handling strict primitives, as will
become apparent in the Section 3. The factorial function now looks as follows:

fact n = 1 (n (==)) 1 (fact (1 (n (-))) (n (*)))

2.4 Translation to Bytecode

Finally, each function definition is translated to a triple 〈n, m, b〉, where n is
the number of arguments taken by the function, b is an explicit graph structure
representing the function’s body, and m is the number of nodes in the body. A
node in the graph has the following algebraic type:

data Node = Int Int | Prim Prim | Ap [Node] | Fun String | Arg Int

data Prim = [+] | [-] | [*] | [==] | [<=] | · · ·

The function fact, after this stage of compilation, is shown in Figure 1. All
that remains is to encode the definitions in a serial bit-stream. This is quite
straightforward, but there are two important things to point out. First, applica-
tions have a variable size, so we explicitly mark the last node in an application
with a special terminator bit. Second, when application nodes are turned into
pointers, they are made relative to the address of the beginning of the function’s
first node. These representations make it easier to create a fresh copy of the
body of a function during evaluation.

293

3 Bytecode Interpreter

In this section, the meaning of the Reduceron bytecode is defined by a simple
small-step state transition relation, ⇒, between pairs of the form 〈p, s〉, where p

represents the program and is a function that maps function names to function
bodies, and s is a stack. Initially the stack contains a single node Fun "main",
and we assume that the main function of program has the type main ::Int. So,
the final result of a program p is defined to be r where

〈p, [Fun "main"]〉 ⇒⋆ 〈p, [Int r]〉

3.1 Semantics

The following paragraphs describe how evaluation proceeds, depending on the
kind of node that sits at the top of the stack.

Integers. Recall that we are treating each integer as a function that fully eval-
uates the integer and then passes it on to a continuation. So when an integer
node appears at the top of the stack, we simply do a swap:

〈p, Int i : a : s〉 ⇒ 〈p, a : Int i : s〉

Primitives. When a primitive appears at the top of the stack, then we know
that the next two stack elements are the fully evaluated arguments of the prim-
itive. So we have the rule

〈p, Prim f : Int x : Int y : s〉 ⇒ 〈p, Int (f x y) : s〉

if f is a binary arithmetic function, and the rule

〈p, Prim g : Int x : Int y : t : f : s〉 ⇒ 〈p, cond (g x y) t f : s〉

if g is a binary arithmetic predicate. Here, cond p t e is defined to be t if p holds,
and e otherwise.

Applications. To evaluate an application, we simply place all the nodes in the
application on top of the stack using the concatenation operator ++.

〈p, Ap n : s〉 ⇒ 〈p, n ++ s〉

Functions. When a function sits on top of the stack, it needs to be unfolded.
The body b of the function and the number of arguments n it takes are obtained
by looking f up in program mapping p. To perform the reduction, a fresh copy of
b is made whose free variables have been replaced for corresponding elements on
the stack. The arguments are then popped of the stack, and the root application
node of the new body is then unwound onto the stack. This gives the rule

294

subst s [] = []
subst s (Arg i : n) = (s ! i) : subst s n

subst s (Ap a : n) = Ap (subst s a) : subst s n

subst s (m : n) = m : subst s n

Fig. 2. Substitution function

〈p, Fun f : s〉 ⇒ 〈p, subst s b ++ drop n s〉

where 〈n, m, b〉 = p f

The subst function is defined in Figure 2. Note that an expression of the form
s ! i denotes the ith element from the top of the stack s. And one of the form
drop n s denotes popping the top n elements of the stack s.

This concludes a simple small-step semantics of a reduction machine for
Reduceron bytecode. However, several important details that make the machine
practical are not reflected in the semantic rules. These details are discussed
informally in the following sections. In future we intend to extend our semantics
to include these details.

3.2 Explicit Heap

The above semantics enjoys the luxury of an implicit heap. It uses abstract
list structures to encode function bodies and recursion to traverse them. A real
machine must treat the heap as an explicit entity. The main detail introduced
by an explicit heap is that when a function is unfolded, its body must be copied
from one place on the heap to another. In addition to replacing free variables by
arguments on the stack, the subst function must also translate application node
pointers from relative addresses to absolute ones. This copying, substituting,
and translating of blocks of memory is the core operation of graph reduction,
and is precisely the operation that we are aiming to optimise. In particular, our
view is that this operation need not be implemented as a sequence of smaller
instructions, but can, in a non-von Neumann architecture, be performed “all in
one go”.

Furthermore, when using an explicit heap, it is vitally important to have a
garbage collector. Otherwise, for all but the simplest programs, heap space will
quickly be exhausted.

3.3 Sharing

To obtain lazy evaluation, rather than just non-strict evaluation, unfolding a
function should overwrite the corresponding application application node. When
an application node is unwound onto the stack, the final node of that application
has the application node’s pointer stored alongside it. Now when a function f

295

AStackStack

Reduceron II
32k

Heap GCSpace
16k

Combinators
1k

1k1k

Fig. 3. Memory layout of FPGA implementation

is unfolded and the final argument to f on the stack has a pointer alongside it,
the value at that pointer is overwritten with an application node that points to
the freshly instantiated body of f .

4 FPGA Implementation

We use a Virtex-II FPGA chip from Xilinx for our implementation. Although
this chip is over five years old, it is still quite powerful and has a very similar
architecture to the latest Virtex-5 series. The structure the Reduceron’s design
is shown in Figure 3 and is explained in the following sections.

4.1 Heap

The Virtex-II contains 56 18kbit dual port block RAMs. Block RAMs can be
configured to have a range of different address-bus widths and data-bus widths.
We configure them all as 1k by 18 bit RAMs giving an 18 bit word size. We use
the first 3 bits of each word as tag bits which encode the kind of node that the
word represents. The remaining 15 bits are used to hold either an address, e.g.
the address of an application or combinator, or a piece of data, e.g. an integer.

To implement a heap, we turn 32 1k by 18 bit block RAMs into a single
32k by 18 bit RAM using cascade logic (a multiplexor and a decoder). This
gives quite a narrow memory, but one could just as easily cascade the block
RAMs to give a much wider memory, e.g. 8k by 72 bit or 4k by 144 bit. A wider
memory would allow for more parallelism in the reduction process, but we have
not explored this possibility yet. Another feature that we have not yet explored
is the dual-port nature of each block RAM, which could effectively double the
bandwidth.

The cascade logic on the heap is quite complex. To obtain an efficient design, a
register must be placed on the output of the data-bus’s multiplexor. This means
that two clock cycles are needed between placing an address on the address-
bus and reading the resulting value off the data-bus. We eliminate this overhead
using pipelining techniques, although this has the side-effect of making our design
slightly more complicated.

296

4.2 Stack and Combinators

We implement the stack using 2 1k by 18-bit block RAMs. One of these RAMs
corresponds to the stack used in the semantics of Section 3.1, and the other
corresponds to the stack holding addresses of application nodes, as discussed in
Section 3.3. The combinator memory, holding the program, is also implemented
using a single 1k by 18 bit block RAM.

By having separate memories for each of these storage units, rather than a
single storage unit for everything, we double the performance of the machine.
This is because it is possible, for example, to read from combinator memory
and the stack at the same time as writing to the heap. The fact that tripling
the memory bandwidth doubles performance gives us a strong motivation for
expanding the memory bandwidth further, as discussed above. Encouragingly,
we also found that having separate memories increased the clocking frequency
of our design by about 10%.

4.3 Garbage Collection

For any serious computations to be performed in such a small amount of memory,
a garbage collector is essential. We opted to implement a simple stop-and-copy
two-space garbage collector [2]. The idea is that active nodes in the heap are
copied to a separate 16k by 18 bit memory called “GCSpace”. Then GCSpace,
which now contains a compacted version of the heap, is copied back to the heap
again before reduction continues. Although not the cleverest collector, it has the
advantage of simplicity. We prefer to concentrate on optimising the reduction
process rather than exploring advanced garbage collectors.

4.4 Resource Usage

Our current design has the following resource usage on the Virtex-II:

Slices used: 1423/10752
Block RAMs used: 51/56
Max. frequency: 96.5MHz

The maximum clocking frequency of the Virtex-II is around 140MHz, so to
produce a fairly complex design at 96.5MHz seems to be quite a good result. It
is quite possible that a faster design is achievable using more buffers and deeper
pipelines, but this may require sacrificing some simplicity.

4.5 Description Language

Our FPGA machine is completely implemented in Haskell using the Lava library
[1]. One particularly attractive feature of Lava was the ability to mix pure func-
tional code for describing circuit structure concisely with monadic abstractions
for capturing circuit behaviour. Nevertheless, on several occasions we wished for

297

 Reduceron II (Virtex−II FPGA @ 96.5Mhz)
 Virtual Reduceron II (Pentium 2.8GHz)
 Yhc (Pentium 2.8GHz)
 Hugs (Pentium 2.8GHz)

 0

 2

 4

 6

 8

 10

SumPuzQueens(10)PermSort([1..9])Primes(350)Fib(31)

Fig. 4. Execution times (s) of programs running on FPGA and PC.

a high-level synthesis [5] tool in which we could describe our machine without
concern for low-level timing issues. Unfortunately, to our knowledge, such tools
are not widely available. So in future, it would be interesting to try describing
our machine using high-level synthesis algorithms built on top of Lava.

5 Results and Conclusions

Figure 4 shows the execution times of a range of programs using (1) the Reduc-
eron on the 96.5Mhz FPGA, and (2) the Reduceron, the Yhc virtual machine,
and Hugs [10] all on a Pentium 2.8GHz PC. The programs used are shown along
the horizontal axis and the inputs to the programs are given in parentheses.
Most of the programs are well known from the nofib benchmarking suite [7],
except PermSort which is a permutation sort and SumPuz which is a program
that counts the number of solutions to an arbitrary cryptarithmetic problem.
The problem instance given to SumPuz was GRAPH + ROOT = REDEX which has
24 solutions. Furthermore, where required, we implement division by repeated
subtraction since our machine currently doesn’t support division.

In all cases, despite a clock-speed on the FPGA around thirty times slower

than on the PC, the FPGA implementation of the Reduceron runs within a fac-
tor of two of the PC version. This is a promising result as there are two main
improvements that we can make to our machine. Firstly, our current implemen-
tations of function-unfolding and application-unwinding are sequential, requiring
execution-times proportional to the number of nodes they contain. As discussed
in Section 4.1, it is possible to widen the memory structures, paving the way for

298

a faster unfolding and unwinding. But how much of a speed-up can we expect?
Let us take the fact supercombinator of Figure 1 as an example. It contains a
total of 15 nodes and contains applications ranging from size two to four. If we
were to quadruple the memory bandwidth then we can expect unfolding fact

to be four times faster, and fetching applications of fact to be two to four times
faster. By averaging, we obtain an estimate of a 3.5 times speed-up.

The second improvement that we can make is to move to the latest Virtex-5
series FPGAs, capable of running at 550MHz and containing ten times as many
block RAMs. We can reasonably expect our machine to run twice as fast on
this newer device, giving a combined improvement of a factor of seven speed-up.
Our prototype FPGA-based machine would then outperform the same machine
running on a modern PC by around a factor of five. It is our goal to confirm this
result for the final version of this paper.

Despite the simplicity of the Reduceron, we do consider it to be a real-
istic machine. Indeed, our PC implementation of it outperforms the Yhc vir-
tual machine, a G-Machine variant. But currently, we do lack support for many
Haskell’98 primitives. Questions we leave for the final version of this paper are:
How does the Reduceron compare with GHC-compiled programs? How should
I/O be done? What applications is the Reduceron suited to?

The full source code for the Reduceron compiler, machine, and examples can
be obtained from http://www.cs.york.ac.uk/fp/darcs/reduceron2.

Acknowledgements

The first author is supported by an award from the Engineering and Physical
Sciences Research Council of the United Kingdom. We thank Jack Whitham and
Ian Gray for their help in the Virtual Lab and to the Real Time Systems group
for providing the Virtex-II FPGA. We also thank Emil Axelsson for comments
on a draft. Most of all, we thank Neil Mitchell for many useful discussions, for
implementing Yhc Core, and for providing several transformations including the
Church encoder and the lambda lifter.

References

1. Koen Claessen. Embedded Languages for Describing and Verifying Hardware. PhD
Thesis, Chalmers University of Technology, 2001.

2. Robert R. Fenichel and Jerome C. Yochelson. A lisp garbage-collector for virtual-
memory computer systems. Commun. ACM, 12(11):611–612, 1969.

3. Dimitry Golubovsky, Neil Mitchell, and Matthew Naylor. Yhc.Core - from Haskell
to Core. The Monad.Reader, (7):45–61, April 2007.

4. R. J. M. Hughes. Super Combinators—A New Implementation Method for Ap-
plicative Languages. In Proceedings of the 1982 ACM Symposium on Lisp and

Functional Programming, pages 1–10, Pittsburgh, 1982.
5. Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill

Inc., 1994.

299

6. Matthew Naylor. The Reduceron: An FPGA Machine for Executing Haskell. http:
//www.cs.york.ac.uk/~mfn/reduceron/.

7. Will Partain et al. The nofib Benchmark Suite of Haskell Programs. http:

//darcs.haskell.org/nofib/, 2007.
8. Simon Peyton Jones. The Implementation of Functional Programming Languages.

Computer Science. Prentice-Hall, 1987.
9. Simon Peyton Jones. Haskell 98 Language and Libraries: The Revised Report.

Cambridge University Press, 2003.
10. The Hugs Team. The Hugs interpreter, may 2006. http://www.haskell.org/

hugs/, October 2006.
11. The Yhc Team. The York Haskell Compiler - user’s guide. http://www.haskell.

org/haskellwiki/Yhc, February 2007.
12. D. A. Turner. A new implementation technique for applicative languages. Softw.,

Pract. Exper., 9(1):31–49, 1979.

300

Incremental Extension of a Domain Specific
Language Interpreter

Olivier Michel1 and Jean-Louis Giavitto1

IBISC - FRE 2873 CNRS & Université d’Évry, Genopole
Tour Évry 2, 523 place des terrasses de l’Agora, 91000 Évry, France

Abstract. We have developed an interpreter for the domain-specific
language MGS using OCAML as the implementation language. In this third
implementation of MGS, we wanted to provide the end-user with easy in-
cremental addition of new data structures and their associated functions
to the language. We detail in this paper our solution, in a functional
setting, which is based on techniques similar to those found in aspect-
oriented programming.

1 Introduction

This work takes place in the MGS [11, 16] project1 which develops new data and
control structures for the modelization and simulation of dynamical systems with
a dynamical structure [14]. These features are embedded in a simple functional
language, called also MGS, which is used to model various physical and biological
processes [30, 31, 13].

The adequacy of MGS to its application domain is achieved through the fol-
lowing three features:

1. it embeds a very rich family of data structures used for the representation
of the states of dynamical systems;

2. it provides a very large set of functions operating on these data structures;
3. it offers a new way of specifying uniformly functions defined by case on

arbitrary data structures, using topological rewriting [12].

An interpreter for the MGS language has been implemented in the OCAML [21,
28] language. The decisive advantages of OCAML for us were that (1) it provides
both functional and object-oriented features in the same environment and (2) it
produces very effective code [1, 2].

One of the main problems raised by the MGS project is the wish to offer easy
incremental addition of new data structures and their associated functions to
answer the needs expressed by the end-users. As a matter of fact, the initial
release of the interpreter did only include the collection data types sequences,
sets and multisets.
The current interpreter includes arbitrary graphs, Voronöı tessalation, group

1 The MGS project is available at: http://mgs.ibisc.univ-evry.fr

301

type expr =
Constant of value

| Apply of expr * expr

and value =
Int of int

| Fun of (value -> value)

let print_val = function
| Int i -> Printf.printf "%d\n" i
| Fun x -> Printf.printf "<fun>\n"

let inc_val =
Fun(function (Int i) -> Int (i + 1)

| _ -> failwith "bad arg")

let rec eval = function
| Constant x -> x
| Apply (e1, e2) ->

(match (eval e1) with
| Fun x -> x (eval e2)
| _ -> failwith "apply: type error")

let inc_expr = Constant inc_val
let inc = Apply(inc_expr,

Apply(inc_expr, Constant (Int 1)))

print_val (eval(inc))

Fig. 1. A simple and basic interpreter expressed in a higher-order syntax style
in ML.

based fields [11] which generalize various kind of arrays, gmaps [22], extensible
records and maps, trees defined by automata, and many other data types [29]. All
the additional data structures (together with their operators) have been added
incrementally using the techniques described in this paper.

Usually, the values handled in the target language (that is, the language to
be implemented, here, MGS), are represented through a unified data structure in
the implementation language (that is the language used to implement the target
language, here, OCAML). We call this data structure the value data structure.
Using OCAML as the implementation language, there are two choices for the value
data structure:

1. it can be represented using a sum type, following a functional style,
2. or, it can be represented using a class following an object-oriented style.

Both approaches have some shortcomings, with respect to the requirement of
incremental development. To summarize

1. in the functional approach, it is easy to add new functions but difficult to
add new target data structures;

2. on the contrary, in the object-oriented approach, it is easy to add new target
data structures but difficult to add new functions.

To overcome these drawbacks, we have developed an original technique, in-
spired from aspect programming techniques, that consists in weaving both the
value data structure and their associated functions. This technique has the ad-
vantages of:

– allowing new target data structures to be added without modifying the al-
ready written implementation files of the interpreter,

– facilitating the addition of new target data structures and functions to the
point that even end-users are able to increment the MGS interpreter.

302

The rest of the paper is organized as follows. We briefly describe the MGS
language in the next section to give the reader an idea of the complexity raised
by the implementation of the rich data types in the interpreter. Section 3 de-
scribes the functional and the object-oriented approach used to implement the
value data structure and details the problem raised by its incremental evolution.
The implementation of heavily overloaded target functions are presented in the
next section. The software architecture of the final implementation code of the
interpreter is sketched in section 5. Section 6 presents how the informations gath-
ered along all implementation files are collected to generate the value data type
and to implement the multiple dispatch of the target functions. The conclusion
summarizes our approach and shortly reviews related works.

2 Functions and Values in the MGS Programming
Language

We briefly discuss in this section the values manipulated in the MGS language and
their associated functions. Our aim is to show that the technique presented in
this paper is required to deal with its complexity and to allow an easy incremental
addition of new data structures and their associated functions.

2.1 The Type Hierarchy of the MGS Programming Language

We briefly give in this section an incomplete description of the type hierarchy of
the MGS programming language.

any

scalar collection

int float symbol ... rec leibniz newton

monoidal del ... gbf graph achain qmf ...

seq set bag

Fig. 2. The type hierarchy of the MGS language.

A graphical representation of the type hierarchy of MGS is given in figure 2.
In MGS two main types of values are distinguished: the scalar values which are
elementary constants and collections which allow to organize the values. Example
of scalar values are integers, floats, symbols... Example of collection types are

303

sets, bag, Delaunay graphs, group-based fields [15], quasi-manifolds [22, 23]...
Collection values can be any combination of collections and scalar values such
as a bag containing symbols and sequences of integers.

In the following example, we define three values equal to collections: v_seq
which consists in the sequence (like a C one-dimensional array) composed of a
string value ("str"), a floating-point value (3.5), two integers values (4, 4),
a boolean value (true) and the identity function (expressed as an anonymous
lambda-calculus expression: \x.x) and the same elements organized as a set
(v_set) and a bag (bag).

1 mgs> v_seq := "str", 3.5, 4, 4, true, (\x.x), seq:();;

2 ("str", 3.500000, 4, 4, true, [funct]):’seq

3
4 mgs> v_set := "str", 3.5, 4, 4, true, (\x.x), set:();;

5 (4, true, 3.500000, "str", [funct]):’set

6
7 mgs> v_bag := "str", 3.5, 4, 4, true, (\x.x), bag:();;

8 (4, 4, true, 3.500000, "str", [funct]):’bag

The comma operator is overloaded and used, following the context, to add an
element to a collection, to merge two collections of the same type or to cre-
ate a sequence composed of its elements. For most of the collection types, the
empty collection type xxx is written xxx:() (for the example above, the empty
collection for the sequence type is namely seq:()).

2.2 Functions For the Manipulation of Values

In MGS, most of the functions are overloaded to allow an easy handling of complex
values. A collection value c has a type τ(µ) where τ is the collection type (like
set, seq, bag, ...) and µ is the type of the elements of the collection. To allow
an easy handling of complex values, most built-in functions are overloaded so
that user-defined functions can handle collections of any type τ(µ) regardless of
τ and µ. That property can be seen as a kind of polytypism [5, 19].

For example, the size functions, that returns the number of elements in the
collection, can be applied to any collection:

1 mgs> size(v_seq);;

2 6

3
4 mgs> size(v_set);;

5 5

6
7 mgs> size(v_bag);;

8 6

Among all the polytypic functions, we have the classics map, iter, fold, one_off,
rest, member... The interested reader should refer to http://mgs.ibisc.univ-evry.
fr/Online Manual/Collections.html for the detail of available functions de-
fined on collection types.

304

2.3 A Short Example

MGS unifies the collection types together with the polytypic functions in a general
rewriting scheme. Programs are written as a composition of transformations, a
very expressive form of rewriting process [12, 13, 17, 30, 32] based on the neigh-
borhood relationship exhibited by each collection type together with a general
form of pattern matching.

The following MGS expression returns (if it exists) the Hamiltonian path in a
graph G

1 trans Hamiltonian =

2 (s* as whole / (size(whole) == size(‘self)) => whole)

Pattern s* matches any path p (that is, a sequence of neighboring values) in G
such that each element in p appears only once; the additional requirement that p
is of the same size as G ensures that such paths are Hamiltonian. Of course, the
complexity of the search remains, but the complexity of its expression is highly
reduced.

3 The Implementation of the value Data Structure

3.1 The value Data Structure in a Functional Setting

In a functional setting, an evaluator consists in a function eval that, given an
expression of type expr, returns a value of type value. A toy example of such
an interpreter is given in figure 1.

In this example, the type value is restricted to integers and functions. The
precise application area of MGS does not matter in this paper and detailing the
handling of integers and integers operators should be enough to explain our
approach.

Functions in the target language rely on the use of functions of the implemen-
tation language (see the example of the inc_val function at line 16 in figure 1).
This mechanism of representing a target function by an implementation func-
tion lies at the heart of the higher-order abstract syntax [26, 7] approach. For
the sake of simplicity, we do not detail here on how to implement user-defined
functions. In the current MGS interpreter, this is achieved by using combinators
to translate on-the-fly a user-defined lambda expression into a Fun value [6].
The same mechanism can be used in the OO approach presented below. With
the higher-order syntax approach it is immediate to integrate existing libraries
of functions as a predefined kernel of functions: predefined library functions are
embedded using the Fun constructor. Note that the functions of the kernel have
exactly the same status and implementation as the user-defined functions and
so they can be arbitrarily mixed “for free” (e.g. using higher-order operators).
In the rest of this paper we focus only on the handling of a set of predefined
functional constants like inc val.

If one wants to extend the interpreter with a new primitive, like the addition
of integers, it only requires to define the corresponding constant

305

#include <iostream>
using namespace std;

struct value;

struct expr { virtual value& eval() =0; };

struct value : public expr {
value& eval() { return *this; }
virtual ostream& print(ostream& o) =0;

};

struct Number : public value {
virtual Number& inc() =0;

};

struct Int : public Number {
int val;
Int(int n) : val(n) {}
Number& inc() { return *(new Int(val + 1));}
ostream& print(ostream& o) {return o << val

<< "\n";}
};

struct Fun : public value {
virtual value& operator() (value&) =0;
ostream& print(ostream& o)

{return o << "<fun>\n";}
};

struct Error : public value {
char* msg;
Error(char* s) : msg(s) {}

ostream& print(ostream& o) {return o << msg
<< "\n";}
};

struct Apply : public expr {
expr& fct;
expr& arg;
Apply (expr& f, expr& a) : fct(f), arg(a) {}

value& eval() {
if (Fun* f = dynamic_cast<Fun*>(&(fct.eval())))

return (*f)(arg.eval());
else

return *new Error("apply: type error");
}

};

struct Inc : public Fun {
value& operator() (value& arg) {

if (Number* a = dynamic_cast<Number*>(&arg))
return a->inc();

else
return *new Error("bad arg");
}

};

main()
{

Int v(1);
Inc incr;
Apply tmp(incr, v);
Apply(incr, tmp).eval().print(cout);

}

Fig. 3. A simple and basic interpreter expressed in an OO programming style.

1 let add_val =

2 Fun(function (Int v1) ->

3 Fun (function (Int v2) -> Int (v1 + v2)))

in a new file and to rely on separate compilation and linking to produce the new
interpreter. The new function can be made available to the MGS programmer by
registering the previous expression in the global environment under an adequate
name.

So, it is straightforward to extend the library of available functions. On
the contrary, if we want to extend the available value type, for example with
floating-points values, we face several problems:

1. the type value must be extended accordingly, which implies to edit an ex-
isting file,

2. all functions defined by case on type value have to be updated to take into
account the new case.

The second point requires to edit all existing files related to the value type. For
instance, in the context of the MGS project, which represents 50k lines of OCAML
code, spread in about 75 files, it would require a huge amount of work.

306

3.2 The value Data Structure in an Object-Oriented Framework

In a object-oriented (OO) framework, the sum type used in the functional ap-
proach is replaced by an abstract class whose derived classes represent all the
cases. Methods are used to implement predefined target functions. The corre-
sponding interpreter, in C++, is given in figure 3.

The dynamic cast<...>(...) is used for downward casting a class to one
of its derived classes in a safe way. Failure to downcast corresponds to type
errors during evaluation of MGS expressions. value are defined as a subtype of
expression. A class Number gathers all classes that admit numerical operations
like incrementation. Initially, the only descendant of Number is Int which repre-
sents integers. Despite the syntactic differences, the OO C++ code mimics closely
the functional approach. The eval methods applies to any expression and is
defined, case by case, on each derived subclasses. The real difference is that the
cases are not gathered in one place but scattered in each derived classes. The
evaluation of a value is always the identity and so it is defined at the level of the
value class.

If one wants to extend the interpreter with a new data type, like floating-
points values, it only requires to define the corresponding derived class

1 struct Float : public Number {

2 float val;

3 Float(float f) : val(f) {}

4
5 value& inc() { return *(new Float(val + 1.0)); }

6
7 ostream& print(ostream& o)

8 { return o << val << "\n"; }

9 };

in a new file and to rely on separate compilation and linking to produce the new
interpreter.

So, it is straightforward to add new target data structures. On the contrary,
if we want to extend the library of available functions, we have to add a virtual
function to the mother-class value or one of its derived classes. This implies to
edit the class value but also all the derived classes for which an implementation
of the new method is relevant.

arity number min cases average cases max cases

1 100 1 3.43 24
2 93 1 5.77 40
3 22 1 2.4 14
4 4 1 1 1
5 0
6 4 1 6 21
7 2 1 12 23

Fig. 4. Statistics summary of overloaded functions in MGS.

307

4 Implementing Overloading

The implementation of an incremental interpreter has also to face an additional
problem if we provide to the end-user overloaded target functions. In the previous
example, the function inc has a meaning for both integer and floating-points
values. It would be very convenient to offer to the end-user an overloaded function
acting on both types. This means that from an MGS identifier inc and the type
of the arguments in an application, some dispatch mechanism must be used
to call the correct implementation method or function. This problem is not
negligible. In the MGS context, there are many overloaded functions: figure 4
gives the number, and distribution with respect to their arity, of overloaded
target functions available to the end-user.

In the functional framework, the dispatch is easily provided for unary func-
tions, using definition by cases through the pattern matching on the constructors
of the value data type. In the OO framework, this is also easily achieved using
virtual methods.

Things get more complex when we consider functions with multiple argu-
ments. For example, consider the addition of two values. Pattern matching can
still be used, but at the price of explicitly writing the Cartesian product of the
value constructors. For example, in the current MGS interpreter, there are 24
available data types. So, overloading the addition comes at the cost of writing
576 cases. Obviously, most of the cases correspond to errors and are handled
similarly. Even if this can be done using wild-cards in patterns, there is still a
huge number of cases to be written.

In the OO framework, the extension of the overloading of a target function
to multiple arguments requires multiple dispatch [18]. Multiple dispatch can be
implemented (in languages with only single dispatch, like C++ or OCAML) using
auxiliary methods [25, item 31]. The number of these functions also grows ex-
ponentially with the number of arguments meaningful for the dispatch.

5 An “Incremental” Software Architecture for the MGS

Interpreter

Our first design decision in MGS was to rely on the functional approach. As
a matter of fact multiple dispatch is easier to implement in this framework.
However, the problems raised in section 3.1 have still to be addressed. Our
idea is to split the various cases of an overloaded function into multiple OCAML
functions spread through the whole set of files. A pre-processing phase gathers
all the defined functions and merges them into the actual implementation. A
similar process is done for the various constructors of the value data type.

Splitting the definition into several files raises the problem of functional de-
pendency. It is hopeless to force the developer to have a correct sequencing of the
files when we want to enable at the same time the unconstrained addition of new
data types and pieces of code. To solve this problem, we use a well-known tech-
nique of forward pointers that are correctly set at run-time (see for example [21,
page 150]).

308

generates includes the corresponding .mli

dispatch.ml

def2.ml

def1.ml code.ml

generation time compile time

type.ml

sig.ml

S3S1 S2

Fig. 5. Organisation of the code: the three phases S1, S2 and S3 are given together
with the exact date when each file is produced and the functions are made available.

We detail in the rest of this section the overall software organization through
the description of a small example. We assume that the value data type is
completely defined once and for all. Section 6.1 sketches how this data type can
also be generated from informations gathered through all the code. The reader
is supposed to be familiar with the OCAML language and its compilation tools.

5.1 Organization of the Code

The project consists in three set of files, S1, S2 and S3. A dispatch will be com-
puted from the definitions occurring in S1 and S2. After S1, the signature of
the dispatched functions are available (for the functions defined in S2 and S3).
That is, the functions are called through a diversion mechanism. After S2, the
functions can be directly called since all dispatched functions are known and
initialized after S2. Then, the dispatch is effective and the direct call to the dis-
patched functions is possible. Figure 5 shows the clear timing of the operations
occurring in the three phases and what files are used.

5.2 S1: Basic Definitions

The files in S1 are definitions, usually types and functions, that do not rely on
other previous definitions and that will be used everywhere in the project.

It includes a file types.ml that defines the type of the values (the value type)
that are going to be handled. All the functions that will handle values in the
code will require to have access to this file. From the .ml, a .mli include file is
produced by the OCAML compiler. Using this include file through the open Types
directive all other files are able to define functions on value.

1 type value =

2 Int of int

3 | Float of float

5.3 The Diversion Mechanism: Generation of Forward and
Signatures

At this point, it is necessary to give access to the overloaded functions, which
raises two problems:

309

1. since the functions are defined incrementally, there is no global repertory of
them;

2. these functions must be made available for code in S2 and S3 independently
of their actual implementation localization.

These two problems are solved by scanning all implementation files to collect
the various function names to generate a unique file sig.ml providing the im-
plementation of the forwarding mechanism. The scanning is made possible by
enforcing a specific syntax for the function names (see below).

For our example, the generated sig.ml file is

1 open Types;;

2
3 (* Signature declaration *)

4 let (add_forward : (value -> value -> value) ref) =

5 ref (function _ -> failwith "unitialized add")

6
7 let (print_forward : (value -> unit) ref) =

8 ref (function _ -> failwith "unitialized print")

9
10 Printf.printf "Setting the forward pointers\n"

11
12 let add x y = !add_forward x y

13 let print x = !print_forward x

The forward mechanism works as follows: an overloaded function add is a
wrapper that applies the value of the imperative variable add_forward. This
imperative variable is initialized with a dummy function raising an error. This
variable will be set later with the correct function (see lines 20 and 21 of the file
dispatch.ml in section 5.5).

5.4 S2: Writing of Code

The files in the second set S2 contains the implementation of the various cases
of an overloaded function. Suppose that a unary function XX is overloaded on
two types p and q. This suppose that the value data type has two constructors
P and Q defined like

1 type value = ...

2 | P of type_p

3 ...

4 | Q of type_q

5 ...

Then the MGS implementers have only to provide two functions called _XX_p and
_XX_q both of arity one. The argument of _XX_p is of type type_p. The naming
convention is simple: the name of the constructor (which is constrained to always
begin with a capital letter in OCAML) is used in small letter in the name of the
function case.

The naming convention is straightforwardly extended to handle multiple ar-
guments. A function definition:

310

XX p1 ... pn

represents the handling of the arguments of type type p1, . . . , type pn for the
overloaded function XX. The types type pi are arguments of constructors of the
sum type value. Each constructor corresponds to a different MGS value type and
we assume that the type pi are all different, even if the implementation type are
the same by using alias type declaration. This naming convention enables the
scanning described in the previous section and the generation of the diversion
functions XX and XX forward as well as the dispatch function XX described in
the next section.

An example of two overloaded functions, add and print is given in the
def1.ml file below:

1 open Types;;

2 open Sig;;

3
4 let _add_int_int i1 i2 = Int (i1 + i2)

5
6 let _print_int i1 = Printf.printf "%d" i1

7 let _print_float f1 = Printf.printf "%f" f1

Note that the definition of add is, at this point, not complete. Other cases
are specified or will be specified in other files.

All functions are allowed to recursively call any overloaded function. For
example, in another file def2.ml, the definition of _add_float_int uses the
overloaded function add:

1 open Types;;

2 open Sig;;

3
4 let _add_int_float i1 f1 = Float

5 (f1 +. (float_of_int i1))

6 let _add_float_float f1 f2 = Float (f1 +. f2)

7 let _add_float_int f1 i1 = add (Int i1) (Float f1)

Note however that add can only be effectively used once the wrapper has cor-
rectly been set at run-time. This means that, at this point, only function defini-
tions, implying overloaded functions, can occur and no actual function calls to
overloaded functions.

5.5 Generation of the Overloaded Functions

An overloaded function is implemented using pattern matching to dispatch to the
several function cases. The implementation function corresponding to the over-
loaded function XX is called __XX. For our example, the generated dispatch.ml
file is:

1 open Types;;

2 open Sig;;

3 open Def1;;

311

4 open Def2;;

5
6 let __add x y = match x, y with

7 | (Int x0), (Int x1) -> _add_int_int x0 x1

8 | (Float x0), (Float x1) -> _add_float_float x0 x1

9 | (Int x0), (Float x1) -> _add_int_float x0 x1

10 | (Float x0), (Int x1) -> _add_float_int x0 x1

11
12 and __print x = match x with

13 | Int x0 -> _print_int x0

14 | Float x0 -> _print_float x0

15
16 Printf.printf "Setting the correct link\n"

17 flush Pervasives.stdout

18
19 Sig.add_forward := __add

20 Sig.print_forward := __print

At the end of the file, the imperative variables used in the wrapper functions are
set to their correct value, using the just defined __XX functions.

5.6 S3: Using Dispatched Functions

At this point, all function cases have been gathered, the overloaded functions
have been generated and can be used even in the initialization phase, on the
contrary to the code in the S2 set of files. In the MGS project, the files in S3

corresponds to the implementation of transformations, the parsing, the top-level,
etc.

To finalize our running example, the file code.ml below describes some pos-
sible use of the overloaded functions, add and print:

1 open Types;;

2 open Sig;;

3
4 print (add (Float 2.0) (Float 3.0))

5 print_newline()

6 print (add (Float 2.0) (Int 1))

7 print_newline()

8 print (add (Int 2) (Float 1.0))

9 print_newline()

10 print (add (Int 2) (Int 1))

11 print_newline()

5.7 Compilation and Execution of the Code

The compilation follows five phases to respect the code organization:

1. in a first phase, all the files in S1 are compiled;

312

2. in a second phase, all the files of the project are scanned to automatically
generate and compile the sig.ml file;

3. in a third phase, all files from S2 are compiled (which additionally produces
the include files required for dispatch.ml);

4. in a fourth phase, dispatch.ml is generated and compiled;
5. finally, files in S3 are compiled and the final linking is done.

This process is fully automated by a Makefile. The compilation and the execu-
tion of our example gives:

ibisc 12 > make

ocamlc -c types.ml

ocamlc -c sig.ml

ocamlc -c def1.ml

ocamlc -c def2.ml

ocamlc -c dispatch.ml

ocamlc -c code.ml

ocamlc -o dsal types.cmo sig.cmo def1.cmo def2.cmo\

dispatch.cmo code.cmo

ibisc 13 > dsal

Setting the forward pointer

Setting the correct link

5.000000

3.000000

3.000000

3

6 Weaving the Implementation Code

In this section, we sketch the automatic generation of the type.ml, sig.ml and
dispatch.ml files.

6.1 Weaving the value Data Structure

In the same way that the function cases are split through several files, the vari-
ous constructor of the value data type are split in several files. This enables to
add a new data structure to MGS simply by providing a new file introducing the
corresponding constructor. The precise syntax used for the constructor declara-
tion does not matter. The first weaving tool scans all the source files to gather
all the constructors related to the value type and generates the types.ml file.

6.2 Weaving the Dispatch on value Type

The second weaving tool gathers all the function cases spread among the source
files to generate the overloaded functions. The dispatch mechanism presents some

313

subtleties. In the previous example, all the types used as the arguments of the
constructors of the value type where incomparable. However, the situation is
more complex in the implementation of MGS:

– wild-cards are required to handle within the same case function various ar-
gument types;

– there is a hierarchy of data types in the MGS language that is available to the
developer of the MGS language.

A simple example of the last kind is the following: MGS values are split into
atomic and compound values. Sometimes, cases functions are dispatched on this
distinction, and not on the implementation type of the data structure. For ex-
ample, the primitive function size returns -1 on all atomic values and returns
the number of elements in its argument in case of a compound value. Interior
nodes of the MGS hierarchy type corresponds to several constructor in the value
type. The type of the argument passed to the dispatched function is then value
and not the argument type of a constructor.

Having family of types produces a hierarchy that has to be taken into account
while generating the pattern matching of the overloaded functions. For example,
a case on _XX_int_int has to appear before the case _XX_int_atomic. The
partial order relationships between the MGS types is used to sort lexicographically
the collected cases of an overloaded function.

A “catch-all” case is produced to handle “bad argument types” error. To
avoid spurious warnings by the OCAML compiler, this case is produced only if
required.

7 Conclusion

The software organization and the weaving tools described in this paper have
been successfully used in the development of the MGS interpreter. This represents
over 50k lines of OCAML code (there is also over 100k lines of C++ libraries to
provide basic support for sophisticated data structures like Voronöı tessalation,
G-Maps, Cayley graphs, ...). The 50k lines of OCAML files are scattered over 75
files. The scanning of these files is almost immediate and does not slow down the
compilation process. It generates 225 overloaded functions. These results show
that our approach is well suited to the development, in a functional setting, of
large incremental projects.

One of the originality of this work is the application of aspect weaving tech-
niques in the context of a functional language (OCAML). As far as we know, this
is the first attempt to merge these two worlds to ease the implementation of a
domain-specific language. Our approach relies only on a tailored software archi-
tecture, a dedicated makefile, some naming conventions and two external tools
to parse and collect informations on the various data types entering in the value
type and on the overloaded functions. It does not involves any changes on the
OCAML compiler nor sophisticated typing techniques. It is therefore a lightweight
solution to the problem of incrementally building an interpreter.

314

Related Works.

The various techniques implied have already been used in other contexts (for
example, wrapper functions are used to overcome the impossibility to have re-
cursively defined modules spun across multiple files) and the problem that we
have tried to solve has been coined the expression problem in [34] (with an en-
lightening discussion in [35]). We briefly review, because of space limitation,
some similar approaches.

Language Extensions. In [20] is proposed a specific design pattern called
the Extensible Visitor which is a combination of functional and object-oriented
programming methods while our approach is purely functional.

An aspect-oriented programming extension to OCAML, very similar to As-
pectJ [3], is proposed in [24]. It is a highly technical approach that uses the
usual features of join points, pointcuts and advices declarations that leads to the
definition of the Aspectual Caml language while our work do not change the
language itself but consists in two additional tools to collect information and
produce the dispatch files.

Extensible Interpreters. The conception of extensible interpreters has been
considered for example in [33]. However, it requires sophisticated type inference
techniques to be implemented that goes beyond standard ML type inference.

Multiple dispatch has been considered for overloaded functions in a functional
language [4]. As for the previous work, it requires sophisticated types techniques.

Extensible sum data types[8, 9] (which is further extended in [10] by adding
private row types to functors) have been proposed and are implemented in OCAML.
They enable the incremental definition of the value data type and of the func-
tions but at the cost of requiring a lot of wrap/unwrap functions that are done
for free in our approach. Moreover, since with polymorphic variants a matching
case can easily be forgotten in a function definition, we believe that this approach
would be too error-prone on a large-scale development like the MGS language

Once again, a very technical solution is found in [27] by relying on modules
and (higher-order) functors.

Acknowledgements.

The authors thank Julien Cohen of LINA – CNRS FRE 2729 for his comments
on the paper.

References

1. Computer language shootout scorecard, June 2003. http://dada.perl.it/

shootout/craps.html.
2. Gentoo : Intel R© pentium R© 4 computer language shootout, July 2006. http:

//shootout.alioth.debian.org/gp4/index.php.

315

3. AspectJ project. Available at http://www.eclipse.org/aspectj/.
4. Bourdoncle, F., and Merz, S. Type checking higher-order polymorphic multi-

methods. In Conference Record of POPL’97: The 24TH ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (1997), ACM SIGACT and
SIGPLAN, ACM Press, pp. 302–315.

5. Cohen, J. Intgration des collections topologiques et des transformations dans un
langage fonctionnel. PhD thesis, Université d’Évry, Dec. 2004.

6. Cohen, J. Interprétation par SK-traduction et syntaxe abstraite d’ordre
supérieur. In Journées Francophones des Langages Applicatifs (JFLA 2005) (2005),
O. Michel, Ed., INRIA, pp. 17–34.

7. Cohen, J. Interprétation par syntaxe abstraite d’ordre supérieur et traduction en
combinateurs. Technique et science informatiques (2007). To appear.

8. Garrigue, J. Programming with polymorphic variants. In Proc. of 1998 ACM
SIGPLAN Wksh. on ML, Baltimore, MD, USA, 26 Sept. 1998. Oct. 1998.

9. Garrigue, J. Code reuse through polymorphic variants. In Workshop on Foun-
dations of Software Engineering (FOSE) (Nov. 2000).

10. Garrigue, J. Private row types: Abstracting the unnamed. In APLAS (2006),
N. Kobayashi, Ed., vol. 4279 of Lecture Notes in Computer Science, Springer,
pp. 44–60.

11. Giavitto, J.-L. A framework for the recursive definition of data structures. In
ACM-Sigplan 2nd International Conference on Principles and Practice of Declar-
ative Programming (PPDP’00) (Montréal, Sept. 2000), ACM-press, pp. 45–55.

12. Giavitto, J.-L. Topological collections, transformations and their application to
the modeling and the simulation of dynamical systems. In Rewriting Technics and
Applications (RTA’03) (Valencia, June 2003), vol. LNCS 2706 of LNCS, Springer,
pp. 208 – 233.

13. Giavitto, J.-L., Malcolm, G., and Michel, O. Rewriting systems and the
modelling of biological systems. Comparative and Functional Genomics 5 (Feb.
2004), 95–99.

14. Giavitto, J.-L., and Michel, O. Modeling the topological organization of cel-
lular processes. BioSystems 70, 2 (2003), 149–163.

15. Giavitto, J.-L., Michel, O., and Cohen, J. Pattern-matching and rewriting
rules for group indexed data structures. ACM SIGPLAN Notices 37, 12 (Dec.
2002), 76–87.

16. Giavitto, J.-L., Michel, O., Cohen, J., and Spicher, A. Computation in
space and space in computation. Tech. Rep. 103-2004, May 2004. 22 p.

17. Giavitto, J.-L., and Spicher, A. Systems Self-Assembly: multidisciplinary snap-
shots. Elsevier, 2006, ch. Simulation of self-assembly processes using abstract re-
duction systems.

18. Ingalls, D. H. H. A simple technique for handling multiple polymorphism. In
OOPSLA (1986), pp. 347–349.

19. Jeuring, J., and Jansson, P. Polytypic programming. In Tutorial Text from 2nd
Int. School on Advanced Functional Programming, Olympia, WA, USA, 26–30 Aug
1996, J. Launchbury, E. Meijer, and T. Sheard, Eds., vol. 1129 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1996, pp. 68–114.

20. Krishnamurthi, S., Felleisen, M., and Friedman, D. P. Synthesizing object-
oriented and functional design to promote re-use. In ECOOP (1998), E. Jul, Ed.,
vol. 1445 of Lecture Notes in Computer Science, Springer, pp. 91–113.

21. Leroy, X., Doligez, D., Garrigue, J., Rémy, D., and Vouillon, J. The
Objective Caml system, release 3.09. INRIA, October 2005. available at http:

//caml.inria.fr/distrib/ocaml-3.09/.

316

22. Lienhardt, P. Topological models for boundary representation : a comparison
with n-dimensional generalized maps. Computer-Aided Design 23, 1 (1991), 59–82.

23. Lienhardt, P. N-dimensional generalized combinatorial maps and cellular quasi-
manifolds. International Journal on Computational Geometry and Applications 4,
3 (1994), 275–324.

24. Masuhara, H., Tatsuzawa, H., and Yonezawa, A. Aspectual caml: an aspect-
oriented functional language. In ICFP (2005), O. Danvy and B. C. Pierce, Eds.,
ACM, pp. 320–330.

25. Meyers, S. More Effective C++. Addison Wesley, 1996.
26. Pfenning, F., and Elliot, C. Higher-order abstract syntax. In Proceedings of the

SIGPLAN ’88 Conference on Programming Language Design and Implementation
(1988), pp. 199–208.

27. Ramsey, N. ML module mania: A type-safe, separately compiled, extensible in-
terpreter. Electr. Notes Theor. Comput. Sci 148, 2 (2006), 181–209.

28. Remy, D., and Vouillon, J. Objective ML: An effective object-oriented exten-
sion to ML. Theory and Practice of Object Systems 4, 1 (1998), 27–50.

29. Spicher, A. Transformation de collections topologiques de dimension arbitraire.
Application la modélisation de systèmes dynamiques. PhD thesis, Université
d’Évry, 2006.

30. Spicher, A., and Michel, O. Using rewriting techniques in the simulation of
dynamical systems: Application to the modeling of sperm crawling. In Fifth Inter-
national Conference on Computational Science (ICCS’05) (2005), vol. I, pp. 820–
827.

31. Spicher, A., Michel, O., and Giavitto, J.-L. A topological framework for
the specification and the simulation of discrete dynamical systems. In Sixth Inter-
national conference on Cellular Automata for Research and Industry (ACRI’04)
(Amsterdam, October 2004), vol. 3305 of LNCS, Springer.

32. Spicher, A., Michel, O., and Giavitto, J.-L. Rewriting and Simulation -
Application to the Modeling of the Lambda Phage Switch, vol. Modélisation de
systèmes biologiques complexes dans le contexte de la génomique. Genopole, 2006,
ch. Modeling of the Lambda Phage Switch.

33. Steele Jr, G. L. Building interpreters by composing monads. In POPL (1994),
pp. 472–492.

34. Wadler, P. The expression problem. Email to the Java Genericity mailing list,
Dec. 1998.

35. Zenger, M., and Odersky, M. Independently extensible solutions to the ex-
pression problem. In The 12th International Workshop on Foundations of Object-
Oriented Languages (FOOL 12) (Long Beach, California, 2005), ACM.

317

Generic Programming Combinators?

Sebastian Fischer and Frank Huch

Department of Computer Science
University of Kiel, Germany

{sebf,fhu}@informatik.uni-kiel.de

Abstract. We present a novel approach to lightweight generic program-
ming in functional logic languages. No type system extensions like exis-
tential quantification or type classes are necessary in order to support it.
Function patterns – a recent extension of functional logic programming
– give rise to a lazy implementation of our approach. To demonstrate its
flexibility, we have developed a library for type-based conversion between
algebraic datatypes and XML documents that is available as part of the
Curry system PAKCS.

Key words: Generic Programming, Function Patterns, XML Binding

1 Introduction

In strongly typed programming languages like Haskell [1] or Curry [2], it is
impossible to write a single function that operates similarly on values of different
types. For example, it is not possible to define an equality test that works for
arbitrary datatypes. The equality test cannot be polymorphic because it has to
inspect its arguments. Defining equality as an overloaded function, requires to
redefine it for every datatype. Implementations of the equality test for different
datatypes resemble each other a lot. Therefore, programmers long for being able
to define a single function that works for all datatypes. Such a function is called
data-generic or polytypic because it operates on values of multiple types.

We present a new approach to defining data-generic functions that relies on
function patterns [3] – a recent extension of functional logic programming. For
example, we will present a function prettyPrint that can be used as follows.

> prettyPrint Bool True

True

> prettyPrint (List Char) "IFL 2007"

[’I’, ’F’, ’L’, ’ ’, ’2’, ’0’, ’0’, ’7’]

> prettyPrint String "IFL 2007"

"IFL 2007"

This function can be implemented in Curry without extensions. The first argu-
ment resembles the name of the type of the second argument but is an ordinary
Curry expression.
? This work was partially supported by the German Research Council (DFG) grant

Ha 2457/5-2.

318

We offer the following contributions:

– We show that generic functions can be implemented via combinators in the
functional logic programming paradigm without extensions of the language
or the type system (Section 3).

– We show that function patterns, that were originally proposed without generic
programming in mind, can be employed to implement the combinators lazily.

– The flexibility of our approach is demonstrated in the context of a generic
pretty printer (Section 4) with custom rules for printing strings.

– We present a library for type-based translation between algebraic datatypes
and XML documents (Section 5). Our library is remarkable because it is
completely lightweight and the XML representation of data terms is not
solely determined by their types.

2 The Curry Language

Curry is a declarative programming language that combines concepts from func-
tional and logic programming. It supports lazy evaluation, algebraic datatypes
and higher-order functions known from functional programming as well as non-
determinism and free variables known from logic programming. Its syntax is
similar to the syntax of Haskell without type classes. We assume that the reader
is familiar with the syntax of Haskell and concentrate on Curry specifics. We also
discuss data declarations in detail because their structure guides the declaration
of our generic programming combinators.

In Curry, a new datatype is defined by the keyword data. For example, the
datatype for boolean values is predefined as follows.

data Bool = False | True

The name of the datatype (Bool) is followed by an equal sign and a list of
constructors (False and True) that are separated by a vertical bar. Datatypes
are called polymorphic if their name has additional arguments. For example the
predefined datatype Maybe is used to represent optional values of an arbitrary
type.

data Maybe a = Nothing | Just a

Lists have a special syntax in Curry. The type of lists is written [a] for an
arbitrary element type a and its definition is built-in because the following is
not valid Curry syntax.

data [a] = [] | a : [a]

According to this definition, a list is either empty ([]) or constructed by the
binary constructor (:) where the first argument of (:) is the head of the list and
the second argument of (:) is the tail. The datatype [a] is recursive because it
is used in its own definition (in the second argument of (:)).

In contrast to Haskell, the names of Curry functions can start with an upper-
case letter. As names of functions and names of types are in different namespaces
in Curry, we can—indeed, will—define functions with names Bool or Maybe.

319

2.1 Logic Features

Curry supports free variables and nondeterminism known from logic program-
ming. A free variable is declared by the keyword free and represents an arbitrary
value of its type. The following function uses free variables.

last :: [a] -> a

last l | l =:= xs++[x] = x

where x,xs free

The part between | and = is an optional guard that must be satisfied to apply
the rule. In the guard, the strict equality operator (=:=) is employed to unify
the argument list l with the result of xs++[x]. In order to satisfy this condition,
x must be bound to the last element of l, i.e., last yields the last element of l.

Unfortunately, last evaluates its argument completely, due to the use of
(=:=) in the guard. For example the application last [undefined,42] does not
terminate, if undefined diverges.1 This is inappropriate in a lazy programming
language and function patterns were proposed to eliminate this drawback. In
functional programming languages, patterns are built from constructors and
variables only. Function patterns also allow us to use names of defined functions
in pattern declarations. With this extension we can redefine the function last

as follows.

last :: [a] -> a

last (xs++[x]) = x

Function patterns are lazy, i.e., last [undefined,42] evaluates to 42. Note that
last [] fails because there is no binding for xs and x such that [] equals xs++[x].

In general, guards and function patterns give rise to nondeterminism because
there can be more than one possibility to instantiate unknown values. Consider
the following definition of choose.

choose :: [a] -> a

choose (xs++x:ys) = x

The operation choose uses a function pattern to match an arbitrary element of
the argument list. If this list contains more than one element, one of them is
returned nondeterministically. Therefore, choose is usually called nondetermin-
istic operation rather than function. Usually, Curry implementations compute
all nondeterministic results of an expression. For example, choose [1,2,3] yields
three results and choose [] yields none, i.e., it fails.

> choose [1,2,3]

Result: 1 ?

Result: 2 ?

Result: 3 ?

No more solutions.

> choose []

No more solutions.

1 undefined is defined as undefined = undefined

320

Nondeterminism is not only available indirectly in Curry. A Curry system evalu-
ates every matching rule of an operation nondeterministically instead of choosing
the first matching rule. For example, we can define choose directly by overlapping
rules.

choose :: [a] -> a

choose (x:_) = x

choose (_:xs) = choose xs

3 Generic Binary Encoding

As a simple example for generic programming, we discuss the implementation of
an operation showBin that converts a value of an arbitrary datatype into a list
of bits. A bit is either 0 or 1, hence, lists of bits are represented by the following
datatypes.

data Bit = O | I

type Bin = [Bit]

In our approach, a generic function additionally takes a type specification. Our
version of showBin has the following type.

showBin :: ShowBin a -> a -> Bin

For example, to convert a list of type [Maybe Bool] into a list of bits we define
the following specifications.

Bool :: ShowBin Bool

Bool = cons0 False ! cons0 True

Maybe :: ShowBin a -> ShowBin (Maybe a)

Maybe a = cons0 Nothing ! cons1 Just a

List :: ShowBin a -> ShowBin [a]

List a = cons0 [] ! cons2 (:) a (List a)

We will soon discuss the implementation of the employed combinators. Until
then, simply note that the presented type specifications resemble the data dec-
larations of the corresponding types. For each type constructor we define a func-
tion with the same name and arguments. Recursive datatypes are translated into
recursive functions which is no problem due to lazy evaluation. We can use the
specifications as follows.

> showBin (List (Maybe Bool)) [Nothing,Just False,Just True]

Result: [I,O,I,I,O,I,I,I,O] ?

No more solutions.

The additional argument of type ShowBin a may remind a Haskell programmer
of a type class constraint. Since Curry does not support type classes, we cannot
hide this argument. Later, we see that the explicit type specification increases
the flexibility of our approach.

321

The type specifications presented above will probably be provided by the
implementor of showBin because they specify predefined types. In order to extend
showBin to a new type, the user has to define a corresponding specification. For
example, consider the datatype Tree and its specification of type ShowBin Tree.

data Tree a = Leaf a | Fork (Tree a) (Tree a)

Tree :: ShowBin a -> ShowBin (Tree a)

Tree a = cons1 Leaf a ! cons2 Fork (Tree a) (Tree a)

With this specification the user can convert trees into lists of bits.

> showBin (Tree Bool) (Fork (Leaf True) (Leaf False))

Result: [I,O,I,O,O] ?

No more solutions.

3.1 Implementation

In this subsection, we present the definition of the type ShowBin a and the im-
plementation of the combinators cons0, cons1, cons2 and (!) that were used to
construct the type specifications for the generic operation showBin. The type
ShowBin a is abstract, i.e., not exposed to the user.

data ShowBin a = ShowBin (a -> Bin)

With this definition of ShowBin a, the implementation of the generic operation
showBin is surprisingly simple.

showBin :: ShowBin a -> a -> Bin

showBin (ShowBin sb) = sb

The function showBin simply unwraps the specification which is, in fact, an
instance of the generic function for the corresponding type.

The combinator (!) is used to combine the specifications of different con-
structors of the same type. It is defined as follows.

(!) :: ShowBin a -> ShowBin a -> ShowBin a

sbO ! sbI = ShowBin sb

where sb x = O : showBin sbO x

sb x = I : showBin sbI x

We employ nondeterminism in order to combine the converter functions of the
two arguments of (!). We expect converter functions to fail, if they are applied
to a value that they cannot convert. The converter function defined by (!) can
convert values that can be converted by either the left or the right argument.
The output is extended with the bit O or I depending on which of the converters
is successful. Nondeterminism turns out to be useful in order to elegantly express
the choice between different constructors of a datatype in a generic function.

There are combinators consn for every reasonable arity n of possible con-
structors. We only present the definitions of cons0, cons1 and cons2 as they are
the most interesting ones. The definition of cons0 takes a constructor of arity 0
and yields a specification for its type.

322

cons0 :: a -> ShowBin a

cons0 cons = ShowBin sb

where sb x | x =:= cons = []

A constructor without arguments is represented as the empty list of bits. We
only have to ensure that the argument is indeed the specified constructor (and
fail if it is not) and can do this via (=:=) before yielding the result.

Now consider the definition of cons1. The combinator cons1 takes a unary
constructor along with a specification for its argument type and yields a speci-
fication for its result type.

cons1 :: (a -> b) -> ShowBin a -> ShowBin b

cons1 cons sba = ShowBin sb

where sb x | cons a =:= x = showBin sba a where a free

This definition uses (=:=) to unify x with cons a. Unfortunately, x is completely
evaluated if the unification is successful because of the use of strict equality. In
order to avoid this, we employ a function pattern to match against the construc-
tor cons given as first argument.

cons1 :: (a -> b) -> ShowBin a -> ShowBin b

cons1 cons sba = ShowBin sb

where c x = cons x

sb (c a) = showBin sba a

If cons is not the root constructor of the converted argument, this matching fails.
If it is, the argument of cons is bound to the pattern variable a and converted
with the given specification sba.

Now consider the definition of cons2. It takes a binary constructor along with
specifications for its argument types and yields a specification for its result type.

cons2 :: (a -> b -> c) -> ShowBin a -> ShowBin b -> ShowBin c

cons2 cons sba sbb = ShowBin sb

where c x y = cons x y

sb (c a b) = showBin sba a ++ showBin sbb b

The implementation is similar to the implementation of cons1. Again, a function
pattern is used to match the arguments of the value that has to be converted or
to fail if this value is not constructed by the given constructor cons. The lists
of bits that represent the arguments of cons are concatenated to compute the
result of the constructed converter function. Here is an example evaluation that
demonstrates how the combinators work.

showBin (Maybe Bool) (Just False)

==> showBin (cons0 Nothing ! cons1 Just Bool) (Just False)

==> showBin (ShowBin sb) (Just False)

where sb x = O : showBin (cons0 Nothing) x

sb x = I : showBin (cons1 Just Bool) x

==> sb (Just False)

where sb x = O : showBin (cons0 Nothing) x

sb x = I : showBin (cons1 Just Bool) x

==> O : showBin (cons0 Nothing) (Just False)

323

==> O : showBin (ShowBin sb) (Just False)

where sb x | x=:=Nothing = []

==> O : sb (Just true)

where sb x | x=:=Nothing = []

==> failure

==> I : showBin (cons1 Just Bool) (Just False)

==> I : showBin (ShowBin sb) (Just False)

where sb (Just a) = showBin Bool False

==> I : sb (Just False)

where sb (Just a) = showBin Bool False

==> I : showBin Bool False

==> I : showBin (cons0 False ! cons0 True) False

==> I : showBin (ShowBin sb) False

where sb x = O : showBin (cons0 False) False

sb x = I : showBin (cons0 True) False

==> I : sb False

where sb x = O : showBin (cons0 False) False

sb x = I : showBin (cons0 True) False

==> I : O : showBin (cons0 False) False

==> I : O : showBin (ShowBin sb) False

where sb x | x=:=False = []

==> I : O : sb False

where sb x | x=:=False = []

==> [I,O]

The evaluation continues to convert False with cons0 True which leads to a fail-
ure just like converting Just True with cons0 Nothing failed in this computation.

In the implementation of the consn combinators, we employ function patterns
to match against unknown constructors. Function patterns enable us to write
patterns for constructors that are provided as arguments to the combinators. In
fact, we could avoid using function patterns and employ (=:=) to match a value.
However, function patterns allow us to perform the matching without evaluating
the matched arguments of the root constructor.

We can only provide a fixed number of consn combinators. Constructors with
an arity that is not supported could be handled as follows.

data Triple a b c = T3 a b c

Triple :: ShowBin a -> ShowBin b -> ShowBin c -> ShowBin Triple

Triple a b c = cons2 t3 a (cons2 (,) b c)

where t3 x (y,z) = T3 x y z

The datatype Triple defines a ternary constructor T3. If no combinator cons3 is
provided, the user can employ cons2 twice to define a specification for Triples.

3.2 Parsing

We have presented combinators to construct functions that convert arbitrary
data terms into lists of bits. Representing data as bit list is useless, if you cannot

324

convert the bits back into the original data. We can extend the presented com-
binators such that read and show functions are constructed simultaneously. We
define a new type for specifications as well as generic read and show functions
that take such a specification as first argument.

data BinConv a = BinConv (a -> Bin) (Bin -> (a,Bin))

showBin :: BinConv a -> a -> Bin

showBin (BinConv sb _) = sb

readBin :: BinConv a -> Bin -> (a,Bin)

readBin (BinConv _ rb) = rb

We exemplarily give definitions for (!) and cons1. The remaining combinators
can be implemented analogously.

(!) :: BinConv a -> BinConv a -> BinConv a

bcO ! bcI = BinConv sb rb

where sb x = (O:showBin bcO x) ? (I:showBin bcI x)

rb (O:bs) = readBin bcO bs

rb (I:bs) = readBin bcI bs

cons1 :: (a -> b) -> BinConv a -> BinConv b

cons1 cons bca = BinConv sb rb

where c x = cons x

sb (c a) = showBin bca a

rb bs = let (a,bs’) = readBin bca bs in (cons a, bs’)

The implementations of the show functions are identical to the definitions shown
above. The read function inside the definition of (!) uses the first or the second
specification to parse the remaining bits depending on the first. The read func-
tions inside the definition of the consn combinators simply use the read functions
of the argument specifications.

4 Generic Pretty Printing

In the previous section, we presented a minimal example of generic program-
ming in our approach. The presented combinators did not associate any addi-
tional information to the given constructors. Sometimes, additional information
is necessary. For example, a pretty printer needs information about the names of
constructors in order to generate a textual representation of data terms. In this
section, we present the definition of a generic pretty printer that employs pretty
printing combinators as described, e.g., in [6]. Our pretty printing function has
the following type.

pretty :: Pretty a -> a -> Doc

The argument of type Pretty a is a type specification and the result of pretty

is a document that specifies how to layout the given value of type a. Type
specifications are defined similarly to those in the previous section.

325

data Pretty a = Pretty (a -> Doc)

pretty :: Pretty a -> a -> Doc

pretty (Pretty pt) = pt

(!) :: Pretty a -> Pretty a -> Pretty a

p1 ! p2 = Pretty pt

where pt x = pretty p1 x

pt x = pretty p2 x

cons0 :: String -> a -> Pretty a

cons0 name cons = Pretty (\x -> x=:=cons &> text name)

cons1 :: String -> (a -> b) -> Pretty a -> Pretty b

cons1 name cons pa = Pretty (\ (c a) -> prettyCons name [pretty pa a])

where c x = cons x

cons2 :: String -> (a -> b -> c) -> Pretty a -> Pretty b -> Pretty c

cons2 name cons pa pb =

Pretty (\ (c a b) -> prettyCons name [pretty pa a, pretty pb b])

where c x y = cons x y

prettyCons :: String -> [Doc] -> Doc

prettyCons name args

= group (nest 1 (text "(" <> text name <> line <>

foldr1 (\d d’ -> d <> line <> d’) args <> text ")"))

Fig. 1. A Generic Pretty Printer

Bool :: Pretty Bool

Bool = cons0 "False" False ! cons0 "True" True

ConsList :: Pretty a -> Pretty [a]

ConsList a = cons0 "[]" [] ! cons2 "(:)" (:) a (ConsList a)

However, the consn combinators take constructor names as an additional argu-
ment. The implementation of the generic pretty printer is shown in Figure 1.
With the help of pretty and a pretty printing library, we can define an opera-
tion prettyPrint that prints arbitrary values. For example, we can print a list
of booleans as follows.

> prettyPrint (ConsList Bool) [True,False,False]

((:) True ((:) False ((:) False [])))

The printed list is far from pretty because the printer displays lists like any other
datatype. We want to change the default behavior of the pretty printer for values
of type [a] for any type a. That is easy! We simply define a new specification
function for lists.

326

List :: Pretty a -> Pretty [a]

List a = Pretty (prettyList (pretty pa))

prettyList :: (a -> Doc) -> [a] -> Doc

prettyList _ [] = text "[]"

prettyList pt (x:xs) =

group (nest 1 (text "[" <> pt x <>

foldr (\y d -> text "," <> line <> pt y <> d) (text "]") xs))

With a changed type specification, lists of booleans look much nicer.

> prettyPrint (List Bool) [True,False,False]

[True, False, False]

But what about strings? We can define a specification for characters and use it
together with List to display strings as lists of characters.

Char :: Pretty Char

Char = Pretty (text . show)

> prettyPrint (List Char) "IFL 2007"

[’I’, ’F’, ’L’, ’ ’, ’2’, ’0’, ’0’, ’7’]

Usually, we would prefer strings to be displayed differently, however. We can
define String as Pretty (text . show) to display strings like one would expect.

> prettyPrint String "IFL 2007"

"IFL 2007"

In our approach it is not the type of a value that determines how it is printed
but an extra specification of its type. Although these type specifications are an
additional burden for the user, they improve the flexibility of our approach. The
increased flexibility is useful to print strings in different formats. It will become
even more useful in the following section.

5 Generic XML Conversion

In this section, we present a library to convert arbitrary data terms to XML
and vice versa. Both values of algebraic datatypes and XML documents have
a tree structure. However, the translation between these tree structures is not
always obvious. For example, optional values or repeated elements are modeled
differently in both worlds. On the declarative programming side, there are spe-
cific algebraic datatypes to model optional and repeated elements, viz., Maybe-
and list-types. In XML, optional or repeated elements are modeled implicitly.
Optional values can simply be left out, repeated elements can be written one
after the other without any enclosing construct. Moreover, XML has the notion
of attributes that has no counterpart in algebraic datatype declarations.

In general, there are many possibilities to represent a value of an algebraic
datatype as XML document and vice versa. Providing a fixed translation mech-
anism is too restrictive in practice. We provide combinators that enable the user

327

to specify how data terms should be represented in XML and do not dictate a
fixed translation scheme. The user can define different converter specifications
for the same datatype or different datatypes for the same XML documents.

Our approach is completely lightweight. No additional tool is necessary to
read data from or write data to XML documents. The user only has to pro-
vide converter specifications that are similar to the type specifications presented
in the previous sections. However, the specifications used for XML conversion
resemble not only the datatype declarations but also the corresponding XML
documents. For example, combinators that start with an e represent XML el-
ements while combinators that start with an a represent XML attributes. As
an example, consider the following datatype for authors and a corresponding
converter specification.

data Author = A Name Affiliation

data Name = N String (Maybe String)

type Affiliation = String

Author :: XmlConv Author

Author = eSeq2 "author" A Name Affiliation

Name :: XmlConv Name

Name = eSeq2 "name" N (aString "last") (opt (aString "first"))

Affiliation :: XmlConv Affiliation

Affiliation = string

With this specification, the value

A (N "Chitil" (Just "Olaf")) "University of Kent"

is represented by the following XML document.

<author>

<name last="Chitil" first="Olaf">

University of Kent

</author>

Note that you cannot tell from the XML document whether the first name
is optional or not. If it was Nothing, it would simply be left out in the XML
representation. The last name, however, cannot be left out according to the
specification. The given XML representation is just one possibility to represent
values of type Author. We could as well define a specification that would relate
the same value to another XML document like

<author lastname="Chitil" firstname="Olaf">

<affiliation>University of Kent</affiliation>

</author>

by using the following converter specifications:

Name = seq2 N (aString "lastname") (opt (aString "firstname"))

Affiliation = eString "affiliation"

328

string :: XmlConv String

aString, eString :: String -> XmlConv String

aBool :: String -> String -> String -> XmlConv Bool

eBool :: String -> String -> XmlConv Bool

element :: String -> XmlConv a -> XmlConv a

(!) :: XmlConv a -> XmlConv a -> XmlConv a

seq0 :: a -> XmlConv a

seq1 :: (a -> b) -> XmlConv a -> XmlConv b

seq2 :: (a -> b -> c) -> XmlConv a -> XmlConv b -> XmlConv c

rep :: XmlConv a -> XmlConv [a]

opt :: XmlConv a -> XmlConv (Maybe a)

Fig. 2. (Some) Generic XML Converters

Part of the interface of our XML library is summarized in Figure 2. There
are combinators to construct converters for primitive types like String. The
combinator element takes a tag name and represents an XML element with the
given contents. The combinators seqn are used to combine n values of possibly
different types in sequence. The combinator eSeq2 used above is a shortcut for
combining element and seq2.

eSeq2 :: String -> (a -> b -> c) -> XmlConv a -> XmlConv b -> XmlConv c

eSeq2 name cons xca xcb = element name (seq2 cons xca xcb)

Attributes are associated with the next enclosing element. The combinators rep

and opt represent arbitrary repetitions of elements of the same type or optional
occurrences of elements respectively. The operator (!) is used to combine two
converters of the same type and expresses alternatives. For example, an XML
converter for trees (cf. Section 3) can be defined as follows.

Tree :: XmlConv a -> XmlConv Tree

Tree a = eSeq1 "leaf" Leaf a ! eSeq2 "fork" Fork (Tree a) (Tree a)

The tree (Fork (Fork (Leaf 1) (Leaf 2)) (Leaf 3)) is represented as

<fork>

<fork>

<leaf label="1" />

<leaf label="2" />

</fork>

<leaf label="3" />

</fork>

by the converter specification Tree (aInt "label").

329

5.1 Restricting Specifications

The representation of a specific XML document as an algebraic data type is not
unique w.r.t. every specification. If we convert a data term to XML and then
convert the generated XML back into a data term, we might nondeterminis-
tically get multiple results or none at all. For example, consider the following
specification for a Name-converter.

Name :: XmlConv Name

Name = eSeq2 "name" N string (opt string)

This specification does not use tags for the first and last name, so the value
(N "Chitil" (Just "Olaf")) is represented as.

<name>Chitil Olaf</name>

If we read this back according to the specification, we do not obtain the original
value but (N "Chitil Olaf" Nothing) because the first and last name are read
as a single string. If the first name was mandatory, the parser would even fail
because there is only one string. In general, subsequent primitive values cannot
be distinguished in the XML representation and must be avoided.

Another problem are repeated optional values. Consider the following defi-
nitions.

type RepOpt = [Maybe Int]

RepOpt :: XmlConv RepOpt

RepOpt = rep (opt (eInt "value"))

The value [Just 42] is represented as <value>42</value> by RepOpt. There are
many other terms of type RepOpt with this representation because arbitrarily
many Nothings can occur in the list without being represented in the XML
document. If we convert the XML representation back into a data term, we non-
deterministically get every list that contains exactly one Just 42 and arbitrarily
many Nothings.

We want to restrict possible specifications in order to avoid the problems
mentioned above. With phantom types [7, 8] we can employ the type system to
exclude certain constructions – the details are not in the scope of this paper but
can be found in our library that is distributed with the Curry system PAKCS [5].
We pose the following restrictions on specifications.

– In a specification of the form rep x, x must be repeatable. A specification is
repeatable if it is an element specification or a sequence, i.e., generated by
seqn, of repeatable specifications.

– As attributes are associated to the next surrounding element, the topmost
specification must always be an element specification.

These restrictions are too weak to avoid all problems mentioned above. It is still
possible to define a converter with sequences of primitive values. In order to not
being overly restrictive, we allow some specifications that might cause trouble.
We believe that it is important to be able to access a variety of existing XML

330

formats and hope that we have found an appropriate balance between safety and
flexibility.

6 Related Work

An early pearl by Olivier Danvy serves as a role model for our approach to
generic programming. In [9] he presents an ML version of the printf function
known from C. This function is remarkable because its type depends on a spec-
ification given as first argument. Danvy shows how to define such a function
in a Hindley-Milner typed language. The printf function can be typed and no
extensions to the type system are necessary in order to implement it. The trick
is to represent the specification as a function rather than a data term (e.g., a
string like in C). In fact, the specification is the printf function, just like the
specifications in our approach are instances of generic functions. Instead of a
generic function that recursively consumes a structural type representation, we
define type representations that inductively build instances of generic functions.

Functional Generic Programming: Generic programming [10] has been exten-
sively studied in the recent years. Most approaches to functional generic pro-
gramming go back to [11]. We only mention selected approaches, see [12] for a
comprehensive comparison.

The Haskell community is very successful in modeling generic programming
within the Haskell type system, obviating the need for language extensions.
Usually, only modest extensions to the Haskell standard are necessary. [4] shows
that it is even possible to model generic programming within Haskell98. In [13],
existential quantification is employed – a feature that is provided by most Haskell
implementations.

In contrast to the mentioned Haskell approaches, our approach does not need
type classes or existential quantification. In a functional logic programming lan-
guage we can define combinators to construct instances of generic functions di-
rectly. Haskell approaches employ an intermediate representation of data terms
based on a structural representation of their types as sums of products. The lack
of a common intermediate representation in our approach makes it difficult to
combine different generic functions. For example, to combine a pretty printer
(Section 4) with an XML converter (Section 5) the user has to supply two differ-
ent specifications. We could obviate the need for more and more specifications
by providing combinators to convert arbitrary data terms into sums of products.
All generic functions could then be defined in terms of sums of products and,
hence, freely combined. However, this would limit the flexibility of our approach.
For example, we could not implement the presented library for XML conversion
solely based on sums of products.

Functional XML Bindings: HaXML is a toolkit for XML processing in Haskell.
It is based on the ideas described in [14] where two different approaches are
compared: a combinator language for generic traversals of untyped XML data

331

and a tool for the translation of XML document type definitions (DTDs) into
Haskell datatypes. [15] provides a formal translation of XML Schema defini-
tions to Haskell datatypes. Both approaches generate new datatypes to repre-
sent the XML documents. [16] presents an approach to translating such gener-
ated datatypes into user-defined datatypes automatically. The drawback of [14,
15] is that the translation is fully automatic and, hence, fixed. In our approach,
the user can control the translation by specifications. We extend the approach
outlined in [17]. Our translation is much more flexible because XML and user
data are only loosely coupled. Changes in the XML structure of an external
document can be reflected directly by changing the converter specification. The
internally used datatype declarations – and the program that manipulates the
data – usually do not need to be adapted.

7 Conclusions

We present a new approach to lightweight generic programming in the functional
logic programming language Curry. Neither type classes nor existential quantifi-
cation are necessary in order to define generic functions in this programming
paradigm. We employ function patterns in order to lazily dismantle values that
are built from unknown constructors provided by the user. If we set laziness
aside, we can use ordinary unification instead of function patterns – a recent
extension of functional logic programming.

Our approach is simple to use and understand. There is a burden to the user
of a generic function who has to define specifications for each newly introduced
data type. These specifications are passed to a generic function in order to control
its behavior. In fact, the specifications are the generic functions. This additional
burden simultaneously increases the flexibility of our approach because different
specifications can be defined for the same type. For example, the same data type
can be represented as XML document in multiple ways and our approach to
generic programming is flexible enough to support this.

There is also a burden for the implementor of a generic function. The com-
binators that are used to construct the specifications need to be rewritten for
every new generic function. This is no surprise because these combinators are
the definition of the generic function. They are the building blocks that are used
to assemble functions for concrete data types.

Our XML library is distributed as part of the Curry system PAKCS and
has been employed to implement complex converters. An example for a complex
data structure is the abstract syntax tree of Curry programs. There is an XML
encoding of Curry programs that does not match exactly the corresponding
Curry data structure that has evolved over the years. We have re-implemented
the translation between Curry programs and XML with our library. The resulting
code is shorter (97 instead of 231 lines of code) and much easier to read and
maintain. We did not change the Curry representation of Curry programs nor
their XML representation but could mimic the original transformation that was
completely hand coded.

332

References

1. Peyton Jones, S., et al.: Haskell 98 - a non-strict, purely functional language (1999)
2. Hanus, M., et al.: Curry: An integrated functional logic language (version 0.8.2).

Available at URL http://www.informatik.uni-kiel.de/~curry (2006)
3. Antoy, S., Hanus, M.: Declarative programming with function patterns. In: Pro-

ceedings of the International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’05), Springer LNCS 3901 (2005) 6–22

4. Hinze, R.: Generics for the masses. Journal of Functional Programming 16(4&5)
(2006) 451–483

5. Hanus, M., et al.: PAKCS: The Portland Aachen Kiel Curry System (version 1.8.1).
Available at URL http://www.informatik.uni-kiel.de/~pakcs/ (2007)

6. Wadler, P.: A prettier printer. Journal of Functional Programming (1999)
7. Leijen, D., Meijer, E.: Domain specific embedded compilers. In: PLAN ’99: Pro-

ceedings of the 2nd conference on Domain-specific languages, New York, NY, USA,
ACM Press (1999) 109–122

8. Hinze, R.: Fun with phantom types. In Gibbons, J., de Moor, O., eds.: The Fun of
Programming. Palgrave Macmillan (2003) 245–262 ISBN 1-4039-0772-2 hardback,
ISBN 0-333-99285-7 paperback.

9. Danvy, O.: Functional unparsing. Journal of Functional Programming 8(6) (1998)
621–625

10. Backhouse, R., Jansson, P., Jeuring, J., Meertens, L.: Generic programming —
an introduction. In: LNCS. Volume 1608., Springer-Verlag (1999) 28–115 Revised
version of lecture notes for AFP’98.

11. Hinze, R.: A new approach to generic functional programming. In Reps, T.W.,
ed.: Proceedings of the 27th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’00), Boston, Massachusetts, January
19-21. (2000) 119–132

12. Hinze, R., Jeuring, J., Löh, A.: Comparing Approaches to Generic Programming.
Lecture Notes in Computer Science. In: Generic programming. Springer-Verlag
(2006)

13. Cheney, J., Hinze, R.: A lightweight implementation of generics and dynamics. In
Chakravarty, M.M., ed.: Proceedings of the 2002 ACM SIGPLAN Haskell Work-
shop, ACM-Press (2002) 90–104

14. Wallace, M., Runciman, C.: Haskell and XML: Generic combinators or type-
based translation? In: Proceedings of the Fourth ACM SIGPLAN International
Conference on Functional Programming (ICFP‘99). Volume 34–9., N.Y., ACM
Press (1999) 148–159

15. Atanassow, F., Clarke, D., Jeuring, J.: UUXML: A type-preserving XML Schema–
Haskell data binding. In Jayaraman, B., ed.: Practical Aspects of Declarative Lan-
guages, 6th International Symposium, PADL 2004, Dallas, TX, USA, June 2004,
Proceedings. Number 3057 in LNCS, Berlin Heidelberg, Springer–Verlag (2004)
71–85

16. Atanassow, F., Jeuring, J.: Inferring type isomorphisms generically. In Kozen, D.,
ed.: Mathematics of Program Construction, 7th International Conference, MPC
2004, Stirling, Scotland, UK, July 2004, Proceedings. Number 3125 in LNCS, Berlin
Heidelberg, Springer–Verlag (2004) 32–53

17. Fischer, S.: Resource-based web applications. In: TFP ’06: Proceedings of the
Seventh Symposium on Trends in Functional Programming. (2006)

333

Supero: Making Haskell Faster

Neil Mitchell and Colin Runciman

University of York, UK, http://www.cs.york.ac.uk/~ndm

Abstract. Haskell is a functional language, with features such as higher
order functions and lazy evaluation, which allow succinct programs. These
high-level features are difficult for fast execution, but GHC is a ma-
ture and widely used optimising compiler. This paper presents a whole-
program approach to optimisation, which produces speed improvements
of between 10% and 60% when used with GHC, on eight benchmarks.

1 Introduction

Haskell [15] can be used in a highly declarative manner, to express specifications
which are themselves executable. Take for example the task of counting the
number of words in a file read from the standard input. In Haskell, one could
write:

main = print ◦ length ◦ words =<< getContents

From right to left, the getContents function reads the input as a list of char-
acters, words splits this list into a list of words, length counts the number of
words, and finally print writes the value to the screen.

An equivalent C program is given in Figure 1. Compared to the C program,
the Haskell version is more concise and more easily seen to be correct. Unfor-
tunately, the Haskell program (compiled with GHC) is also three times slower
than the C version (compiled with GCC). This slowdown is caused by several
factors:

Intermediate Lists The Haskell program produces and consumes many inter-
mediate lists as it computes the result. The getContents function produces
a list of characters, words consumes this list and produces a list of lists of
characters, length then consumes the outermost list. The C version uses no
intermediate data structures.

Functional Arguments The words function is defined using the dropWhile
function, which takes a predicate and discards elements from the input list
until the predicate becomes true. The predicate is passed as an invariant
function argument in all applications of dropWhile.

Laziness and Thunks The Haskell program proceeds in a lazy manner, first
demanding one character from getContents, then processing it with each of
the functions in the pipeline. At each stage, a lazy thunk for the remainder
of each function is created.

334

int main()

{

int i = 0;

int c, last_space = 1, this_space;

while ((c = getchar()) != EOF) {

this_space = isspace(c);

if (last_space && !this_space)

i++;

last_space = this_space;

}

printf("%i\n", i);

return 0;

}

Fig. 1. Word counting in C.

Using the optimiser developed in this paper we can eliminate all these over-
heads. We obtain a program that performs faster than the C version. The central
idea of the optimiser is to evaluate as much of the program as possible at com-
pile time, leaving a residual program consisting only of actions dependent on the
input data.

Our goal is an automatic optimisation that makes high-level Haskell programs
run as fast as low-level equivalents, eliminating the current need for hand-tuning
and low-level techniques to obtain competitive performance. We require no an-
notations on any part of the program, including the library functions.

1.1 Roadmap

We first introduce a Core language in §2, on which all transformations are ap-
plied. Next we describe our optimisation method in §3. We then give a number of
benchmarks, comparing both against C (compiled with GCC) in §4 and Haskell
(compiled with GHC) in §5. Finally, we review related work in §6 and conclude
in §7.

2 Core Language

All our optimisations operate on a standard Core language, documented in [6].
The expression type is given in Figure 2. A program is a mapping of function
names to expressions. Our Core language is higher order and lazy, but lacks much
of the syntactic sugar found in Haskell. Pattern matching occurs only in case
expressions, and all case expressions are exhaustive. All names are fully qualified.
Haskell’s type classes have been removed by the dictionary transformation [24].

The Yhc compiler, a fork of nhc [20], can output Core files. Yhc can also
link in all definitions from all required libraries, producing a single Core file
representing the whole program.

335

expr = v variable
| c constructor
| f function
| x y application
| λv → x lambda abstraction
| let v = x in y let binding
| case x of {p1 → y1 ; ...; pn → yn } case expression

pat = c −→vs

Where v ranges over variables, c ranges over constructors, f ranges over functions, x ,
y and z range over expressions and p ranges over patterns.

Fig. 2. Core syntax

The primary difference between Yhc-Core and GHC-Core [22] is that Yhc-
Core is untyped. The Core is generated from well-typed Haskell, and is guaran-
teed not to fail with a type error. All the transformations could be implemented
equally well in a typed Core language, but we prefer to work in an untyped
language for simplicity of implementation.

In order to avoid accidental variable name clashes while performing transfor-
mations, we demand that all variables within a program are unique. All trans-
formations may assume this invariant, and must ensure it as a postcondition.

3 Optimisation

Our optimisation procedure takes a Core program as input, and produces a new
equivalent Core program as output. To improve the program we do not make
small local changes to the original, but instead evaluate it so far as possible at
compile time, leaving a residual program to be run.

Each function in the output program is an optimised version of some associ-
ated expression in the input program. Optimisation starts at the main function,
and optimises the expression associated with main. Once the expression has been
optimised, the outermost element in the expression becomes part of the residual
program. All the subexpressions are assigned names, and will be given defini-
tions in the residual program. If any expression (up to alpha renaming) already
has a name in the residual program, then the same name is used. Each of these
named inner expressions is then optimised as before.

Optimisation uses the O rules in Figure 3, and the simplification rules in
Figure 4. We define O∗ to be the result of applying both O and the simplification
rules until no further changes are made. Optimisation is like evaluation, but
stops if the expression to reduce is a free variable, a constructor, a primitive, or
a CAF (constant applicative form – see §3.3 for more details). The one difference
is that in a let expression the bound expression and the inner expression are both

336

O[[case x of
−−→
alts]] = case O[[x]] of

−−→
alts

O[[let v = x in y]] = let v = O[[x]] in O[[y]]
O[[x y]] = O[[x]] y
O[[f]] = unfold f , where f is a non-primitive, non-CAF function

= f , otherwise
O[[v]] = v
O[[c]] = c
O[[λv → x]] = λv → x

Fig. 3. Optimisation rules.

optimised – see §3.2 for the reasons. The simplification rules are all standard,
and similar rules would be found in most optimising compilers.

Example 1

main = λxs → map inc xs

map = λf → λxs → case xs of
[] → []
y : ys → f y : map f ys

inc = λx → x+1

This program defines a main function which increments each value in the list
by one. Our main function is not a valid Haskell program, as it has the wrong
type, but serves to illustrate the techniques. Note that f is passed around at run-
time, when it could be frozen in at compile time. By following the optimisation
procedure we end up with:

main = λxs → case xs of
[] → []
y : ys → f0 y ys

f0 = λy → λys → (y+1) : main ys

And finally by performing some trivial inlining we can obtain:

main = λxs → case xs of
[] → []
y : ys → (y+1) : main ys

The residual program is now optimised – there is no runtime passing of the
inc function, only a direct arithmetic operation. ¤

337

case (case x of {p1 → y1 ; ...; pn → yn }) of
−−→
alts

⇒ case x of {p1 → case y1 of
−−→
alts

; ...

; pn → case yn of
−−→
alts}

case c −→xs of {...; c −→vs → y ; ...}
⇒ y [−→vs /−→xs]

case v of {...; c −→vs → x ; ...}
⇒ case v of {...; c −→vs → x [v / c −→vs]; ...}

case (let v = x in y) of
−−→
alts

⇒ let v = x in case y of
−−→
alts

(let v = x in y) z
⇒ let v = x in y z

(case x of {p1 → y1 ; ...; pn → yn }) z
⇒ case x of {p1 → y1 z ; ...; pn → yn z }

(λv → x) y
⇒ let v = y in x

let v = x in (case y of {p1 → y1 ; ...; pn → yn })
⇒ case y of {p1 → let v = x in y1

; ...
; pn → let v = x in yn }

where v is not used iny

let v = x in y
⇒ y [v / x]
where x is a lambda, variable, or used once in y

let v = c x1 ...xn in y
⇒ let v1 = x1 in

...
let vn = xn in
y [v / c x1 ...xn]

where v1 ...vn are fresh

Fig. 4. Simplification rules.

338

Example 2

Our next example shows how our optimisation rules can carry out list deforesta-
tion [23].

main xs = map (+1) (map (∗2) xs)

map f xs = case xs of
[] → []
y : ys → f y : map f ys

The main definition is transformed (after trivial inlining) into:

main xs = case xs of
[] → []
y : ys → (y∗2)+1 : main ys

The intermediate list has been removed, and the higher order functions elimi-
nated by specialisation. ¤

3.1 Termination

A problem with the method as presented so far is that it may not terminate.
There are several ways that non-termination can arise. We consider, and elimi-
nate, each in turn.

Infinite Unfolding Consider the definition:

name = λx → name x

If the expression name x was being optimised then the optimisation func-
tion O∗ would not terminate. We can solve this problem by either bounding the
number of unfoldings, or by keeping a list of previously encountered interme-
diate expressions in O∗. In practice, this situation is rare, and either choice is
acceptable. We choose to bound the number of unfoldings. A large limiting value
is used, which does not impact either compilation time or memory consumption
in the common case.

Accumulating parameters Consider the definition:

reverseAcc = λxs → λys → case xs of
[] → []
z : zs → reverseAcc zs (z : ys)

This function is the standard reverse function, with an accumulator. The
problem is that successive iterations of the optimisation produce progressively
larger subexpressions. A definition is first created for reverseAcc , then for
reverseAcc (:), then reverseAcc (: :). The residual program is infinite.

339

The solution is to bound the size of the input expression associated with each
definition in the residual program. The size of the expression being optimised
can be reduced by lifting subexpressions into a let binding, then placing this
let binding in the residual program. By bounding the size of the expression, we
bound the number of functions in the residual program.

If the bound is too high, optimisation takes too long and the residual pro-
gram is excessively large. If the bound is too low then too little is achieved by
optimisation. We return to the issue of the size of this bound in §5.2.

Direct Repetition We claim that O∗ terminates with bounded unfoldings and
bounded expression size. It is often useful to detect an expression which appears
to be repeating, and preemptively bound it. Consider the reverseAcc example –
the recursive pattern is an instance of direct repetition. Let α be a context, and
α〈e〉 be the result of substituting e for the hole in the context α. An expression
x is directly repeating if x ' α〈α〈β〉〉 where β is an expression, α is a non-empty
context and ' is equality where all variables are considered equal.

Example 3

The following expressions have direct repetition.

x : y : xs where α = x : •, β = xs
f (f x) where α = f • , β = x
case x1 of {[] → nil; y : ys → case x2 of {[] → nil; z : zs → cons}}

where α = case x1 of {[] → nil; y : ys → •}, β = cons

¤
If direct repetition is encountered, then the repeating expression is lifted to

a top-level let binding, and output directly into the residual program.

Example 4

Take the reverseAcc example. During optimisation, the expression becomes:

reverseAcc xs (y1 : y2 : ys)

The second argument to reverseAcc is an instance of direct repetition, and is
lifted to a let binding.

let v = y1 : y2 : ys
in reverseAcc xs v

Now the expression bound at the let, and the inner expression, are optimised
separately. ¤

340

3.2 Let Bindings

The rule for let bindings in Figure 3 may seem curious. The other rules simply
follow evaluation order, but the let rule optimises both the bound expression and
the inner expression. This is a critical choice, which enhances the optimisation
performed by the system, without duplicating computation of let bindings.

In the Core language a let expression introduces a binding, which is shared.
Given the expression let v = x in y , even if v is referred to multiple times in
y , then the expression x is computed at most once. It is important that sharing
of expensive functions is preserved. Yet, by inlining cheap let expressions, better
optimisation can be achieved. Taking the following fragment from a previous
example:

let f = inc
in f y : map f ys

If f is not inlined, then the recursive call to map would still contain a func-
tional variable to be passed at runtime. But how can we tell whether inc is cheap
enough to be inlined? The solution is to optimise inc first:

let f = λx → x+1
in f y : map f ys

It is now clear that f is a lambda, so no shared computation is lost by inlining
it.

3.3 CAF’s

A CAF (constant applicative form) is a top level definition of zero arity. In
Haskell, CAFs are computed at most once per program run, and retained as
long as references to them remain. Consider the program:

caf = expensive

main = caf+caf

In this program caf would only be computed once. If a CAF is inlined then
this may result in a computation being performed more than would otherwise
occur. To ensure that we do not duplicate computations, we never inline CAF’s.

4 Performance Compared With C Programs

The benchmarks we have chosen are inspired by the Unix wc command – namely
character, word and line counting. We require the program to read from the
standard input, and write out the number of elements in the file. To ensure that
we test computation speed, not IO speed (which is usually determined by the
buffering strategy, rather than optimisation) we demand that all input is read

341

C Supero+GHC GHC

0

5

10

15

20

25

characters lines words

Seconds

Fig. 5. Benchmarks with C, Supero+GHC and GHC alone.

using the standard C getchar function only. Any buffering improvements, such
as reading in blocks or memory mapping of files, could be performed equally in
all compilers.

All the C versions are implemented following a similar pattern to Figure 1.
Characters are read in a loop, with an accumulator recording the current value.
Depending on the program, the body of the loop decides when to increment
the accumulator. The Haskell versions all follow the same pattern as in the
Introduction, merely replacing words with lines, or removing the words function
for character counting.

We performed all benchmarks on a machine running Windows XP, with a
3GHz processor and 1Gb RAM. All benchmarks were run over a 50Mb log file,
repeated 10 times, and the lowest value was taken. The C versions used GCC1

version 3.4.2 with -O3. The Haskell version used GHC [21] 6.6.1 with -O2. The
Supero version was compiled using our optimiser, then written back as a Haskell
file, and compiled once more with GHC 6.6.1 and -O2.

The results are given in Figure 5. In all the benchmarks C and Supero are
within 10% of each other, while GHC trails further behind.

4.1 Identified Haskell Speedups

During initial trials using these benchmarks, we identified two unnecessary bot-
tlenecks in the Haskell version of word counting. Both were remedied before the
presented results were obtained.

1 http://gcc.gnu.org/

342

words :: String → [String]
words s = case dropWhile isSpace s of

[] → []
x → w : words y

where (w , y) = break isSpace x

words′ s = case dropWhile isSpace s of
[] → []
x : xs → (x : w) : words′ (drop1 z)

where (w , z) = break isSpace xs

drop1 [] = []
drop1 (x : xs) = xs

Fig. 6. The words function from the Haskell standard libraries, and an improved words′.

Slow isSpace function The first issue is that isSpace in Haskell is much more
expensive than isspace in C. The simplest solution is to use a FFI (Foreign
Function Interface) [14] call to the C isspace function in all cases, removing this
factor from the benchmark. A GHC bug (number 1473) has been filed about the
slow performance of isSpace.

Inefficient words function The second issue is that the standard definition of
the words function (given in Figure 6) performs two additional isSpace tests per
word. By appealing to the definitions of dropWhile and break it is possible to
show that in words the first character of x is not a space, and that if y is non-
empty then the first character is a space. The revised words′ function uses these
facts to avoid the redundant isSpace tests.

4.2 Potential GHC Speedups

We have identified three factors limiting the performance of residual programs
when compiled by GHC. These problems cannot be solved at the level of Core
transformations. We suspect that by fixing these problems, the Supero execution
time would improve by between 5% and 15%.

Strictness inference The GHC compiler is overly conservative when determining
strictness for functions which use the FFI (GHC bug 1592). The getchar function
is treated as though it may raise an exception, and terminate the program,
so strict arguments are not determined to be strict. If GHC provided some
way to mark an FFI function as not generating exceptions, this problem could
be solved. The lack of strictness information means that in the line and word
counting programs, every time the accumulator is incremented, the number is
first unboxed and then reboxed [17].

343

Heap checks The GHC compiler follows the standard STG machine [12] design,
and inserts heap checks before allocating memory. The purpose of a heap check
is to ensure that there is sufficient memory on the heap, so that allocation of
memory is a cheap operation guaranteed to succeed. GHC also attempts to lift
heap checks: if two branches of a case expression both have heap checks, they are
replaced with one shared heap check before the case expression. Unfortunately,
with lifted heap checks, a tail-recursive function that allocates memory only upon
exit can have the heap test executed on every iteration (GHC bug 1498). This
problem affects the character counting example, but if the strictness problems
were solved, it would apply equally to all the benchmarks.

Stack checks The final source of extra computation relative to the C version are
stack checks. Before using the stack to store arguments to a function call, a test
is performed to check that there is sufficient space on the stack. Unlike the heap
checks, it is necessary to analyse a large part of the flow of control to determine
when these checks are unnecessary. So it is not clear how to reduce stack checks
in GHC.

4.3 Why Supero Outperforms C for the Wordcount Benchmark

The most curious result is that Supero outperforms C on wordcounting, by about
6% – even with the problems discussed! The C program presented in Figure
1 is not optimal. The variable last_space is a boolean, indicating whether
the previous character was a space, or not. Each time round the loop a test is
performed on last_space, even though its value was determined and tested on
the previous iteration. The way to optimise this code is to have two specialised
variants of the loop, one for when last_space is true, and one for when it is
false. When the value of last_space changes, the program would transition
to the other loop. This pattern effectively encodes the boolean variable in the
program counter, and is what the Haskell program has managed to generate
from the high-level code.

However, in C it is quite challenging to capture the required control flow! The
program needs two loops, where both loops can transition to the other. Using
goto turn off many critical optimisations in the C compiler. Tail recursion is
neither required by the C standard, nor supported by most compilers. The only
way to express the necessary pattern is using nested while loops, but unlike
newer imperative languages such as Java, C does not have named loops – so the
inner loop cannot break from the outer loop if it reaches the end of the file. The
only solution is to place the nested while loops in a function, and use return
to break from the inner loop. This solution would not scale to a three-valued
control structure, and substantially increases the complexity of the code.

5 Performance Compared With GHC Alone

The standard set of Haskell benchmarks is the nofib suite [11]. It is divided
into three categories of increasing size: imaginary, spectral and real. Many small

344

0
10
20
30
40
50
60
70
80
90
100

digits-of-e1 digits-of-e2 exp3 8 primes queens

% of GHC run-time

Fig. 7. Runtime, relative to GHC.

Program Source Residual Bound % GHC Size % GHC Time
digits-of-e1 521 1676 13 110 90
digits-of-e2 1235 515 12 99 75
exp3 8 380 1138 5 104 35
primes 422 356 12 101 87
queens 637 4265 8 116 78

Program is the name of the program; Source is the number of lines of pretty printed
source code including all libraries; Residual is the number of lines after optimisation;
Bound is the termination bound used; Size is the size of the resultant binary as a
percentage of the GHC binary size; Time is the runtime as a percentage of GHC
run-time.

Table 1. Result on the nofib suite.

Haskell programs increase in size substantially once the libraries are included,
particularly when type classes are involved. Because of the relatively large source
code size of even small examples, we have limited our focus to five benchmarks
drawn from the imaginary section. We have chosen programs which do not per-
form large amounts of IO.

The benchmarks are: digits-of-e1 and digits-of-e2, both of which compute the
digits of e by different methods; exp3 8 computes 38 using Peano numbers and
the Num class; primes computes a list of prime numbers; and queens counts the
safe layouts of queen pieces on a chess board. All benchmarks were run with
parameters that require runtimes of between 3 and 5 seconds for GHC.

The results of these benchmarks are given in Figure 7, along with detailed
breakdowns in Table 1. In all benchmarks Supero+GHC performs at least 10%
faster than GHC alone, and in one case is nearly three times faster. Binaries
were at most 10% larger than those from GHC alone, and in one case the binary
was even marginally smaller.

345

5.1 GHC’s optimisations

For these benchmarks it is important to clarify which optimisations are per-
formed by GHC, and which are performed by Supero. Core output from Yhc,
compiled using GHC without any prior optimisation, would not perform as well
as the original program compiled using GHC. GHC has two special optimisations
that work in a restricted number of cases, but which Supero is unable to take
advantage of.

Dictionary Removal Functions which make use of type classes are given an addi-
tional dictionary argument. In practice, GHC specialises many such functions by
creating code with a particular dictionary frozen in. This optimisation is specific
to type classes – a tuple of higher order functions is not similarly specialised.
After compilation with Yhc, the type classes have already been converted to
tuples, so Supero must be able to remove the dictionaries itself. One benchmark
where dictionary removal is critical is digits-of-e2.

List Fusion GHC relies on names of functions, particularly foldr/build [19], to
apply special optimisation rules such as list fusion. Many of GHC’s library func-
tions, for example iterate, are defined in terms of foldr to take advantage of these
special properties. After transformation with Yhc, these names are destroyed, so
no rule based optimisation can be performed. One example where list fusion is
critical is primes, although it occurs in most of the benchmarks to some extent.

Supero has no special purpose optimisations which rely on named functions or
desugaring knowledge. The one benchmark where no GHC specific optimisations
apply is exp3 8, which operates solely on Peano numbers – a type GHC has no
inbuilt knowledge of. Hence the advantage of Supero in exp3 8: while GHC is
limited to basic inline/simplify transformations, Supero is able to remove some
intermediate data structures.

5.2 Termination Bound

Table 1 includes a column indicating the size bound that was applied to ex-
pressions. Out of the five benchmarks, both primes and queens could be run
at any greater bound and would still produce the same program – the direct
repetition criteria (see §3.1) bounds the expressions on its own. For the remain-
ing programs, a bound was chosen to ensure that the compilation process was
quick (under two seconds). By increasing the termination bound the size of the
residual program would increase, but the generated program may execute faster.

The existence of a termination bound requiring different values for different
programs is a cause for concern. In a large program it is likely that different
parts of the program would require different bounds on the size of the generated
expression – something not currently possible. We suspect that the most promis-
ing direction is to augment the direct repetition criterion to obtain termination
in all practical cases without resorting to a depth bound.

346

6 Related Work

Partial evaluation There has been a lot of work on partial evaluation [7], where
a program is specialised with respect to some static data. The emphasis is on
determining which variable can be entirely computed at compile time, and which
must remain in the residual program. Partial evaluation is particularly appropri-
ate for specialising an interpreter with an expression tree to generate a compiler
automatically, often with an order of magnitude speedup, known as the First
Futamura Projection [4]. The difference between our work and partial evalua-
tion is that we fold back definitions, and perform no binding time analysis. Our
method is certainly less appropriate for specialising an interpreter, but in the
absence of static data, is still able to show improvements.

Deforestation The deforestation technique [23] removes intermediate lists in
computations. This technique has been extended in many ways to encompass
higher order deforestation [8] and work on other data types [3]. Probably the
most practically motivated work on deforestation has come from those attempt-
ing to restrict deforestation, in particular shortcut deforestation [5], and newer
approaches such as stream fusion [2]. In this work certain named functions are
automatically fused together. By rewriting library functions in terms of these
special functions, fusion occurs. Shortcut deforestation is limited to cases where
the correct underlying function is used – sometimes requiring unnatural defini-
tions.

GRIN The GRIN approach [1] is currently being implemented in the jhc com-
piler [10], with promising initial results. GRIN works by first translating to a
monadic intermediate language, then repeatedly performing a series of optimi-
sations, using whole program transformation. The intermediate language is at
a much lower level than our Core language, so jhc is able to perform detailed
optimisations that we are unable to express.

Other Transformations One of the central operations within our optimisation
in inlining, a technique that has been used extensively within GHC [18]. We
generalise the constructor specialisation technique [16], by allowing specialisation
on any arbitrary expression, including constructors.

Lower Level Optimisations Our optimisation works at the Core level, but even
once optimal Core has been generated there is still some work before optimal
machine code can be produced. Key optimisations include strictness analysis
and unboxing [17]. In GHC both of these optimisations are done at the Core
level, using a Core language extended with unboxed types. After this lower level
Core has been generated, it is then transformed in to STG machine instructions
[13], before being transformed into assembly code. There is still work being
done to modify the lowest levels to take advantage of the current generation of
microprocessors [9]. We rely on GHC to perform all these optimisations after
Supero generates a residual program.

347

7 Conclusions and Future Work

We have introduced an optimising front-end which can enhance the results of
back-end compilation using GHC – at least for some small programs. Our opti-
miser is simple – the Core transformation is expressed in just 300 lines of Haskell,
yet it replicates many of the performance enhancements of GHC in a more gen-
eral way. Our initial results are promising, but incomplete. There are three main
obstacles that need to be tackled:

Termination We are confident that Supero terminates, but only by use of
a crude bound on expression size whose optimal value varies for different
programs. To increase the applicability of our optimiser, we would like to
remove the depth bound, or at least reduce our reliance upon it.

Benchmarks Eight small benchmarks are not enough. We would like to obtain
results for all the remaining benchmarks in the nofib suite.

Performance The performance results presented in §5 are disappointing. Ear-
lier versions of Supero were able to obtain a 50% speed up in the primes
benchmark, but decreased performance in other benchmarks. We suspect
that much better performance can be obtained.

The Programming Language Shootout2 has shown that low-level Haskell can
compete with with low-level imperative languages such as C. Our goal is that
Haskell programs can be written in a high-level declarative style, yet still perform
competitively.

Acknowledgements We would like to thank Simon Peyton Jones, Simon Marlow
and Tim Chevalier for help understanding the low-level details of GHC, and
Peter Jonsson for helpful discussions.

References

1. Urban Boquist and Thomas Johnsson. The GRIN project: A highly optimising
back end for lazy functional languages. In Proc IFL ’96, volume 1268 of LNCS,
pages 58–84. Springer-Verlag, 1996.

2. Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion: From lists
to streams to nothing at all. In Proc ICFP ’07. ACM Press, April 2007.

3. Duncan Coutts, Don Stewart, and Roman Leshchinskiy. Rewriting Haskell strings.
In Proc PADL 2007, pages 50–64. Springer-Verlag, January 2007.

4. Yoshihiko Futamura. Partial evaluation of computation process - an approach to a
compiler-compiler. Higher-Order and Symbolic Computation, 12(4):381–391, 1999.

5. Andrew Gill, John Launchbury, and Simon Peyton Jones. A short cut to defor-
estation. In Proc FPCA ’93, pages 223–232. ACM Press, June 1993.

6. Dimitry Golubovsky, Neil Mitchell, and Matthew Naylor. Yhc.Core - from Haskell
to Core. The Monad.Reader, (7):45–61, April 2007.

7. Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice-Hall International, 1993.

2 http://shootout.alioth.debian.org/

348

8. Simon Marlow. Deforestation for Higher-Order Functional Programs. PhD thesis,
University of Glasgow, 1996.

9. Simon Marlow, Alexey Rodriguez Yakushev, and Simon Peyton Jones. Faster
laziness using dynamic pointer tagging. In Proc. ICFP ’07. ACM Press, October
2007.

10. John Meacham. jhc: John’s haskell compiler. http://repetae.net/john/

computer/jhc/, 2007.
11. Will Partain et al. The nofib Benchmark Suite of Haskell Programs. http:

//darcs.haskell.org/nofib/, 2007.
12. Simon Peyton Jones. The Implementation of Functional Programming Languages.

Prentice-Hall, 1987.
13. Simon Peyton Jones. Implementing lazy functional languages on stock hardware:

The spineless tagless G-machine. JFP, 2(2):127–202, 1992.
14. Simon Peyton Jones. Tackling the awkward squad: monadic input/output, con-

currency, exceptions, and foreign-language calls in haskell. In Engineering theories
of software construction, Marktoberdorf Summer School, 2002.

15. Simon Peyton Jones. Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2003.

16. Simon Peyton Jones. Constructor specialisation for Haskell programs. In Proc.
ICFP ’07. ACM Press, October 2007.

17. Simon Peyton Jones and John Launchbury. Unboxed values as first class citizens in
a non-strict functional language. In J. Hughes, editor, Proc FPCA ’91, volume 523
of LNCS, pages 636–666, Cambridge, Massachussets, USA, August 1991. Springer-
Verlag.

18. Simon Peyton Jones and Simon Marlow. Secrets of the Glasgow Haskell Compiler
inliner. JFP, 12:393–434, July 2002.

19. Simon Peyton-Jones, Andrew Tolmach, and Tony Hoare. Playing by the rules:
Rewriting as a practical optimisation technique in GHC. In Proc. Haskell ’01,
pages 203–233. ACM Press, 2001.

20. Niklas Röjemo. Highlights from nhc - a space-efficient Haskell compiler. In Proc.
FPCA ’95, pages 282–292. ACM Press, 1995.

21. The GHC Team. The GHC compiler, version 6.6. http://www.haskell.org/ghc/,
October 2006.

22. Andrew Tolmach. An External Representation for the GHC Core Language. http:
//www.haskell.org/ghc/docs/papers/core.ps.gz, September 2001.

23. P. Wadler. Deforestation: Transforming programs to eliminate trees. In Proc ESOP
’88, volume 300 of LNCS, pages 344–358. Berlin: Springer-Verlag, 1988.

24. Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc.
In Proc. POPL ’89, pages 60–76. ACM Press, 1989.

349

Checking Dependent Types Efficiently

Dirk Kleeblatt

Technische Universität Berlin
Fakultät IV – Elektrotechnik und Informatik

klee@cs.tu-berlin.de

Abstract. Type checkers for dependent types need to evaluate user de-
fined functions during type checking. For this, current implementations
typically use an interpreter, which has several drawbacks. We show, how
at this stage compiled code can be used for a language with lazy evalu-
ation.

1 Introduction

This article gives an early report on the implementation of Ulysses, a lazy func-
tional language with dependent types. Ulysses is quite similar to Cayenne [1].
One of the similarities is, that there is no sharp distinction between terms and
types, the only difference is that some expressions may be used as types while
others may not. The consequences of identifying terms and types are significant:
Functions can be used not only to construct the usual terms like natural num-
bers, lists and so on, but also to construct types. Hence, we need to evaluate
some user defined functions during type checking time. To circumvent the draw-
backs of interpreted code, we use compilation to native machine code instead,
which is complicated by the special requirements of evaluation for dependent
type checking, namely evaluation under λ abstractions and case analyses. To
our knowledge, this is the first implementation using compiled code during type
checking for a lazy language. Earlier work exists that is restricted to eager eval-
uation [2].

In the following, we introduce the language Ulysses (Sect. 2). We adapt
former work on strict languages to the needs of lazy evaluation (Sect. 3), and de-
scribe the necessary compilation technique (Sect. 4) and runtime system (Sect. 5).
While this leads to a working system, it still can be improved (Sect. 6). We give
some further notes on our implementation (Sect. 7), a comparison with related
work (Sect. 8) and directions for future research (Sect. 9).

2 A description of Ulysses

It is common in functional languages to have type constructors which may be
regarded as functions taking types to types. In Haskell, for examples, Maybe can
be applied to the type Integer, yielding a new type Maybe Integer. But the
possibilities to define type constructors are usually restricted to the definition of

350

parametric algebraic data types. In Ulysses, such restrictions do not exist. It is
possible to write functions that take arbitrary terms to new types, using the full
feature set of the underlying language like higher order functions and recursion.1

An example for recursive type definitions in Ulysses is shown in Fig. 1. The
syntax is similar to Haskell. Line 2 gives the well known definition of Peano
numbers. Line 1 gives a type declaration for nat, #0 is the type of all (small)
types. More interesting is the declaration and definition of vector in lines 4–6.
The first argument to vector is of type #0, so it is a type by itself. The second
argument is a natural number, and the result type is #0 again, so this function
computes a type when given a term of type nat as an argument. This computed
type is defined by recursion, the base case is shown in line 5: A vector of length
zero can only be created by the constructor Nil which takes no arguments.
A vector of length S x is created by the constructor Cons, which prepends an
element of type a (a parameter to our definition) to an vector of length x. So
an expression of type vector a n is guaranteed to contain exactly n elements
of type a.

1 nat :: #0;

2 nat = data Z | S nat;

3
4 vector :: #0 -> nat -> #0;

5 vector a Z = data Nil;

6 vector a (S x) = data Cons a (vector a x);

7
8 v :: vector nat (S (S Z));

9 v = Cons Z (Cons Z Nil);

10
11 add :: nat -> nat -> nat;

12 add Z b = b;

13 add (S a) b = S (add a b);

14
15 append :: forall a :: #0 .

16 forall n :: nat . vector a n ->

17 forall m :: nat . vector a m ->

18 vector a (add n m);

19 append a Z Nil m vm = vm;

20 append a (S p) (Cons ft rt) m vm =

21 Cons ft (append a p rt m vm)

Fig. 1. Vectors as lists with fixed length

1 Comparable with Cayenne, type checking Ulysses programs is not decidable. The
user has to ensure, that no infinite recursions are used in functions at the type level.

351

To see an application of vector, take a look at lines 8 and 9. Here, v is
declared to be a vector of length two. To type check the definition, the type
checker has to do three reduction steps (note that the data keyword can be used
to define anonymous types):

vector nat (S (S z))
→ data Cons nat (vector nat (S Z))
→ data Cons nat (data Cons nat (vector nat Z))
→ data Cons nat (data Cons nat (data Nil))

To perform these reductions, languages that support comparable type defini-
tions typically use an interpreter during type checking. Cayenne, the language
most closely related to Ulysses, is implemented this way. But this has several
disadvantages:

– The first one is the reduced performance of interpreted code compared to
compiled code.

– Even neglecting performance reasons, from a software engineering point of
view this situation is very unsatisfactory. When writing a compiler, an ad-
ditional interpreter is needed just for type checking. And when the language
is extended later on, two different parts of code have to be adapted: the
compiler as well as the interpreter.

– This might get worse in the presence of (even small) differences in the seman-
tics of the interpreter and the compiler: When computations give a different
result at run-time than during type checking, the type safety will most prob-
ably be violated.

However, replacing an interpreter by a compiler in such a type checker is not
as easy as it looks on first sight. The terms that have to be reduced may contain
free variables, as illustrated by the rest of our example.

Lines 11–13 define the addition of natural numbers as usual. Lines 15–21 give
the definition of the append function for vectors. Using dependent types, its type
declaration can give a good specification of this function. The type can be read
as follows: for any type a, given a natural number n, and a vector containing n
elements of type a, and furthermore a second natural number m together with a
vector of size m, return a vector containing n plus m elements.

In the definition of the recursive case in lines 20 and 21, the resulting type
vector a (add n m) can be narrowed using the information from the pattern
matching, n must be equal to S p, so we can do the following reductions which
are necessary to type check the right hand side:

vector a (add (S p) m)
→ vector a (S (add p m))
→ data Cons a (vector a (add p m))

In these reductions, all redexes contain not only the free type variable a, but
also two unknown natural numbers, p and m. Usually, compilers cannot handle
these free variables.

352

The problem is indeed more general: It is necessary to compute normal forms,
while code generated by usual compilers computes only weak head normal forms.
Hence, a compiler to be used for a type checker for dependently typed languages
must cope with evaluation under λ abstraction and case analyses.

3 Weak Normalization and Readback

Our approach does not compute normal forms of expressions in one big step. In-
stead, we use a well known (and slightly adopted) weak head evaluator, examine
the weak head normal forms computed by this evaluator, and extract remaining
redexes. These can then be recursively reduced.

This proceeding is not new, it was introduced by Grégoire and Leroy [2].
However, they restricted their focus on strict evaluation, using the ZAM ab-
stract machine as a weak evaluator. Our work employs lazy evaluation, taking
the spineless tagless g-machine by Peyton Jones [3] as a weak evaluator. The
differences between ZAM and STG machine are quite significant, so transferring
the existing work from strict evaluation to lazy evaluation is nontrivial.

We adopt the definition from [2] of the strong normalization function N to
the needs of the STG machine. This function is defined in terms of two helper
functions. The weak evaluation function V reduces terms to weak head normal
forms, the readback function R scrutinizes the resulting weak head normal form,
extracts remaining redexes, and applies N recursively on unevaluated subterms.

Definition 1. The normalization function N is defined as

N (e) = R(V(e)).

The weak evaluation of Ulysses expressions is done by compiling them first
to STG code and then to native machine code (cf. Sect. 4). This machine code
is executed, and the execution stops, when a weak head normal form is reached.
Their structure can the be extracted by interpreting the final machine state (cf.
Sect. 5).

Definition 2. A weak head normal form is given by one of four cases:

v ::= C e1 . . . en (1)
| x e1 . . . en (2)
| λx . e (3)
| Γ [case x e1 . . . en] (4)

Note, that the subexpressions e and ei are machine representations of ex-
pressions, i.e. closure pointers into the heap.

Line 1 describes the application of a constructor to n argument expressions
(n = 0 for nullary constructors), while line 2 denotes a free variable x, again
applied to n arguments (n = 0 for no arguments). Line 3 is a unsaturated
function, i. e. a function expecting at least one additional argument.

353

The last case, number 4, looks most unusual. It is encountered when a case
distinction is to be made, and the scrutinee is not a constructor term, but an
application of a free variable to zero or more arguments. The context Γ fixes
(amongst others) the continuation for each possible constructor (i. e. the result
of the case distinction), and is defined by a set of machine stacks and registers.

Next, we focus on the readback function R. It is defined by case analysis on
weak head normal forms.

Definition 3. The readback function R is defined as

R(C e1 . . . en) = C N (e1) . . . N (en) (5)
R(x e1 . . . en) = x N (e1) . . . N (en) (6)

R(λx . e) = λy .N ((λx . e) y) (y fresh) (7)
R(Γ [case x e1 . . . en]) = case x N (e1) . . . N (en) of (8)

{ Ci ~xi → N (Γ [Ci ~xi]) }
(where Ci are the possible constructors
and ~xi fresh)

Equation 5 neatly shows the idea of strong normalization by weak evaluation
and readback: When a constructor term has been evaluated, the resulting normal
form again is a constructor term. However, the constructor arguments e1 . . . en
have not necessarily been evaluated in the first step, because we employ lazy
evaluation. Hence, these arguments have to be normalized by N , which results
in their (weak) evaluation and subsequent readback (cf. the definition of N in
Def. 1), which in turn might result in further weak evaluations, and so on.

Equation 6 is completely analogous: when a free variable is applied to zero
or more arguments, we have to normalize these arguments.

In equation 7, evaluation under λ is described. We generate a fresh variable
y, normalize the expression (λx . e) y where y is free, and the resulting normal
form is placed beneath a λ abstraction. This might look complicated at a first
glance, a usual definition would involve substitution, resulting in the normal-
ization of e[y/x] instead of the application (λx . e) y. However, it is important
that the abstraction λx . e given as argument to R remains unchanged on the
right hand side of the definition. Recall that this abstraction is represented by
heap closures of our weak evaluator. It is quite comfortable not being forced to
define substitution on these structures, while it is quite easy to push additional
arguments on a machine stack.

When evaluation gets stuck because a case analysis of an application of a free
variable cannot be reduced further, we have to evaluate all possible branches of
the analysis, as shown in Def. 8. We generate all possible constructors Ci, applied
to fresh variables ~xi according to their arity. Which constructors (and with which
arity) are needed can be deduced from the type of the free variable x and it’s
arguments. Details to this can be found in Sect. 5.

354

e ::= C {x1 . . . xn} (9)

| x {x1 . . . xn} (10)

| let bs in e (11)

| case e of as (12)

bs ::= x1 = lf1; . . . ;xn = lfn (13)

lf ::= {x1 . . . xn} \π {y1 . . . ym} → e (14)

π ::= u | n (15)

as ::= a1; . . . ; an; d (16)

a ::= C {x1 . . . xn} → e (17)

d ::= → e (18)

Fig. 2. Grammar for STG code

Every new constructor application is then executed in context Γ 2. As men-
tioned, this context captures the branches for the case analysis, so each Γ [Ci ~xi]
is normalized to the corresponding case arm for Ci ~xi.

Of course, since we use lazy evaluation, the arguments e1 . . . en may be
unevaluated, so we normalize them using N .

4 The Spineless Tagless G-Machine

Up to now, we treated the weak evaluation function V fairly abstract. In this
section we describe the spineless tagless g-machine, which we used to imple-
ment a lazy weak evaluator. A more complete description can be found in [3].
Here, we will focus on the aspects of the STG machine that are relevant for our
modifications and the machine state interpretation we detail in Sect. 5.

Every Ulysses expression that has to be normalized is translated to native
machine code in two steps: first, we create STG code, which looks like a restricted
and annotated functional programming language, and from this we generate
target machine assembly code.

4.1 The STG Language

STG code is formed according to the grammar in Fig. 2. We describe a simplified
variant of STG code. The original formulation is prepared for primitive values
to deal e.g. with unboxed integers. Additionally, we do not distinguish recursive
and nonrecursive let bindings, we treat all bindings as recursive.

2 executing Γ [e] means entering the closure for e in the machine state given by Γ
(cf. Sect. 5)

355

The first form of STG expressions is a constructor application. However,
the constructor has to be saturated, i.e. all arguments according to the arity of
the constructor C have to be present. Moreover, the constructor arguments are
restricted to be variables.

A function application is restricted in a similar manner: the function x and
all arguments given have to be variables. No anonymous functions exist in this
intermediate language, they have to be bound globally or locally. Function ap-
plications do not have to be saturated but can be partial.

Local definitions are bound by let expressions. Each binding b associates a
so-called lambda form of the syntactic category lf with a name. A lambda form
is annotated with two lists of variables. The lambda form abstracts over the
variables y1 . . . ym, so it defines an m-ary function. The list x1 . . . xn gives the
free variables of the body e, excluding the abstracted variables yi.

Additionally, each lambda form is annotated with an update flag π which can
be u or n. These flags are necessary for the implementation of lazy evaluation,
where each closure is evaluated only when necessary, but at most once. To en-
sure this, closures are overwritten with their weak head normal form after their
first evaluation. However, not every closure has to be overwritten: if the bound
expression already is in weak head normal form, or the compiler can prove that
it will be evaluated only once anyway, the binding is flagged with n to signal
that no update code has to be generated. Otherwise, the binding is flagged with
u to cause the generation of update code. For example, in the expression

let compose = {} \n {f g x} →
let gx = {g x} \u {} → g {x}
in f {gx}

in ...

compose is defined in weak head normal form, since it abstracts over f, g and
x, and is flagged with n accordingly. By contrast gx is not in weak head normal
form, g and x are merely free variables, so the flag is u and the closure of gx will
be overwritten as soon as it is evaluated the first time3.

Case analysis can be done on arbitrary expressions, but is restricted to flat
patterns without nesting. The default case is expressed using the pattern _,
matching every expression.

4.2 Translating Ulysses to STG Code

The translation of Ulysses code to the STG language is straight forward. Func-
tion arguments that are not yet simple variables are bound by new local variables.
The same holds for constructor arguments, furthermore we have to saturate con-
structors by η expansion: a binary constructor Pair applied to a single argument
x becomes

let f = {x} \n {y} → Pair x y in f.

3 Of course, each application of compose will create a new closure gx.

356

Nested patterns from Ulysses definitions are flattened by a well known pattern
matching compiler, as described in [4].

Besides the usual feature set at the term level, we need a representation
of Ulysses types. This is done by introducing a reserved constructor for each
predefined type constructor. The simplest case is the function space, a type a→ b
is translated to the constructor application Fun a b.

The encoding of type universes and data types makes use of unboxed integers.
For instance, we represent #2 by Universe 2, and data Nothing | Just a as
Data 1 2 a. In the latter case, 1 and 2 are the tags for the constructors Nothing
and Just, and their arity can be seen by the number of boxed values after the
constructor tag, in this case 0 and 1, respectively.

Dependent product types are represented by the special constructor Forall,
taking as arguments the representations of argument and result types. To make
the necessary substitutions in the result type possible, we use a technique that
was used already in [5]. The result type is not stored directly, but as a function
taking a member of the argument type to a type representation. The Ulysses
type of the identity function forall t :: #0 . t -> t is thus represented as

let x = {} \u {} → Universe 0;
y = {} \n {t} → Fun t t

in Forall x y

which allows to replace t during type checking with a concrete type by extracting
y from the constructor expression, and applying it to the needed type.

4.3 Executing STG Code on Conventional Machines

STG code can be easily translated to machine code for execution on traditional
hardware. We next give an overview of the memory layout and operational be-
havior of the resulting machine programs.

Our machine state consists of

– a heap which contains closures, each consisting of one code pointer and a
sequence of pointers to the values of the free variables used in this code,

– a closure register Rclosure, pointing to the currently evaluated closure,
– an argument stack, containing pointers to closures in the heap, for passing

arguments to functions,
– a continuation stack, holding code pointers, and a tag return register Rtag,

containing a small integer, for the implementation of case analyses, and
– an update stack, containing update frames, for bookkeeping closures that

have to be overwritten as soon as they are evaluated to weak head normal
form.

Function Application The implementation of function calls follows the push/enter
model: we push all arguments onto the argument stack, and enter the function.
Entering a function is done in two steps: first, load the address of the function’s
closure into the closure register, and second jump to the function body. Since

357

the STG language does not allow nested function applications, this is a tail call,
and no return address has to be remembered. So we translate an STG function
application f {x y} to following pseudo assembler code:

push-argument y
push-argument x
enter f

Constructors and Case Analyses Constructor applications usually occur as scru-
tinees within case analyses. When a case expression is evaluated, a return ad-
dress is pushed onto the continuation stack. Next, the evaluation of the scrutinee
is started. When the scrutinee is finally evaluated to a constructor application,
the constructor tag is loaded into the tag return register and a pointer to a
closure containing the constructor arguments is loaded into the closure register.
These registers now have to be passed to the code of the case analysis, so a jump
to the topmost code pointer on the continuation stack is taken. At the jump
target, the continuation is removed from the stack, and the tag is analyzed. The
constructor arguments can be accessed through the closure register.

Accordingly, the STG expression

case e1 of { C x y → e2; _ → e3 }

is compiled to the following pseudo assembler:

push-continuation l
«code for e1»

l: pop-continuation
compare Rtag «tag reserved for C»
jump-if-not-equal d
«code for e2»

d: «code for e3»

and a corresponding constructor application C {a b} is translated to4

Rclosure := allocate l, {a b}
l: Rtag := «tag reserved for C»

jump-continuation

Local Bindings For let bindings, we allocate on the heap a closure for each
bound variable. The code pointers of these closures point to the compiled bodies
of the lambda forms. The current values of the free variables, which are pointers
to other closures, are saved into the corresponding closure fields. After that,
evaluation continues with the body of the let expression. Note that due to the
lazy semantics no evaluation of the bound variables is triggered now.

A binding with update flag n as e. g.

let v = {x y} \n {} → e1 in e2

4 Here, allocate allocates heap space for a new closure and fills it with the given code
pointer and free variables.

358

is thus translated to

allocate l, {x y}
«code for e2»

l: «code for e1»

When the closure shall be updated after its first evaluation, the code of the
new closure is preceeded by pushing an update frame that contains the current
closure pointer (pointing to the memory location to be overwritten), and the
current argument stack content5. Next, the argument stack is emptied to signal
a necessary update to partial function applications. Thus A binding with update
flag u as e. g.

let v = {x y} \u {} → e1 in e2

is compiled to

allocate l, {x y}
«code for e2»

l: push-update-frame
empty-argument-stack
«code for e1»

Accordingly, each function has to check whether all expected arguments are
present and, if not, call a global routine updatePAP that overwrites the closure
pointed to by the topmost update frame with a partial applied function closure,
removes the update frame from the update stack, restores the argument stack,
and finally re-enters the current closure. So we translate

let v = {} \n {x y} → e1 in e2

to the assembly code

allocate l, {x y}
«code for e2»

l: compare-argument-stack-length 2
jump-if-less updatePAP
«code for e1»

This allows to update closures with function values, but we need to find a
way for constructor values, too. This can be done quite elegant by merging the
update and the continuation stack, pushing update frames and continuation onto
the same stack. Now, we can arrange update frames so that the topmost word
on the stack contains a pointer to a routine updateConstructor that overwrites
the closure pointed to by the update frame with an indirection to the current
closure, removes the update frame, and jumps to the now topmost pointer on
the stack. Therefore a constructor can simply jump to the topmost pointer on
the merged stack, which points either to the update routine, if an update is
necessary, or to the case analysis code.
5 In [3] you can find a description how this can be done by fast pointer manipulations

359

5 Runtime System

Evaluating type expressions to normal forms by running machine code requires
a special runtime system with two main tasks:

– The different forms of weak head normal forms (cf. Def. 2) have to be dis-
criminated, and their components have to be extracted from the machine
registers and stacks.

– To evaluate under λ and case, we need to generate free variables. They
must be carefully designed to fit to the generated machine code, since we
don’t want to be forced to generate special machine code that deviates from
traditional STG compilers and might have poor performance.

5.1 Constructor Expressions

To identify final machine states that constitute constructor expressions we ex-
ploit that each constructor, after loading the tag return register and closure
pointer, just takes a jump to the topmost address on the continuation stack. So,
before we start running any machine code, we just push a special exit continua-
tion on the continuation stack. The corresponding code finds the constructor tag
and arguments via the respective registers, and can hand them on to the read-
back function (cf. Def.3) for recursive evaluation of the constructor arguments.

5.2 Unsaturated Functions

To recognize unsaturated functions, we utilize, that each function starts evalu-
ation by checking whether enough arguments are present on the stack. If this
check fails, this usually means that an update has to be performed and the global
function update routine is jumped to. When an update frame is found, a closure
is overwritten and additional arguments are restored on the stack. But if the
update stack is empty, we know that the weak head normal form of the overall
expression is an unsaturated function, so we return a λ abstraction to the read-
back function, which is responsible for creating a fresh free variable, pushing it
onto the argument stack and reentering the last evaluated closure.

At this point we have introduced an additional check compared to code gen-
erated by traditional compilers using STG intermediate code: When not enough
function arguments are present on the argument stack, we have to check whether
the update stack is empty. Usually, a restricted top level type ensures that this
does not happen. However, this check occurs only at a single code location in
updatePAP. So it is possible to link this routine during run-time (as opposed to
evaluation at type checking time) to a simpler version omitting this check.

5.3 Free Variables

Free variables are the most intricate part of our implementation. They originate
from evaluations under λ abstractions, where they were pushed onto the argu-
ment stack, or evaluations under case, where constructor expressions with free
variables in argument positions were created.

360

Code generated from STG intermediate code has a distinguishing property
from many other compilation schemes: Constructor closures and function clo-
sures are entered in the same way, but execute very different code. While the
former take a jump to a code address left on the continuation stack, the lat-
ter expect arguments on the stack and start some computation. So we need an
implementation of free variables prepared for both scenarios.

But luckily one invariant exists in both cases: entering a free variable means
a weak head normal form has been reached. We just have to find out, whether it
is a free variable application (Def. 2, Line 2) or a case analysis of a free variable
application (Def. 2, Line 4), and collect eventual arguments from the stack.

In our system, we implemented free variables as follows. Each free variable
is represented by a closure on the heap. All free variables share a common code
pointer into the runtime system. Every variable closure contains a identification
number, to distinguish different occurrences of the same variable. Moreover,
every variable is annotated with its type, to allow to select the right behavior
when it is entered. As a last component, every free variable closure contains a list
of arguments to which it is applied. This list is initially empty, but when a closure
is updated with a free variable, some arguments might have been accumulated.

So when a free variable is entered, the runtime system starts a loop that
interprets the type annotation of the variable in the current machine state. The
following algorithm operates on the entered variable x, the collected arguments
e1 . . . en found in the variable closure, and the type of x applied to e1 . . . en,
also found in the closure.

1. if the x applied to e1 . . . en has a function type, then
(a) if there is an argument on the argument stack, then

i. pop this argument, and add it to the accumulated arguments
ii. compute the result type of the variable’s type
iii. restart at 1 interpreting this result type

(b) else, if there is an update frame on the update stack
i. perform an update, overwriting the destination closure with a free

variable closure containing all arguments accumulated so far and the
type of this application

ii. restore argument and return stack from the update frame
iii. restart at 1

(c) else, the free variable applied to the accumulated arguments constitutes
the weak head normal form that is returned to the readback function

2. else, if the variable has a data type
(a) if there is an continuation on the continuation stack, then

i. save the current machine state as context Γ
ii. return a case analysis of a free variable application in context Γ , i.e.

Γ [case x e1 . . . en], to the readback function
(b) as in 1b
(c) as in 1c

3. otherwise, the free variable application x applied to e1 . . . en is returned as
weak head normal form to the readback function

361

6 Further Improvements

By now, we have all we need for a fairly efficient type checker for dependent
types. Type expressions can be reduced by the strong evaluation function N .
It uses a weak evaluator V that is implemented using a approved compilation
scheme via STG to assembly code. The results of the weak evaluation can be
extracted from the machine state, and all occurring weak head normal forms can
be distinguished. By passing these evaluation result to the readback function
R, further redexes can be extracted and again passed to our weak evaluator.
However, Ulysses implements two additional improvements.

6.1 Interleaving Type Checking and Evaluation of Types

Instead of reducing all types occurring during type checking in one step to normal
forms, it is beneficial to reduce them in the first step to weak head normal form
only. This weak head normal form is usually a type constructor applied to not
yet normalized type arguments. In this stage, we can check whether the type
constructor matches the syntactic construct to check, e. g. a function type and
a λ abstraction, and reduce the type arguments only when this check succeeds.
When this check fails, e. g. because a λ abstraction shall be checked to have a
data type, the redexes in the arguments of the type do not have to be reduced,
and some amount of unnecessary work can be avoided.

This idea of reduction to weak head normal form interleaved with type check-
ing and recursive further evaluation has been applied in [6], too.

6.2 Detecting Equivalent Types Early

Our focus is type checking only, we do not consider inferring types. Hence, when-
ever we have to check a variable against a type, we know, that this variable has
been declared with some type, and thus can be found in the type context. So,
the variable typing rule in Ulysses looks like follows.

Var
(x : τ1) ∈ Γ τ1 ≡β τ2

Γ ` x : t2

A variable has type τ2 if it is declared to have type τ1 in the context Γ , and
τ1 and τ2 are equivalent.6 To check this equivalence, one could reduce both types
to normal forms, and compare them for equivalence. But we can do better.

The types τ1 and τ2 are represented as closures in the heap. These closures
evaluate certainly to the same normal form, if they contain the same pointers in
the same places, i. e. the same code pointer and the same pointers for the free
variables (cf. Fig. 3 (a)). Moreover, they also evaluate to the same normal form
6 Here, Γ is a type context, as usual in the specification of type systems. It is not to

be confused with the context Γ in the definition of the readback function in Def. 3,
Line 8, where it denotes the dynamic context of an expression, i. e. the machine state
in which it is evaluated.

362

(a) τ1: code1

code2

τ2: code1

(b) τ1: code1 code2

code3

code2τ2: code1

Fig. 3. Detecting equal normal forms without evaluation

if they have the same code pointer, and their free variable pointers are different,
but the respective closures they point to have the same code pointers and the
same variable pointers (cf. Fig. 3 (b)).

Generalizing this pattern, we reach a variant of bisimilarity, introduced by
Park in [7]. The following definition uses the notation ci to access field i in closure
c, |c| for the number of fields of closure c, and ∗p to dereference a pointer.

Definition 4. We call a relation R on closures a bisimulation, iff for each pair
of closures (s, t) ∈ R

1. s0 = t0, i. e. the code pointers are equal, and
2. |s| = |t|, i. e. the closures have same length, and
3. ∀i ∈ {1 . . . |s| − 1} :

(a) si and ti are pointers, and (∗si, ∗ti) ∈ R, or
(b) si and ti are non-pointers, and si = ti.

We can consider τ1 and τ2 to be equal, if there is a bisimulation R such that
(τ1, τ2) ∈ R. Whether such a relation exists can be checked by a single simul-
taneous traversal of both closure graphs of τ1 and τ2. If this traversal reaches
closures with different code pointers, further reductions have to be done.

This notion is appropriate for non-normalizing terms, too. Recursive type
definitions as for example nat = data Z | S nat can be unfolded infinitely,
thus the simple strategy of complete reduction and subsequent equality check is
not successful for this type, while the bisimilarity check allows to deal with it.

7 Notes on the Implementation

The Ulysses system has been implemented in Haskell, and is available at
http://uebb.cs.tu-berlin.de/~klee/ulysses.

7.1 The Overall Type Checking Process

The first step during type checking an Ulysses program is a dependency analy-
sis. It has to ensure that functions, which are used in the types of other function
definitions, are type checked before these other definitions. The definitions are
sorted accordingly, whereby mutual recursive definitions are clustered together.
Then, each definition is first checked and then compiled to machine code. Mutual
recursive definitions get checked together and are compiled only after checking

363

the whole cluster. For compilation, we use Harpy7, a Haskell library for run-
time code generation. It allows to write x86 machine code into memory buffers,
and to directly execute it without external tools.

As soon as type checking is completed, the code of the whole checked Ulysses
file is located in the Harpy code buffer and could be dumped to an object file.
However, this is not yet implemented.

7.2 Copy-On-Write

In Sect. 5.3, we had to save the machine state as a context Γ for each case analysis
of a free variable. This is no problem for the registers and stacks, as they are
fairly small. The heap, however, can be quite large, so unnecessary copies should
be avoided when possible. Therefore, we use a copy-on-write approach. Instead of
making a copy of the heap, we use the memory management unit to write protect
the heap. When the running program tries to modify the heap, a segmentation
violation signal is raised. This is handled by making a copy and releasing the
protection of the affected page, so only modified pages have to be copied.

8 Related Work

Our work is a transfer of the approach of Grégoire and Leroy [2, 5] from the
strict ZAM abstract machine to the lazy STG machine. Therefore, the readback
function had to be adopted. For free variable applications and constructor appli-
cations, the eager evaluation strategy resulted in completely evaluated construc-
tor arguments, which can be simply read back by R, while we need a recursive
call to the weak evaluator.

The implementation of free variables is quite different than described in [2].
The main reason for these differences lies in the different underlying abstract ma-
chines, mainly the uniform handling of constructor and function closures which
are both entered, which is quite specific to the STG machine.

In [8] Crégut presents an abstract machine for strong normalization of λ
terms. It differs from ours and Grégoire’s in the missing distinction of weak
evaluation and readback. This might be faster when reducing to normal forms,
but precludes the improvements of Sect. 6.

Another related line of research is partial evaluation, most closely proba-
bly type-directed partial evaluation introduced by Danvy in [9]. This evaluator
generates constructors expressions for free variables not only when they are scru-
tinized in case expressions, but whenever functions take arguments of disjoint
sum types. Therefore our implementation deals better with recursive data types.

9 Conclusion and Future Work

Ulysses is a prototype of a language with dependent types, that uses compiled
code during type checking where interpreters are used traditionally. Even though
7 http://uebb.cs.tu-berlin.de/harpy

364

it misses some features that constitute a complete programming language, as e. g.
garbage collection and a module system, it shows the feasibility of our approach.

First experiments suggest, that the performance gain is as expected when
switching from an interpreted to a compiled system, but further benchmarks
have to be done. This is complicated by the fact that it is not at all clear how a
reasonable benchmark for a type checker should look like.

The bisimilarity check (cf. Sect. 6.2) allows to deal with recursive types that
have no normal form, but not all type equivalences can be detected this way.
While it works for many types, as natural numbers, lists and vectors, it needs a
great deal of knowledge of system internals to find the reasons why it does not
work in some circumstances, leading to a nonterminating type check. A topic for
future research is finding a simple criterion which recursive types can be proven
equal by bisimilarity after a finite number of reduction steps. Alternatively, in-
tegrating an explicit fixpoint operator, as in [2], should improve the situation.

Several optimization techniques for STG code are known. While we believe
that most of such techniques can be used in our settings, a closer look is necessary
to find possible interactions with the readback scheme and the interpretation of
final machine states, as well as with the implementation of free variables.

To be assured that Ulysses is indeed a type safe language, we plan to for-
malize our reduction and readback scheme and prove its correctness.

References

1. Augustsson, L.: Cayenne – a language with dependent types. In: ICFP ’98: Pro-
ceedings of the third ACM SIGPLAN International Conference on Functional Pro-
gramming, ACM Press (1998) 239–250

2. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: ICFP
’02: Proceedings of the seventh ACM SIGPLAN International Conference on Func-
tional Programming, ACM Press (2002) 235–246

3. Peyton Jones, S.L.: Implementing lazy functional languages on stock hardware:
The spineless tagless G-machine. Journal of Functional Programming 2(2) (1992)
127–202

4. Peyton Jones, S.L.: The Implementation of Functional Programming Languages
(Prentice-Hall International Series in Computer Science). Prentice-Hall (1987)

5. Grégoire, B.: Compilation des termes de preuves: un (nouveau) mariage entre Coq
et Ocaml. Thése de doctorat, spécialité informatique, Université Paris 7, école
Polytechnique, France (2003)

6. Coquand, T.: An algorithm for type-checking dependent types. Science of Computer
Programming 26(1-3) (1996) 167–177

7. Park, D.: Concurrency and automata on infinite sequences. In: Proceedings of the
5th GI-Conference on Theoretical Computer Science, Springer-Verlag (1981) 167–
183

8. Crégut, P.: An abstract machine for lambda-terms normalization. In: LFP ’90:
Proceedings of the 1990 ACM conference on LISP and functional programming,
ACM Press (1990) 333–340

9. Danvy, O.: Type-directed partial evaluation. In: POPL ’96: Proceedings of the
23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
ACM Press (1996) 242–257

365

HW-Hume in Isabelle

Chunxu Liu and Greg Michaelson

School of Mathematical and Computer Science
Heriot-Watt University, Riccarton, Scotland.

Email: {chunxu,greg}@macs.hw.ac.uk

Abstract. HW-Hume is the decidable Hume level oriented to direct implemen-
tation in hardware. As a first stage in the development of a verified compiler
from HW-Hume to Java, we have implemented the semantics of HW-Hume in
the Isabelle/HOL theorem prover, enabling the automatic proof of correctness of
programs in a Floyd/Hoare style.

1 Introduction

A verifiedcompiler gives guarantees that compilation preserves meaning from source
to target, but not that the source program satisfies its specification. That is, given:

MS : S→ D - meaning of source programs in languageS
MT : T → D - meaning of target programs in languageT
CS−T : S→ T - compiler fromS to T

whereD is some domain of meanings, we wish to guarantee for programPS in source
languageS that:

MT (C(PS)) = MS(PS)
In contrast, a verifying compiler gives guarantees that a source program satisfies its

specification, but not that the target is a true translation of the source.
Verified compilation has a long but surprisingly thin pedigree, since McCarthy and

Painter’s seminal work 40 years ago for arithmetic expressions[MP67]. They defined
very simple source and target languages and their semantics, gave rules from source to
target and proved them correct. Almost all subsequent work has followed this basic ap-
proach. However, where McCarthy and Painter used an ad hoc notation and constructed
proofs by hand, there has been a growing trend to the use of formal, and possibly exe-
cutable, notations, and of automated theorem proving technology.

Palsberg[Pal92] designed, implemented and proved the correctness of a compiler
generator, called Cantor, that accepts action semantic descriptions.

Stepney[Ste93] discusses compilation from the simple high-level imperative source
language Tosca to the low level target language Aida. Prologand Z are used as the meta-
languages to define the denotational semantics of both Toscaand Aida, with translation
templates from each source language syntax structure to theequivalent target language
structure. While this highly ambitious work for an industrial client, used executable
notations to deliver a working verified compiler, almost allproofs were conducted
painstakingly by hand.

Stringer-Calvert[SC98] extends Stepney’s work in his PhD thesis, presenting an
overview of the development of a demonstrably correct compiler by what he terms the

366

DCC method, which has three components: Specification, Implementation and Proof.
The correctness of the DCC compiler is proved mechanically,using PVS[SF06]. of
programming language, and targets used an abstract RISC machine language.

Curzon[Cur92,Cur94] presents a formal machine-checked verification of a simple
compiler specification using the HOL[GM93] theorem prover,thus combining a unitary
notation and proof tool. He has implemented a tool that executes the verified compiler
specification using formal proof. He also discusses bootstraping a correct compiler im-
plementation.

Most recently, Klein and Nipkow[KN06] have used Isabelle/HOL[NPW02] to prove
the correctness of a compiler from the Java subset Jinja to JVM code.

We are exploring the development of a provably correct or verified compiler from
HW-Hume[MH04,MHS05], the decidable but impoverished Humelayer oriented to
hardware realisation, to Java. We have already constructeda prototype HW-Hume to
Java compiler, discussed in[LM04].

While our work is are strongly influenced by Stepney, and by Klein and Nipkow,
there are important differences. Where Stepney proved correctness via denotational se-
mantics, we intend to use an operational semantics. While this enables us to retain close
correspondence with our prototype HW-Hume to Java compiler, proofs may be longer
than for denotational semantics, as operational semanticsincludes considerably more
detail of evaluation. Similarly, Klein and Nipkow use Isaballe to also prove that source
programs are well formed and type correct. We are only concerned with proving the
correctness of translation and assume that some prior analysis has established other
properties.

As a vital core stage in our work, we have embedded the semantics of HW-Hume in
Isabelle, enabling proof of correctness. In the following sections we provide overviews
of HW-Hume and it semantics, and of Isabelle/HOL. We then present the realisation of
the HW-Hume semantics in Isabelle/HOLs, and discuss the proof of correctness of two
HW-Hume exemplars. Finally, we consider how we intend to complete our formally
verified HW-Hume to Java compiler.

2 HW-Hume Semantics

2.1 HW-Hume Abstract Syntax

Figure 1 shows the abstract syntax of HW-Hume. A HW-Hume program is built from
one or more box(s), one or more wire(s) and optional initial declarations, const declara-
tions and type declarations. The program execution is independent of the order of box,
wire and init declarations.

2.2 HW-Hume Execution Model

Figure 2 shows the HW-Hume execution model which is based on non-terminating,
round-robin, one-shot scheduling of boxes.

367

prog ::= decl1 ′′;′′ ...′′;′′ decln n ≥ 1
decl ::= box | wire | init | constdecl| typedecl
box ::= ′′box′′ boxid ins outs′′match′′ matches
ins/outs ::= (ioid1 :: type1, ...ioidn :: type1) n ≥ 1
matches ::= match1 ′′|′′ ... ′′ |′′ matchn n ≥ 1
match ::= patt ′′−>′′ expr
wire ::= ′′wire′′ link1

′′to′′ link2

init ::= link ′′=′′ value
link ::= boxid ′′.′′ ioid
constdecl::= constid ′′=′′ value
typedecl ::= typeid ′′=′′ type
patt ::= intliteral | ∗ | | ∗ | varid | (patt,patt)
expr ::= intliteral | ∗ | varid | (expr,expr)
val ::= intliteral | (val,val)
type ::= int | typeid | (type,type)

Fig. 1. HW-Hume Abstract Syntax

for each box
state← RUNNABLE

forever
for each box

if state != BLOCKED then
state← MATCHFAIL
for each match

if some pattern matches input values then
consume values from input wires
evaluate associated expression
generate output wires
state← SUCCESS
stop match loop

for each box
if state!=MATCHFAIL then

if output wires can be established to their input wires then
establish output wiress
state← RUNNABLE

else
state← BLOCKED

Fig. 2. HW-Hume Execution Model

368

3 Isabelle Overview

Isabelle is a popular generic interactive theorem prover which supports a variety of
logics. Isabelle/HOL[NPW02] is the specialization for HOL(Higher-Order Logic) that
is based on Gordon’s HOL system[GM93], which itself is basedon Church’s original
paper[Chu40]. As Tobias Nipkow[NPW02] said:

HOL = Functional Programming+ Logic

Isabelle conforms largely to standard mathematical notation. As a generic proof assis-
tant for logic, Isabelle is a powerful system for implementing logic formalisms.

Isabelle Proof General is a generic interface for proof assistants in Isabelle which
supports a print mode for X Symbol tokens. In Isabelle, we canwrite

1<ˆbsub>v\<ˆesub> or 1<ˆisub>v or 1<ˆsub>v

In the Isabelle Proof General environment or an Isabelle print document, this will be
displayed as 1v which is easy to read.

In the sequel, we use Isabelle for Isabelle/HOL.
This section introduces Isabelle basic types with their primitive operations and fur-

ther non-standard notation.

base types:

– bool— the type of truth.
– nat — the type of natural numbers.

constructor types:

– list — the type of lists with the type′a list. nat list means that every element of list
has the typenat. Empty list is []. The infix operator @ concatenates two lists. The
infix operator # inserts a element to the beginning of a list.xs!n is the nth-element
of xs(starting with 0).

– set— the type of sets with the type′a set. nat setmeans that every element of the
set has the typenat. Empty set is{}. We write∅ instead of{} for friendly reading.

– option— defined by
datatype ′a option= None| Some′a
It adjoins a new elementNoneto a type ′a. We write ⌊x⌋ instead ofSome xfor
succinctness.the⌊x⌋ = x, wherethe is a function.

– Pairs— ordered pairs. (a1, a2) is of typeτ1 × τ2, wherea1 is of typeτ1 anda2 is of
typeτ2. fst(a1, a2) = a1, snd(a1, a2) = a2, wherefst andsndare functions.

– Tuples— defined byPairsnested. (a1, a2, a3) stands for (a1, (a2, a3)). So
fst(a1, a2, a3) = a1, fst(snd(a1, a2, a3)) = a2.

function types:

– total function— denoted by⇒. Like SML, τ1 ⇒ τ2 ⇒ τ3 meansτ1 ⇒ (τ2 ⇒ τ3).
[τ1, τ2, ..., τn] ⇒ τ is abbreviation ofτ1 ⇒ τ2 ⇒ ... ⇒ τn ⇒ τ. Its update is
f (x := y) where f :: ′a⇒ ′b, x with type ′a andy with type ′b.

369

– partial function— defined by′a⇒ ′b option. Nonerepresents undefinedness,
f x=⌊x⌋means thatx is mapped toy. The domain off is defineddom f ≡ {a | f x ,
None}. We write ′a⇀ ′b instead of′a⇒ ′b option. emptyis defined byλx.None.
Its updates isf (x := ⌊y⌋). We abbraviatef (x := ⌊y⌋) to f (x 7→ y). Such functions
are called maps. The infix operator++ overwrites mapm1 with m2.
i.e.m1 ++ m2 ≡ λx. case m2 x o f None⇒ m1 x | ⌊y⌋ ⇒ ⌊y⌋

– Inductive definitions— a method to define a function. In fact, a function from set
A to setB is defined by a relation setC ⊆ A× B when setC satisfies some proper-
ties. Many datatype are inductive defined. A structural oprational semantics[Hen90]
is inductive definition of an evaluation relation. The inductive definitions[Acz77]
specifies the least setR closed under given collection rules. Applying a rule to el-
ements ofR yields a result withinR. Milner[Mil80] implemented one of the first
inductive definitions. Isabelle provides commands for formalizing inductive defi-
nitions. Paulson[Pau00] proved a fixedpoint with inductivedefinitions in Isabelle.
Klein and Nipkow[KN06] inductively defined Jinja semanticsand proved correct-
ness of Jinja compiler. We mainly present HW-Hume semanticswith inductive def-
initions.

type variables:denoted by′a, ′b etc. Like SML, they give rise to polymorphis types.

inference rule: A1 =⇒ A2 =⇒ A3 meansA1 =⇒ (A2 =⇒ A3).
~A1; A2; ...; An� =⇒ A is abbreviation ofA1 =⇒ (A2 =⇒ (... =⇒ (An =⇒ A)...)).
It means “IfA1 andA2 and ... andAn thenA”.
i.e. inference rule

A1 A2 ... An

A

4 HW-Hume Semantics in Isabelle

4.1 HW-Hume Abstract Syntax in Isabelle

Figure 3 shows the abstract syntax of HW-Hume in Isabelle. After precompilation, all
constid in const declarations are replaced by their values,and all typeid in type decla-
rations are replaced by their types. The program execution is independent of the order
of box and wire declarations. So we define a HW-Hume program as
“ types HProg= HBox list× HWire list”
“HInit list” is initial values. A box comprises a boxid, a series of inputs, a series of
outputs and a series of matches. Hence we define a box as
“ types HBox= BName× HIO list × HIO list × HMatch list”
The firstHIO list is for input and the second is for output.

4.2 HW-Hume States

Figure 4 shows the definition of the HW-Hume states — dynamic environment. Each
box in a HW-Hume program has its own input and output. We definehLocation =
INOUT × BName× LName) to denote them. The states is a map from hLocation to

370

types BName= string -- "names for box"

types LName= string -- "names for io (link)"

types VName= string -- "names for variable"

datatype HP = I | W | WI -- "ignore,wild,wild ignore."

| HPInt int -- "nat value"

| HPVar VName -- "variable"

| HPPair HP HP -- "pair"

datatype HE = I -- "ignore"

| HEInt int -- "int value"

| HEVar VName -- "variable"

| HEPair HE HE -- "pair"

datatype HV = HVInt int -- "int value"

| HVPair HV HV -- "pair"

datatype HT = Z -- "nat"

| HTPair HT HT -- "pair"

types HIO = LName× HT
types HMatch= HP× HE
types HBox = BName× HIO list × HIO list × HMatch list
types HWire = (BName× LName) × (BName× LName)
types HProg = HBox list× HWire list
types HInit = BName× LName× HV

Fig. 3. HW-Hume Abstract Syntax

value. At the end of each cycle, a HW-Hume program checks the wire of each box’s
output and try to transfer their values to some box’s input. If there is an output which
cannot be transferred into a box, that box is blocked. Conversely, if an output is still
mapped to a value, that box is blocked. We define a functionBnoEmptyto check if
a box is blocked or not. The functionInit hStetesets the initial states. The function
UpdateSupdates state by transferring each box’s output which can betransferred to its
target.

4.3 HW-Hume Big Step Semantics

We next present the HW-Hume big step semantics in inductive definitions judgement
form.

Cycles is the top-step of running a Hume program. Its goal is to run all boxesN
times in repeated cycles. When all cycles finish, the programhalts. The global states
(hState) identify the program states.

We useRCdefined in Figure 5 as a running result. The possible results of RunCare
error (Cer hErr) or success. When success, the result isCs hState.

We inductively defineRunCas well. TheRunC Bis the least relation set closed
under given rules below.

We define theRunCjudgement formP ⊢c 〈n, s〉 ⇒ 〈rc〉. This is an abbreviation of
(n, s, rc) ∈ RunC P. TheP has typeHProg; n has typehCNum; rc has typeRC.

We defineCycleinduction rules below.

371

Global State:
datatype INOUT = LI | LO
types hLocation = INOUT × BName× LName
types hState = hLocation⇀ HV
Local State:
datatype hErr = MPVer | MIPer | EEer | MOEer
types hVar = VName⇀ HV
types hCNum = nat
Running Result States
datatype RC = Cer hErr | Cs hState Run Cycles (RunC)
datatype RB = Ber hErr | Bs hState Run Box and Boxes (RunB, RunBL)
datatype RM = Mer hErr | Ms hState Run Match (RunM)
datatype MIP = IPer hErr | IPf | IPs hState× hVar Match in to pattrn (MatchIP)
datatype MPV = PVer hErr | PVf | PVs hVar Match pattrn to value (MatchPV)
datatype EE = Eer hErr | Es HE Evalate expression (EvalE)
datatype MOE = OEer hErr | OEs hState Match out to expression (MatchOE)

Fig. 4. HW-Hume State

– C0 s — Running a program 0 time, i.e. 0 cycle.s is not changed.

n = 0
P ⊢c 〈n, s〉 ⇒ 〈Cs s〉

– C1 e — CallingRunBLerror, so running a program 1 cycle error.

n = 1 ⊢bl 〈P2BL P, s〉 ⇒ 〈Ber er〉
P ⊢c 〈n, s〉 ⇒ 〈Cer er〉

– C1 s — CallingRunBLsuccess, running a program 1 cycle success.

n = 1 ⊢bl 〈P2BL P, s〉 ⇒ 〈Bs s′〉 s′′ = U pdateS s′ P
P ⊢c 〈n, s〉 ⇒ 〈Cs s′′〉

– C R e — More than one cycle, recursive, the first cycle error.

n > 1 P ⊢c 〈1, s〉 ⇒ 〈Cer er〉
P ⊢c 〈n, s〉 ⇒ 〈Cer er〉

– C R — More than one cycle, recursive, the first cycle is success.Result depends on
remaining cycles.

n > 1 P ⊢c 〈1, s〉 ⇒ 〈Cs s′〉 n′ = n− 1 P ⊢c 〈n′, s′〉 ⇒ 〈rc〉

P ⊢c 〈n, s〉 ⇒ 〈rc〉

We show below the result theorems:
theoremEvalE Result: bn, s, lv ⊢e 〈e〉 ⇒ 〈ee〉 =⇒

(ee= Eer EEer) ∨ (∃es.(ee= Es es) ∧ (HEhasVar es= False))

372

constsRunC :: HProg⇒ (hCNum× hState× RC) set
syntax RunC:: HProg⇒ hCNum⇒ hState⇒ RC⇒ bool

(⊢c 〈 , 〉 ⇒ 〈 〉 [0,0, 0,0] 81)
translations P ⊢c 〈n, s〉 ⇒ 〈rc〉 ⇋ (n, s, rc) ∈ RunC P
constsRunBL :: (HBox list × hState× RB) set
syntax RunBL:: HBox list ⇒ hState⇒ RB ⇒ bool

(⊢bl 〈 , 〉 ⇒ 〈 〉 [0, 0,0] 81)
translations ⊢bl 〈bl, s〉 ⇒ 〈rb〉 ⇋ (bl, s, rb) ∈ RunBL
constsRunB :: HBox⇒ (hState× RB) set
syntax RunB:: HBox⇒ hState⇒ RB⇒ bool

(⊢b 〈 〉 ⇒ 〈 〉 [0,0, 0] 81)
translations B ⊢b 〈s〉 ⇒ 〈rb〉 ⇋ (s, rb) ∈ RunB B
constsRunM :: BName⇒ LName list⇒ LName list⇒

(HMatch list × hState× RM) set
syntax RunM :: BName⇒ LName list⇒ LName list⇒

HMatch list⇒ hState⇒ RM⇒ bool
(, , ⊢m 〈 , 〉 ⇒ 〈 〉 [0,0,0, 0,0, 0] 81)

translations bn, ilnl ,olnl ⊢m 〈ml, s〉 ⇒ 〈rm〉 ⇋ (ml, s, rm) ∈ RunM bn ilnl olnl
constsMatchIP :: BName⇒

(LNname list× HP× hState× hVar×MIP) set
syntax MatchIP :: BName⇒

(LNname list⇒ HP⇒ hState⇒ hVar⇒ MIP⇒ boot
(⊢i−p 〈 , , , 〉 ⇒ 〈 〉 [0, 0,0, 0,0, 0] 81)

translations bn ⊢i−p 〈ilnl ,p, s, lv〉 ⇒ 〈mip〉 ⇋ (ilnl ,p, s, lv,mip) ∈ MatchIP bn
constsMatchPV :: (HP× HV× hVar×MPV) set
syntax MatchPV :: HP⇒ HV⇒ hVar⇒ MPV⇒ bool

(⊢p−v 〈 , , 〉 ⇒ 〈 〉 [0,0,0, 0] 81)
translations ⊢p−v 〈p, v, lv〉 ⇒ 〈mpv〉 ⇋ (p, v, lv,mpv) ∈ MatchPV
constsEvalE :: BName⇒ hState⇒ hVar⇒ (HE× EE) set
syntax EvalE :: BName⇒ hState⇒ hVar⇒ HE⇒ EE⇒ bool

(, , ⊢e 〈 〉 ⇒ 〈 〉 [0, 0,0, 0,0] 81)
translations bn, s, lv ⊢e 〈e〉 ⇒ 〈ee〉 ⇋ (e, ee) ∈ EvalE bn s lv
constsMatchOE :: BName⇒ (LName list× HE× hState×MOE) set
syntax MatchOE:: BName⇒ (LName list× HE× hState×MOE⇒ bool

(⊢o−e 〈 , , 〉 ⇒ 〈 〉 [0,0, 0,0, 0] 81)
translations bn ⊢o−e 〈olnl,e, s〉 ⇒ 〈moe〉 ⇋ (olnl,e, s,moe) ∈ MatchOE bn

Fig. 5. Inductive Definitions and Judgement Forms

373

theoremMatchOE Result: bn ⊢o−e 〈olnl, e, s〉 ⇒ 〈moe〉 =⇒
(moe= OEer MOEer) ∨ (∃oes.(moe= OEs oes))

theoremMatchPV Result: ⊢p−v 〈p, v, lv〉 ⇒ 〈mpv〉 =⇒
(mpv= PVer MPVer) ∨ (mpv= PVf) ∨ (∃lv′.(mpv= PVs lv′))

theoremMatchIP Result: bn ⊢i−p 〈ilnl , p, s, lv〉 ⇒ 〈mip〉 =⇒
(mip= IPer MPVer) ∨ (mip= IPer MIPer) ∨ (mip= IPf) ∨ (∃ips.(mip= IPs ips))

theoremRunM Result: bn, ilnl , olnl ⊢m 〈ml, s〉 ⇒ 〈m〉 =⇒ (∃pls.(m= Ms pls))∨
(m= Mer MPVer) ∨ (m= Mer MIPer) ∨ (m= Mer EEer) ∨ (m= Mer MOEer)

theoremRunB Result: B ⊢b 〈s〉 ⇒ 〈rb〉 =⇒ (∃bs.(rb = Bs bs))∨
(rb = Ber MPVer) ∨ rb = Ber MIPer) ∨ rb = Ber EEer) ∨ rb = Ber MOEer)

theoremRunBL Result: ⊢bl 〈bls〉 ⇒ 〈rb〉 =⇒ (∃bs.(rb = Bs bs))∨
(rb = Ber MPVer) ∨ rb = Ber MIPer) ∨ rb = Ber EEer) ∨ rb = Ber MOEer)

theoremRunC Result: P ⊢c 〈n, s〉 ⇒ 〈rc〉 =⇒ (∃s′.(rc = Cs s′))∨
(rc = Cer MPVer) ∨ rc = Cer MIPer) ∨ rc = Cer EEer) ∨ rc = Cer MOEer)

5 Proving HW-Hume Program Correctness

Now, we prove two HW-Hume programs correct from the HW-Hume semantics in Is-
abelle.

5.1 Proving Swap

The first example is “Swap” which is very simple. There is only one box and one wire.
The box Swap’s out(“o”) is a link to its in(“i”). The “Swap.o” and “Swap.i” are tuples.
The matching rule “(x,y) -> (y,x)” will swap the values of “Swap.i”. Figure 6 depicts
the following code:

box Swap

in (i::(Bit,Bit))

out (o::(Bit,Bit))

match

(x,y) -> (y,x);

wire Swap

(Swap.o initially (0,1))

(Swap.i);

With our HW-Hume abstract syntax in Isabelle, this program is presented as:
constdefs Swap P :: HProg
Swap P ≡
(

[(∗ Box ∗)
(
′ ′Swap′ ′,
[(′ ′i ′ ′, (NAT,NAT)t)], (∗ in ∗)
[(′ ′o ′ ′, (NAT,NAT)t)], (∗ out ∗)

374

o

swap

(x,y) −> (y,x)

i

Fig. 6. Swap Diagram

[
((′ ′x ′ ′pv,

′ ′y ′ ′pv)p, (′ ′y ′ ′ev,
′ ′x ′ ′ev)e)

]
)

],
[(∗ Wire ∗)

((′ ′Swap′ ′, ′ ′o ′ ′), (′ ′Swap′ ′, ′ ′i ′ ′))
],

)
constdefs Swap Init :: HInit list
Swap Init ≡
(

[(∗ Init ∗)
((′ ′Swap′ ′, ′ ′i ′ ′, (0v, 1v)v)

]
)

After initialisation, “Swap.i” has value “(0,1)”. After running box “Swap” once,
“Swap.o” got value “(1,0)”. Then, at the end of the cycle, it will be transfered to
“Swap.i”. So before the second cycle, “Swap.i” has value “(1,0)”. Before the third cycle,
“Swap.i” has value “(0,1)”, and so on.

In Isabelle, the global states of HW-Hume is defined ashState= hLocation⇀ HV.
We can get the initial state by applying functionInit hStateto Swap Init. We define
two states:
constdefs Swap S0:: hState

Swap S0≡ empty((LI, ′ ′Swap′ ′, ′ ′i ′ ′) 7→ (0v, 1v)v)
constdefs Swap S1:: hState

Swap S1≡ empty((LI, ′ ′Swap′ ′, ′ ′i ′ ′) 7→ (1v, 0v)v)
Simply, we have a lemma:

lemma SwapInit: Init hState SwapInit = Swap S0
i.e.Swap S0equals the initial state.

With our inductive defined HW-Hume semantics in Isabelle, weprove below lem-
mas by recursively calling inductive rules.

375

lemma Swap S0 Cycle 0 : Swap P ⊢c 〈0,Swap S0〉 ⇒ 〈Cs SwapS0〉
lemma Swap S1 Cycle 0 : Swap P ⊢c 〈0,Swap S1〉 ⇒ 〈Cs SwapS1〉
lemma Swap S0 Cycle 1 : Swap P ⊢c 〈1,Swap S0〉 ⇒ 〈Cs SwapS1〉
lemma Swap S1 Cycle 1 : Swap P ⊢c 〈1,Swap S1〉 ⇒ 〈Cs SwapS0〉
lemma Swap S0 Cycle 2 : Swap P ⊢c 〈2,Swap S0〉 ⇒ 〈Cs SwapS0〉
lemma Swap S1 Cycle 2 : Swap P ⊢c 〈2,Swap S1〉 ⇒ 〈Cs SwapS1〉

Finally, we have a theorem:
theorem Swap Cycles:

Swap P ⊢c 〈2 ∗ n, Init hState SwapInit〉 ⇒ 〈Cs SwapS0〉
Swap P ⊢c 〈2 ∗ n+ 1, Init hState SwapInit〉 ⇒ 〈Cs SwapS1〉
Based on theoremSwap Cycles, when we runSwap2∗n times, “Swap.i” has value

“(0,1)”; when we runSwap2 ∗ n+ 1 times, “Swap.i” has value “(1,0)”.

5.2 Proving Adder

The second example is “Adder”. There are three boxes and four wires. The box “gen”
outputs from “(0,0,0)” to “(1,1,1)” in each cycle repetitively. This output (“gen.t”) is
linked to the in of box “adder”. Matching rules of the box “adder” calculate full bit
addition of “adder.i” by truth table. The result “adder.o” will be transfered to box “out-
put”. In the original version, the “output” is standard output. Because we cannot at
present accommodate I/O in our semantics in Isabelle, we simulate standard output by
box “output.

In each cycle, “gen.t” is a value from “(0,0,0)” to “(1,1,1)”. At the end of a cycle,
the value is transferred to “adder.i”. On the next cycle, the full bit addition is stored in
“adder.o”. At the end of the cycle, the value is transferred to “output.i”. Then in the
third cycle, the box “output” throws it away. Figure 7 depicts the following code:

box gen

in (i::(Bit,Bit,Bit))

out (o::(Bit,Bit,Bit), t::(Bit,Bit,Bit))

match

(0,0,0) -> ((0,0,1),(0,0,0)) |

(0,0,1) -> ((0,1,0),(0,1,0)) |

(0,1,0) -> ((0,1,1),(1,0,0)) |

(0,1,1) -> ((1,0,0),(1,1,0)) |

(1,0,0) -> ((1,0,1),(0,0,1)) |

(1,0,1) -> ((1,1,0),(0,1,1)) |

(1,1,0) -> ((1,1,1),(1,0,1)) |

(1,1,1) -> ((0,0,0),(1,1,1));

box adder

in (i::(Bit,Bit,Bit))

out (o::(Bit,Bit))

match

(0,0,0) -> (0,0) |

376

(0,1,0) -> (1,0) |

(1,0,0) -> (1,0) |

(1,1,0) -> (0,1) |

(0,0,1) -> (1,0) |

(0,1,1) -> (0,1) |

(1,0,1) -> (0,1) |

(1,1,1) -> (1,1) ;

box output

in (i::Bit, eat::(Bit,Bit))

out (o::Bit)

match

(*,eat) -> (*);

wire gen (gen.o initially (0,0,0)) (gen.i, adder.i trace);

wire adder (gen.t) (output.eat trace);

wire output (output.o, adder.o) (output.i);

With our HW-Hume abstract syntax in Isabelle, this program is presented as:
constdefs Adder P :: HProg
Adder P ≡

(
[(∗ Box ∗)

(
′ ′gen′ ′,
[(′ ′i ′ ′, (NAT,NAT,NAT)t)], (∗ in ∗)
[(′ ′o ′ ′, (NAT,NAT,NAT)t), (′ ′t ′ ′, (NAT,NAT,NAT)t)], (∗ out ∗)
[

((0p, 0p, 0p)p, ((0e, 0e, 1e)e, (0e, 0e, 0e)e)e),
...

((1p, 1p, 1p)p, ((0e, 0e, 0e)e, (1e, 1e, 1e)e)e)
]

),
(
′ ′adder′ ′,
[(′ ′i ′ ′, (NAT,NAT,NAT)t)], (∗ in ∗)
[(′ ′o ′ ′, (NAT,NAT)t)], (∗ out ∗)
[

((0p, 0p, 0p)p, (0e, 0e)e),
...

((1p, 0p, 0p)p, (1e, 0e)e),
...

]
),
(
′ ′output′ ′,

377

(*, eat) −> (*)

gen

(i) −> (o, t)

adder

output

(i) −> (o)

Fig. 7. Adder Diagram

378

[(′ ′i ′ ′, NAT), (′ ′eat′ ′, (NAT,NAT)t)], (∗ in ∗)
[(′ ′o ′ ′, NAT)], (∗ out ∗)
[

((HP.I, ′ ′eat′ ′pv)p, HE.I)
]

)
],
[(∗ Wire ∗)

((′ ′gen′ ′, ′ ′o ′ ′), (′ ′gen′ ′, ′ ′i ′ ′)),
((′ ′gen′ ′, ′ ′t ′ ′), (′ ′adder′ ′, ′ ′i ′ ′)),
((′ ′adder′ ′, ′ ′o ′ ′), (′ ′output′ ′, ′ ′eat′ ′)),
((′ ′output′ ′, ′ ′o ′ ′), (′ ′output′ ′, ′ ′i ′ ′))

],
)
constdefs Adder Init :: HInit list
Adder Init ≡
(

[(∗ Init ∗)
((′ ′gen′ ′,′ ′i ′ ′, (0v, 0v, 0v)v)

]
)

We define global states ofAdderin Isabelle as:
constdefs Adder S0′ :: hState

Adder S0′ ≡ empty(
(LI, ′ ′gen′ ′, ′ ′i ′ ′) 7→ (0v, 0v, 0v)v

)
constdefs Adder S0:: hState

Adder S0≡ empty(
(LI, ′ ′gen′ ′, ′ ′i ′ ′) 7→ (0v, 0v, 0v)v,

(LI, ′ ′adder′ ′, ′ ′i ′ ′) 7→ (1v, 1v, 1v)v,

(LI, ′ ′output′ ′, ′ ′eat′ ′) 7→ (0v, 1v)v

)
constdefs Adder S1′ :: hState

Adder S1′ ≡ empty(
(LI, ′ ′gen′ ′, ′ ′i ′ ′) 7→ (0v, 0v, 1v)v,

(LI, ′ ′adder′ ′, ′ ′i ′ ′) 7→ (0v, 0v, 0v)v

)
constdefs Adder S1:: hState

Adder S1≡ empty(
(LI, ′ ′gen′ ′, ′ ′i ′ ′) 7→ (0v, 0v, 1v)v,

(LI, ′ ′adder′ ′, ′ ′i ′ ′) 7→ (0v, 0v, 0v)v,

(LI, ′ ′output′ ′, ′ ′eat′ ′) 7→ (1v, 1v)v

)

379

...

constdefs Adder S7:: hState
Adder S7≡ empty(

(LI, ′ ′gen′ ′, ′ ′i ′ ′) 7→ (1v, 1v, 1v)v,

(LI, ′ ′adder′ ′, ′ ′i ′ ′) 7→ (1v, 0v, 1v)v,

(LI, ′ ′output′ ′, ′ ′eat′ ′) 7→ (0v, 1v)v

)
With our inductively defined HW-Hume semantics in Isabelle,we prove the follow-

ing lemmas by recursively calling inductive rules.
lemma AdderInit : Init hState AdderInit = Adder S0′

lemma Adder S0′ Cycle 1 : Adder P ⊢c 〈1,Adder S0′〉 ⇒ 〈Cs AdderS1′〉
lemma Adder S1′ Cycle 1 : Adder P ⊢c 〈1,Adder S1′〉 ⇒ 〈Cs AdderS2〉
...

lemma Adder S6 Cycle 1 : Adder P ⊢c 〈1,Adder S6〉 ⇒ 〈Cs AdderS7〉
lemma Adder S7 Cycle 1 : Adder P ⊢c 〈1,Adder S7〉 ⇒ 〈Cs AdderS0〉

Finally, we have a theorem:
theorem Adder Cycles:

Adder P ⊢c 〈0, Init hState AdderInit〉 ⇒ 〈Cs AdderS0′〉
Adder P ⊢c 〈1, Init hState AdderInit〉 ⇒ 〈Cs AdderS1′〉
Adder P ⊢c 〈0+ 8 ∗ (n+ 1), Init hState AdderInit〉 ⇒ 〈Cs AdderS0〉
Adder P ⊢c 〈1+ 8 ∗ (n+ 1), Init hState AdderInit〉 ⇒ 〈Cs AdderS1〉
Adder P ⊢c 〈2+ 8 ∗ n, Init hState AdderInit〉 ⇒ 〈Cs AdderS2〉
Adder P ⊢c 〈3+ 8 ∗ n, Init hState AdderInit〉 ⇒ 〈Cs AdderS3〉
Adder P ⊢c 〈4+ 8 ∗ n, Init hState AdderInit〉 ⇒ 〈Cs AdderS4〉
Adder P ⊢c 〈5+ 8 ∗ n, Init hState AdderInit〉 ⇒ 〈Cs AdderS5〉
Adder P ⊢c 〈6+ 8 ∗ n, Init hState AdderInit〉 ⇒ 〈Cs AdderS6〉
Adder P ⊢c 〈7+ 8 ∗ n, Init hState AdderInit〉 ⇒ 〈Cs AdderS7〉

6 Conclusions

We have presented the embedding of HW-Hume in Isabelle and the proof of correctness
of two programs.

The work discussed here is central to our longer term goal of averified compiler
from HW-Hume to Java. We recently decided to adopt Jinja as the target language, to en-
able an integrated approach in Isabelle. We have also modified our original HW-Hume
to Java compiler to generate Jinja, and are currently formalising the translation from
HW-Hume to Jinja. Time permitting, the next stages would be to embed this formalisa-
tion in Isabelle and to explore automatic support for proof that compilation maintains
semantic consistency.

Acknowlegements

This research is partly supported by EU FP6 EmBounded. We would like to thank our
colleagues in the wider Hume project for valuable discussion.

380

References

[Acz77] P. Aczel. An introduction to inductive definitions.In J. Barwise, editor,Handbook of
Mathematical Logic, pages 739–782. North-Holland, Amsterdam, 1977.

[Chu40] Alonzo Church. A formulation of the simple theory oftypes. Journal of Symbolic
Logic, 5:56–68, 1940.

[Cur92] P. Curzon. Compiler correctness and input/output. Technical report, Computer Labo-
ratory, University of Cambridge, November 1992.

[Cur94] P. Curzon. The Verified Compilation of Vista Programs. Technical report, Computer
Laboratory, University of Cambridge, January 1994.

[GM93] M. J. C. Gordon and T. F. Melham, editors.Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press, New York, NY, USA,
1993.

[Hen90] Matthew Hennessy.The semantics of programming languages: an elementary intro-
duction using structural operational semantics. John Wiley & Sons, Inc., New York,
NY, USA, 1990.

[KN06] Gerwin Klein and Tobias Nipkow. A machine-checked model for a java-like language,
virtual machine, and compiler.ACM Trans. Program. Lang. Syst., 28(4):619–695,
2006.

[LM04] C. Liu and G. Michaelson. Translating Hume to Java. InH-W. Loidl, editor,
Draft Proceedings of 5th Symposium on Trends in Functional Programming, Ludwig-
Maximillian’s Universitat, Munich, Germany, pages 113–128, November 2004.

[MH04] G. Michaelson and Kevin Hammond. The Hume Language Definition and Report,
Version 0.3. Technical report, Heriot-Watt University andUniversity of St Andrews,
2004.

[MHS05] Greg Michaelson, Kevin Hammond, and Jocelyn Sérot. FSM-Hume is finite state. In
Stephen Gilmore, editor,Trends in Functional Programming, Volume 4, volume 4 of
Trends in Functional Programming, pages 19–28. Intellect, 2005.

[Mil80] Robin Milner. How to Derive Inductions in LCF. Edinburgh University Press, U.K.,
1980.

[MP67] J. McCarthy and J. Painter. Correctness of a compilerfor Arithmetic Expressions. In
J. T. Schwarz, editor,Proceedings of Symposium in Applied Mathematics, 19, Mathe-
matical Aspects of Computer Science. American Mathematical Society, 1967.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 ofLNCS. Springer, 2002.
http://www.in.tum.de/˜nipkow/LNCS2283.

[Pal92] J. Palsberg. A provably correct compiler generator. In Proceedings, ESOP ’92, 4th
European Symposium on Programming, Rennes, France, February 1992.

[Pau00] Lawrence C. Paulson. A fixedpoint approach to (co)inductive and (co)datatype defi-
nitions. InProof, language, and interaction: essays in honour of RobinMilner, pages
187–211. MIT Press, Cambridge, MA, USA, 2000.

[SC98] D. W. J. Stringer-Calvert.Mechanical Verification of Compiler Correctness. PhD
thesis, University of York, March 1998.

[SF06] SRI-Formalware.The PVS Specification and Verification System. SRI International
Computer Science Laboratory, 2006.http://pvs.csl.sri.com/.

[Ste93] Susan Stepney.High Integrity Compilation: A Case Study. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1993.

381

Static Contract Checking for Haskell

Dana N. Xu1 and Simon Peyton Jones2 and Koen Claessen3

1 University of Cambridge nx200@cam.ac.uk
2 Microsoft Research Cambridge simonpj@microsoft.com
3 Chalmers University of Technology koen@chalmers.se

Abstract. Program errors are hard to detect and are costly both to
programmers who spend significant efforts in debugging, and to systems
that are guarded by runtime checks. Static verification techniques have
been applied to imperative and object-oriented languages, like Java and
C#, but few have been applied to a higher-order lazy functional language,
like Haskell. In this paper, we describe a sound and automatic static
verification tool for Haskell, that is based on contracts and symbolic
execution. Our approach gives precise blame assignments at compile-
time in the presence of higher-order functions and laziness.

1 Introduction

Program errors are common in software systems, including those that are con-
structed from functional languages. For greater software reliability, such er-
rors should be reported accurately and detected early during program devel-
opment. Contract checking (both static and dynamic) has been widely used in
procedural and object-oriented languages [19,10,4,2]. The difficulty of contract
checking in functional languages lies in the use of higher-order functions. How-
ever, dynamic checking of contracts for higher-order functions has been studied
by [8,3,7,14]. Recently, static pre/postcondition checking [29] as well as hybrid1

contract checking [9,18,17,12] for functional languages have also been proposed.
In this paper, we combine the idea of the contract semantics [3] and the idea

of the static verification through symbolic execution [29] to propose a sound
automatic static contract checking framework for a higher-order lazy functional
language, Haskell. Consider:

f :: [Int] -> Int

f xs = head xs ‘max‘ 0

head :: [a] -> a

head (x:xs) = x

head [] = error "empty list"

If we have a call f [] in our program, its execution will result in the following
error message from the runtime system of the Glasgow Haskell Compiler (GHC):

Exception: Prelude.head: empty list

This gives no information on which part of the program is wrong except that
head has been wrongly called with an empty list. This lack of information is
compounded by the fact that it is hard to trace the function calling sequence at
run-time for lazy languages, such as Haskell.

1 a static contract checking followed by a dynamic contract checking

382

The programmer’s intention is that head should not be called with an empty
list. To achieve this, programmers can give a contract to the function head. Con-
tracts are implemented as pragamas with notation {-# CONTRACT <contract> #-}.

{-# CONTRACT head :: {s | not (null s)} -> {r | True} #-}

where not and null are just ordinary Haskell functions. This places the onus on
callers to ensure that the argument to head satisfies the expected precondition.
With this contract, our compiler would generate the following warning (with a
counter-example) when checking the definition of f:

Warning: f [] calls head

which may fail head’s precondition!

Suppose we change f’s definition to the following:
f xs = if null xs then 0 else head xs ‘max‘ 0

With this correction, our compiler will not give any more warning as the pre-
condition of head is now fulfilled.

Our goal is to detect crashes in a program where a crash is informally defined
as an unexpected termination of a program (i.e. a call to error). Divergence (i.e.
non-termination) is not a crash. We make the following contributions:
– Compared with the dynamic contract checking work by [8,3,14], our system

can detect contract violations early at compile-time.
– Compared with the hybrid contract checking [9,18], we deal with a lazy

language instead of a strict one.
– We allow data constructors to be used in constructing contracts so that

properties of the subcomponents of a data type can be specified (§2.3). This
is not addressed in [8,3,9,18], but in [14].

– Compared with our earlier ESC/Haskell system [29], we can now
• detect and locate bugs more precisely by giving contracts to higher order

function’s parameters which themselves may be functions (§2.1);
• reduce false alarms caused by laziness in an efficient way (§2.2);
• specify pre- and post-condition in a type-like way and allow contract

synonyms to be defined easily (§2.4).
– We develop a concise notation (. and /) for describing contract checking (§5),

which enjoys many useful properties (§5.3). Thus equipped, we give a com-
plete proof of the soundness and completeness of dynamic contract checking
that takes care of laziness; this proof is much trickier than it looks [30]!

We implement the idea in one branch of the GHC, which can accept full Haskell
and also support separate compilation as the verification is modular.

2 Overview

The type of a function constitutes a partials specification to the function. For
example, inc :: Int -> Int says that inc is a function that takes an integer
and returns an integer. A contract of a function gives more detailed specification.
For example: {-# CONTRACT inc :: {x | x > 0} -> {r | r > x} #-} says
that the function inc takes a positive value and returns a value that is greater

383

than the input. A contract can therefore be viewed as a refinement to a type, so
it is also known as refinement type in [11,6,9].

The constraint used in a contract such as {x | x > 0} is an arbitrary boolean-
valued Haskell expression (like λx.x > 0). Programmers do not need to learn a
new language of predicates; instead they can use an arbitrary Haskell expression.
In this section, we give the flavour of contracts with various examples; Section 4
makes contracts precise.

2.1 Contracts for Higher Order Functions

Contract notation is more expressive than the requires, ensures notation used
in the ESC/Haskell [29]. We can give a contract to a parameter of a higher-
order function. This is not expressible in the ESC/Haskell syntax. Consider an
example adopted from [3]:

f1 :: (Int -> Int) -> Int

{-# CONTRACT f1 :: ({x | True} -> {y | y>=0}) -> {r | r>=0} #-}

f1 g = (g 1) - 1

f2 = f1 (\x -> x - 1)

The contract of f1 says that if f1 takes a function, which returns a natural
number when given any integer, the function f1 itself returns a natural number.

The Findler-Felleisen algorithm in [8] (a run-time contract checking algo-
rithm) can detect a violation of the contract of f1, however, it cannot tell that
the argument of f1 in the definition of f2 fails f1’s precondition. On the other
hand, the Sage system [18] (a hybrid contract checking system) can detect the
failure in f2 statically, and can report contract violation of f1 at run-time. Our
system can report both failures at compile-time with the following messages:

Error: f1’s postcondition fails

because (g 1) >= 0 does not imply (g 1) - 1 >= 0

Error: f2 calls f1

which fails f1’s precondition

In theory, the idea in [9] could also detect both failures during compile-time.

2.2 Laziness

Laziness causes false alarms, for example:

fst (a, b) = a

f3 = fst (5, error "f")

Syntactically, the call fst (5, error "f") is unsafe because of the existence
of a call to error. The only static verification tool that caters for laziness is
the ESC/Haskell system [29], which can reduce false alarms due to laziness by
inlining. In the above case, the function fst is inlined, so the call to fst in f3

becomes 5 which is syntactically safe. However, if the size of the lazy function is
big, or the function is recursive, the inlining strategy is not ideal. For example:

384

fstN :: (Int, Int) -> Int

{-# CONTRACT fstN :: ({x | True}, Any) -> {r | True} #-}

fstN (a, b) n = if n>0 then fstN (a+1, b) (n-1)

else a

g2 = fstN (5, error "fstN") 100

We need to inline fstN for 100 times to know g2 is safe.
To reduce the false alarms due to laziness, we introduce a special contract

Any, which every expression satisfies. The contract of fstN says that it does
not care what the second component of the argument is, as long as the first
component is crash-free, the result is crash-free. Here, with the contract Any,
without inlining any function, our system can tell that g2 is safe.

2.3 Contract Constructors

As shown in §2.2, the data constructor (,) may be used in constructing a con-
tract. Programmers may want to give a contract to the sub-components of a
data constructor. For example, we can use the list constructor (:) to create a
contract like this:

{x | x > 0} : {xs | all (< 0) xs}
which says that the first element in the list is positive while the rest are all
negative (where all :: (a->Bool)->[a]->Bool). We can also have this:

{x | x > 0} : {y | y > 0} : Any
which says the first two elements are positive while the rest can be undefined.
In general we allow any user-defined data constructors be used in constructing
a contract.

2.4 Contract Synonym

In previous sections, we use the contract {y | True} at many places. In our
system, we allow programmers to define contract synonyms which are similar to
the idea of type synonyms. Contract synonyms are implemented as pragamas
with notation {-# TYPE <contract synonym> #-}. For example, we may have:

{-# TYPE Ok = {x | True} #-}

{-# TYPE Nat = {x | x >= 0} #-}

{-# TYPE NotNull = {xs | not (null xs)} #-}

{-# CONTRACT head :: NotNull -> Ok #-}

head (x:xs) = x

2.5 The Plan for Verification

It is all very well for programmers to claim that a function satisfies a contract,
but how can we verify that claim statically (i.e. at compile time)? Our overall
plan, which is similar to that of Blume and McAllester [3], is as follows.

385

– Our overall goal is to prove that the program does not crash, so we must
first say what programs are, and what it means to “crash” (§3).

– Next, we give a semantic specification for what it means for a function f to
“satisfy a contract” t, written f ∈ t, in the first place (§4).

– From the definition f = e we form the term e . t pronounced “e ensures t”.
This term behaves just like e except that (a) if e disobeys t then the term
crashes; (b) if the context uses e in a way not permitted by t then the term
loops. The term e . t is essentially the wrapper mechanism first described by
Findler and Felleisen [8], with some important refinements (§5).

– With these pieces in place, we can write down our main theorem (Sec-
tion 5.3), namely that

e ∈ t ⇐⇒ (e . t) is crash-free
We must ensure that everything works properly, even if e diverges, or laziness
is involved, or the contract contains divergent or crashing terms.

– Using this theorem, we may check whether f ∈ t holds as follows: we attempt
to prove that (e . t) cannot crash, regardless of the context in which it is
used. We conduct this proof in a particularly straightforward way: we simply
perform symbolic evaluation of (e . t). If we can simplify the term to a
new term e′, where e′ is syntactically safe — that is, contains no crashes
whatsoever — then we are done. This test is sufficient, but not necessary; of
course, the general problem is undecidable.

3 The Language

The language presented in this paper, named language Hcore, is simply-typed
lambda calculus with case-expression, constructors and integers. In our imple-
mentation, we use the GHC Core Language [24], which is similar to System F
and includes parametric polymorphism, but the language we use here is simpler.

3.1 Syntax
The syntax of our language Hcore is shown in Figure 1. A program is a module
that contains a set of data type declarations, contract specifications and function
definitions. Expressions include integers, variables, type and term abstractions,
type and term applications, constructors and case expressions. We omit local
letrec as well, we only have recursive (or mutually recursive) top-level functions.
Moreover, we treat let-expressions as syntactic sugar: let x = e1 in e2 ≡s

(λx.e2) e1. There are two unusual expressions adopted from [29]:

BAD is an expression that crashes. A program crashes if and only if it evalu-
ates to BAD. For example, a user-defined function error can be defined as:
error s = BAD. A preprocessor ensures that source programs with miss-
ing cases of pattern matching are explicitly replaced by the corresponding
equations with BAD constructs.

UNR (short for “unreachable”) is an expression that gets stuck. This is not con-
sidered as a crash, although execution comes to a halt without delivering
a result. A program that loops forever also does not crash, and does not

386

pgm ∈ Program

pgm ::= def
1
, . . . , def

n

def ∈ Definition

def ::= decl
| f ∈ t Contract attribution
| f −→x = e Top-level definition

decl ∈ Data Type

decl ::= data T −→α = Data type decl
K1

−→τi | · · · | Kn
−→τi Data constructors

a, e, p ∈ Exp Expression

a, e, p ::= n | v | λ(x ::τ).e | e1 e2

| case e0 of alt1 . . . altn Case expression
| K −→e Constructor
| BAD A crash
| UNR Unreachable

alt ::= pt → e Case alternative

pt ::= K
−−−−→
(x ::τ) | DEFAULT Pattern

val ∈ Value

val ::= n | K −→e | λ(x ::τ).e | UNR | BAD

τ ∈ Types

τ ::= Int | Bool | () | . . . Base types
| T −→τ Data type
| τ1 → τ2 Function type
| α Type variable

Fig. 1: Syntax of the language Hcore

deliver a result, so you can think of UNR as a term that simply goes into an
infinite loop.

These two constructs are for internal usage and hidden from programmers. Their
behaviour is made precise by the operational semantics in Figure 2 in §3.2.

The top-level declaration f ∈ t is the claim that f satisfies contract t. We
discuss contracts in §4. We assume all functions and their contracts in a program
are well-typed before being verified. Details of type checking are omitted here,
but can be found in [30].

3.2 Operational Semantics

Our language’s semantics is given by the confluent, non-deterministic rewrite
rules in Figure 2. We use a reduction-rule semantics, rather than (say) a de-

387

Evaluation

(λx.e1) e2 → e1[e2/x] [E-beta]

case Ki
−→yi of {. . . ; Ki

−→xi → ei; . . .} → ei[yi/xi] [E-match1]

case Ki
−→yi of {pti → ei; DEFAULT→ e} → e [E-match2]

BAD e → BAD [E-app1]
UNR e → UNR [E-app2]

case BAD of alts → BAD [E-case1]
case UNR of alts → UNR [E-case2]

e1 → e2

C[[e1]] → C[[e2]]
[E-ctx]

e →∗ BAD

fin e → False
[E-fin1]

e →∗ val 6= BAD

fin e → val
[E-fin2]

Contexts

C ::= [[•]] | C e | e C | λx.C | case C of alts
| case e of {p1 → e1; . . . ; pi → Ci; . . . ; pn → en}

Fig. 2: Semantics of the language Hcore

terministic more machine-oriented semantics, because the more concrete the se-
mantics becomes, the more involved the proofs become too.

The rule [E-beta] performs the standard β-reduction. When a scrutinee of
a case expression is a data constructor that matches one of the patterns, it
is also a redex, shown in the rules [E-match1] and [E-match2]. The group of
rules [E-app1]-[E-case2] deal with the propagation of the exceptional values BAD
and UNR. Whenever the current redex is BAD (or UNR), the evaluation terminates
immediately and the value BAD (or UNR) is returned. Finally, [E-ctx] allows a
rewrite to apply at an arbitrary place, defined by context C.

Evaluation proceeds by repeatedly replacing the current redex with its cor-
responding 1-step reduction until a value is reached. (Note that BAD and UNR are
considered as values.) The relation e1 → e2 performs a single step reduction and
the relation →∗ is the reflexive-transitive closure of →.

The special function fin converts crashing boolean expression to False

shown in [E-fin1] and has no effect on other values shown in [E-fin2]. The fin

is only for internal usage, not exposed to programmers. Moreover, the reduction
rules involving fin are not used in a real execution of a program either, but
very useful in proving our grand theorem (Theorem 1) for crashing contracts. If
a boolean expression in a contract crashes, we say the contract crashes.

3.3 Crashing

A program is correct if and only if the main function in a program does not crash.
Our technique can only guarantee partial correctness: a diverging program does
not crash. We can define a diverging function like this: bot = bot.

388

Definition 1 (Crashes) A closed term e crashes iff e →∗ BAD.

Definition 2 (Diverges) A closed expression e diverges, written e↑, iff either
e →∗ UNR, or there is no value val such that e →∗ val.

In many cases, the special constructor UNR behaves the same as looping, so it
can be seen as an identifiable divergence. This definition of divergence, which
includes UNR, saves repetition later.

During compile-time, the only way to check the safety of a program is to see
whether the program is syntactically safe.

Definition 3 (Syntactic safety) A (possibly-open) expression e is syntacti-
cally safe iff BAD 6∈ e. Similarly, a context C is syntactically safe iff BAD 6∈ C.

The notation BAD 6∈ e means BAD does not syntactically appear anywhere in e,
similarly for BAD 6∈ C. For example, λx.x is syntactically safe while λx. (BAD, x)
is not. However, in some cases, a syntactically non-safe expression cannot crash
because the BADs in the expression cannot be reached.

Definition 4 (Crash-free Expression) A (possibly-open) expression e is crash-
free iff : ∀C. BAD 6∈ C, ` C[[e]] :: (), C[[e]] 6→∗ BAD

The notation ` C[[e]] :: () means C[[e]] is closed and well-typed. Definition 4 says
that if an expression does not crash in all safe contexts, which are like probes
for BAD, then the expression cannot crash regardless whether there is any BAD

syntactically appearing in it because all of them are unreachable. That means a
crash-free expression may not be syntactically safe, for example:

\x-> case x*x >= 0 of {True -> x+1; False -> BAD}

The tautology x ∗ x >= 0 is always true, so the BAD can never be reached. On
the other hand, (BAD, 3) is not crash-free because there exists a context, fst [[•]],
such that: fst (BAD, 3) → BAD.

In short, crash-freeness is a semantic concept, and hence undecidable, while
syntactic-safety is syntactic and readily decidable. Certainly, a syntactically safe
expression is crash-free.

4 Contract Syntax and Semantics

t ∈ Contract

t ::= {x | p} Predicate Contract
| x : t1 → t2 Dependent Function Contract
| (t1, t2) Tuple Contract
| Any Polymorphic Any Contract

Fig. 3: Syntax of contracts

389

4.1 Syntax

The syntax of contracts is given in Figure 3, which is similar to those in [8,3,9]. A
predicate contract {x | p} can be viewed as a boolean-valued function λx.p where
p is an arbitrary expression in Hcore. We use syntax x : t1 → t2 for a dependent
function contract where x can be used in t2. If x is not used in t2, it can be
omitted. We adopt this notation from [9,1], which is equivalent to Πx : t1 → t2.

In §2, we have seen an example of using tuple contract. We restrict our-
selves to tuple contracts in this paper. In our full implementation, we deal with
arbitrary user-defined data constructor contracts.

We introduce a special polymorphic contract named Any which every expres-
sion satisfies. The any contract in [8,7] corresponds to our {x | True}, which is
different from Any.

4.2 Contract Satisfaction

We give the semantics of contracts by defining e satisfies t (written e ∈ t) in
Figure 4. Since divergence is not considered as a crash, if e↑, then e satisfies all
contracts. The notation, ` e :: τ and `c t :: τ say that both expression e and its
contract t are closed and well-typed (detailed typing rules are in [30]).

Given ` e ::τ and `c t ::τ, we define e ∈ t as follows:

e ∈ {x | p} ⇐⇒ e↑ or (e is crash-free and p[e/x] 6→∗ {BAD, False}) [A1]

e ∈ x : t1 → t2 ⇐⇒ e↑ or ∀e1 ∈ t1. (e e1) ∈ t2[e1/x] [A2]

e ∈ (t1, t2) ⇐⇒ e↑ or (e →∗ (e1, e2) and e1 ∈ t1, e2 ∈ t2) [A3]

e ∈ Any ⇐⇒ True [A4]

Fig. 4: Contract Satisfaction

Predicate Contract In [A1] we say an expression e has contract {x | p}
written e ∈ {x | p}, we mean e either diverges or it is a crash-free expression
e that satisfies the predicate p in the contract. The predicate p may give four
possible outcomes: ↑, True, False and BAD. We consider ↑ and True to be safe
while the outcomes False and BAD to be unsafe. To say e satisfies p, we require
p[e/x] 6→∗ {BAD, False}, which means p[e/x]↑ or p[e/x] →∗ True. If e ∈ {x | p},
the contract {x | p} can be seen as e’s postcondition.

Any crash-free expression satisfies contract {x | True} and {x | e} where
e ↑. For example, λx. x ∈ {x | True} and (3, 5) ∈ {x | True}. Only diverging
expressions satisfy contracts {x | False} and {x | BAD}, for example, UNR, bot ∈
{x | False} and UNR, bot ∈ {x | BAD}.

390

Function Contract In [A2], we expect the expression to evaluate to a lambda-
expression. We say an expression e has dependent function type x : t1 → t2,
when e is applied to any argument e1 that satisfies the contract t1, it produces
a result that satisfies the contract t2[e1/x]. The t1 and t2 themselves can be
function contracts.

If both of them are predicate contracts, t1 is a precondition and t2 is a
postcondition. If the precondition diverges or evaluates to True, we expect the
function body to satisfy the postcondition:

λx. x ∈ {x | bot} → {r | True}
λx. BAD ∈ {x | bot} → Any

λx. BAD 6∈ {x | bot} → {r | True}
If the postcondition diverges, we expect the function body to be crash-free:

λx. x + 1 ∈ {x | True} → {r | bot}
λx. x + 1 6∈ Any→ {r | bot}

In this case, if the argument has contract, {x | True}, we know the it is crash-
free, so x + 1 is crash-free. Since any crash-free expression satisfies {x | bot},
x + 1 satisfies the postcondition. However, if the precondition is Any, it means
BAD could be the argument, and BAD + 1 crashes, then it does not satisfy the
postcondition {x | bot}. Moreover, a lambda-expression satisfies only a function
contract, for example: λx. BAD 6∈ Any and λx. BAD ∈ Any→ Any.

Tuple Contract In [A3], we expect the expression to evaluate to a tuple and
each component satisfies its corresponding contract. A non-crash-free tuple ex-
pression satisfies only a tuple contract. For example:

(BAD, 3) 6∈ {x | (snd x) > 0} (BAD, 3) ∈ (Any, {x | x > 0})
However, we can have: (True, 2) ∈ {x | (snd x) > 0}. This coincides with the
definition in [A1] which requires a crash-free expression.

Any Contract If we only have [A1]-[A3], the expression BAD does not satisfy any
contract because we expect crash-free expressions to satisfy those contracts. In
[A4], we introduce a special contract, named Any which any expression satisfies
including BAD. For example: λx.6 ∈ Any → {x | True}. Due to laziness, even
given an argument that crashes, the function λx.6 returns a crash-free value. In
general, a function, whose return-contract is Any, is a function that crashes. The
function error may have the following contract:

{-# CONTRACT error :: {x | True} -> Any #-}

Furthermore, BAD only satisfies the contract Any because it fails the constraints
stated in [A1]-[A3]. For example: BAD 6∈ (Any, Any) and BAD 6∈ Any→ Any.

4.3 Alternatives

An obvious alternative design choice for contract satisfaction would be to drop
the “e is crash-free” condition in the predicate contract case:

e ∈ {x | p} ⇐⇒ e↑ or p[e/x] 6→∗ {BAD, False}
Then we could get rid of Any, because {x | True} would do instead. On the

391

other hand a polymorphic contract meaning “crash-free” is extremely useful in
practice, so we would probably need a new contract Ok defined thus:

e ∈ Ok ⇐⇒ e↑ or e is crash-free
This all seems quite plausible, but it has a fatal flaw: we could not find a definition
for . that validates our main theorem. That is, our chosen definition for ∈ makes
the forthcoming Section 5 work out, whereas the otherwise-plausible alternative
appears to prevent it doing so.

4.4 Open Expressions and Open Contracts

So far we have only said what it means for a closed term to satisfy a closed
contract. It is easy to extend the definition to open terms and open contracts. A
contract judgement has the form ∆ ` e ∈ t where ∆ is a mapping from variable
to its contract and the definition (i.e. expression) it denotes.

Definition 5 (Contract judgement) We write ∆ ` e ∈ t to mean that e has
contract t assuming that any free variable in e has contract given by ∆ and any
free variable in t has definition given by ∆. Suppose ∆ = {f1 7→ (t1, e1), . . . , fn 7→
(tn, en)}, we have definition:

∆ ` e ∈ t ⇐⇒ λf1.fn.e ∈ t1 → · · · → tn → t

This means, in theory (e.g. in the formalization of the verification), we only need
to deal with closed expressions; in practice (e.g. in our examples), we may refer
to the environment ∆ when necessary.

5 Contract Checking

The goal of contract checking is to check whether the main function satisfies the
contract {x | True}. As mentioned in §2.5, we convert this satisfaction checking
problem to crash-freeness checking problem, by making use of our main theorem:

e ∈ t ⇐⇒ (e . t) is crash-free

Our goal is to define e . t such that Theorem 1 holds.
In fact, we define two expression constructors, e . t and e / t, where e is an

expression and t is a contract. These two forms are not part of the syntax of
expressions (Figure 1); rather they are thought of as macros, which expand to a
particular expression. Informally:

– e . t, pronounced “e ensures t”, crashes if e does not satisfy t.
– e / t, pronounced “e requires t”, crashes if the context does not satisfy t.

The definition of the projection is given in Figure 5. The expression constructors
. and / are dual to each other, so we define e . t and e / t through a combined

constructor: e
r

on t which takes 3 inputs namely e, t and r and produces a term
that behaves like e if e ∈ t; otherwise, it behaves like r or ¬r. The r denotes
a dummy result we would like to give to an expansion. It can be either BAD or

392

r ∈ {BAD, UNR}
¬BAD = UNR ¬UNR = BAD e . t = e

BAD

on t e / t = e
UNR

on t

e
r

on {x | p} = e ‘seq‘case fin p[e/x] of {True→ e; False→ r} [P1]

e
r

on x : t1 → t2 = e ‘seq‘ λv. let {x = (v
¬r

on t1)} in (e x)
r

on t2 [P2]

e
r

on (t1, t2) = case e of {(e1, e2) → (e1

r

on t1, e2

r

on t2)} [P3]

e
r

on Any = ¬r [P4]

Fig. 5: Expression Constructors . and /

UNR, which are complementary to each other as shown in the top-left corner of
Figure 5.

The beauty of the projections lies in [P1] and [P2]. Let us ignore the deco-
ration seq and fin first, and focus on the gist of each projection. In [P1], we
have:

e . {x | p} = case p[e/x] of
True→ e
False→ BAD

e / {x | p} = case p[e/x] of
True→ e
False→ UNR

The e . {x | p} says that if e fails to satisfy the predicate p, it is e’s fault
because we would like e to ensure the property p and we signal this fault with
the BAD. That means if e . {x | p} is crash-free, then the BAD is not reachable so
we know the predicate p is satisfied. On the other hand, the e / {x | p} says that
if e fails to satisfy the predicate p, the rest of the code should be unreachable
because we require the caller of e to have the property p before e is called. In
[P2], we swap the direction of the triangles for the parameter:

e . t1 → t2 = λv. ((e (v / t1)) . t2) e / t1 → t2 = λv. ((e (v . t1)) / t2)

The e.t1 → t2 says that in order to ensure the postcondition to be t2, we require
the argument to satisfy the precondition t1. The e/t1 → t2 says that if the caller
of e (i.e. the argument given to e) cannot ensure t1, the BAD introduced by the
. signals this failure.

It becomes more interesting when we have higher order functions, the direc-
tion of the triangle swaps back and forth:

(λx.e) . (t1 → t2) → t3
= λv1. (((λx.e) (v1 / t1 → t2)) . t3)
= λv1. (((λx.e) (λv2. ((v1 (v2 . t1)) / t2))) . t3)

Recall the higher-order function f1 g = (g 1) - 1 in §2.1, we have:

393

f1 . ({x | True} → {y | y >= 0}) → {r | r >= 0}
= . . .
= λv1. case (v1 1) >= 0 of

True→ case (v1 1)− 1 >= 0 of

True→ (v1 1)− 1
False→ BAD

False→ UNR

As ((v1 1) >= 0) does not imply ((v1 1)− 1 >= 0), the residual BAD indicates a
postcondition failure. This illustrates how we get the first error message in §2.1.
As f1’s definition does not satisfy its contract, at call sites of f1, we only use
its contract. As a result, in f2, as (x − 1 ≥ 0) is not true for all x, we get the
second error message in §2.1.

In [P2], if we inline the let, we have:

e
r

on x : t1 → t2 = e ‘seq‘ λv. ((e (v
¬r

on t1))
r

on t2[(v
¬r

on t1)/x])

We need to guard v by v
¬r

on t1 in the contract t2 if x is used in t2. This is
because we allow partial functions to be used in contracts. Without this guard,
we have:

e
r

on x : t1 → t2 = e ‘seq‘ λv. ((e (v
¬r

on t1))
r

on t2[v/x]) [Q2]
With [Q2], our Theorem 1 does not hold and a counterexample is as follows.

{-# CONTRACT h :: {x | not (null x)} -> {r | head x == r} #-}

h (y:ys) = y

5.1 The Function seq

The function seq is defined as follows:
e1 ‘seq‘ e2 = case e1 of {DEFAULT→ e2}

The function ‘seq‘ ensures two things:

– If e →∗ BAD, and t 6= Any, then e . t →∗ BAD.
– If e↑, then (e . t)↑.

For example, in [P1], if e is UNR and t is {x | False}, without the e ‘seq‘, we have:
(UNR.{x | False}) →∗ BAD which fails the Theorem 1 because UNR ∈ {x | False}
while UNR.{x | False} crashes. For another example, in [P2], the e ‘seq‘ ensures
that BAD 6≡ λx.BAD because BAD denotes a crash while λx.BAD is a value which
will only crash when applied to an argument. Moreover, in [P3], we expect the
expression e to evaluate to a tuple. Recall the example (BAD, 3) 6∈ {x | snd x > 0},
we can verify it by checking crash-freeness of ((BAD, 3) . {x | snd x > 0}) →∗

(BAD, 3) which is not crash-free. Similarly, we can verify that (BAD, 3) ∈ (Any, {x |
x > 0}) as BAD . Any = UNR which is crash-free and (3 . {x | x > 0}) →∗ 3 which
is also crash-free.

5.2 The function fin

The purpose of introducing this special function fin is to deal with crashing
contracts. If we do not convert crashing predicate to False, we cannot prove the

394

Theorem 1, for example: λx.x ∈ {x | BAD} → {x | True} but (λx.x.{x | BAD} →
{x | True}) →∗ λv. v ‘seq‘ BAD, which is not crash-free.

5.3 Properties

We order expressions with a relation named crashes-more-often. The notation
` C[[ei]] :: () means C[[ei]] is closed and well-typed.

Definition 6 (Crashes more often) e1 crashes more often than e2, written
e1 � e2, iff for all contexts C, such that ∀i = 1, 2. ` C[[ei]] :: ()

C[[e2]] →
∗ BAD ⇒ C[[e1]] →

∗ BAD

A lattice for expressions is shown in Figure 6(a). The lower diamond contains all
the crash-free expressions while the upper diamond contains all the expressions
that may crash. A corresponding ordering for contracts is given in Figure 6(b).

UNR

BAD

(3,BAD)

5

\x->x(3, 4)

\x-> 5
{x | True}

{x | x>0}, Any)

({x | x>0}, {r | r>0})

Any

{x | False}

{x | x>0} -> {r | r>0}

Any -> {r | r>0}

(a) lattice for expressions (b) lattice for contracts

Fig. 6: Lattice

The � relation, the satisfaction ∈ and the two constructors . and / enjoy
many nice properties:

Congruence ∀e1, e2. e1 � e2 ⇐⇒ ∀C, fin 6∈ C, C[[e1]] � C[[e2]]
Projection (w.r.t. �,�) If e ∈ t, then (a) e / t � e; (b) e . t � e.
Key Lemma If a closed e is crash-free, then e / t ∈ t.
Monotonicity of ∈ If e1 ∈ t1 and e1 � e2, then e2 ∈ t
Idempotence (a) e . t . t ≡ e . t (b) e / t / t ≡ e / t
Projection Pair ∀e ∈ t. e . t / t � e
Closure Pair ∀e ∈ t. e � e / t . t

These lemmas form a basis for proving our main result:

Theorem 1 (Soundness and Completeness of Contract Checking) For all
closed expression e, closed contract t,

(e . t) is crash-free ⇐⇒ e ∈ t

Theorem 1 is similar to the soundness and completeness theorems in [3]. We
have a proof of the theorem for non-dependent function contracts (i.e. x : t1 → t2
where x is not used in t2), under the assumption that the terms in contracts are
terminating. Diverging contracts are addressed in §6. We have not yet completed
the proof for dependent function contracts.

395

5.4 Soundness of Static Verification

To achieve the plan in §2.5, our static contract checking consists of 3 steps:
1. Construct the expression e . t.
2. Simplify e . t as much as possible, to e′, say.
3. See if BAD is syntactically in e′; if not, e′ is crash-free.

Our static contract checking is sound because if e′ is syntactically safe, we know
e′ is crash-free. As the simplification process preserves the semantics of an ex-
pression, we know e . t is crash-free. By Theorem 1, we know e ∈ t. Step 2 and 3
are the same as the symbolic simplification idea proposed in the ESC/Haskell [29]
so we omit them here.

Our static verification is not complete, which means even if e ∈ t, our algo-
rithm may not be able to tell because we cannot detect divergence. We cannot
tell that the expression case bot of {DEFAULT -> BAD} diverges i.e. crash-free.
So we give a false alarm because it is not syntactically safe.

6 Discussion – Diverging Contracts

So far we describe contract satisfaction and contract checking for under the as-
sumption that contracts converged. But since contracts contain arbitrary Haskell
terms, there is no way to enforce this assumption. If we drop the assumption, the
main theorem no longer holds, for a tiresome reason. Consider e = (BAD,BAD)

and t = {x|bot}. Then e 6∈ t (since e is not crash-free); but e . t reduces to
this term: case fin bot of {True -> (BAD, BAD); False -> BAD} Annoy-
ingly, this term is crash-free because the (fin bot) term diverges. Interestingly,
our static evaluation engine does not attempt to detect divergence, and there-
fore does not reduce this term to bot (although doing so would be correct). So
our implementation will not eliminate the BADs in this program and hence does
validate the theorem. All we need is to do is to make the theory match the
implementation!

Doing so is tiresome but not difficult. We enhance the special function fin

to finn, which converts divergence to True in n steps shown in [E-fin3] and
[E-fin4]. The idea is that we initially create the terms e .n t with finn at every
point. The n is like “fuel”: fini permits i reduction steps on its argument before
giving up and returning True.

e → e′ n > 0
finn e → finn−1 e′

[E-fin3]
fin0 e → True

[E-fin4]

Now the main theorem becomes:
e ∈ t ⇐⇒ ∃N. e .N t is crash-free

That is e ∈ t if and only if e .N t can be show crash-free for some finite amount
of “fuel” N .

7 Related Work

In [3], Blume and McAllester introduce the concept of contract semantics and
prove the sound-and-completeness of the dynamic contract checking algorithm

396

in [8] with respect to the contract semantics. We use a similar approach, but
aimed at static checking. We use a lazy language, and support constructor con-
tracts; on the other hand they deal with recursive contracts which we do not.
There are many other differences of detail, and we believe that our proof (not
presented here) is rather simpler than theirs.

Also inspired by [8,3], Hinze et. cl. [14] implement contracts as a library in
Haskell and also provide contract constructors such as pairs, lists, etc. Compared
with [8,3,14], we apply a theory similar to those but to static contract checking so
that we can detect bugs early. Another dynamic contract checking work is the
Camila project [25] which use monads to encapsulate the pre/post-conditions
checking behaviour.

In [7], Findler and Blume discover that contracts are pairs of projections.
Our projections use crashes-more-often as the partial ordering rather than the
specificness of the contract. Moreover, we also discover the projection pair prop-
erty which plays a crucial role in our proof and makes our proof a bit different
from the one in [3].

The hybrid contract checking framework [9,18,17,12], in theory, can be as
powerful as our system. But in practice, our symbolic execution strategy adopted
from [29] gives more flexibility to the verification as illustrated in §2.1. In [26],
Wadler and Findler show how contracts fit with hybrid types and gradual types
by requiring casts in the source code. The casts are similar to our . and /.
Compared with [9,18,17,12,26], we deal with a lazy language and also handle
constructor contracts.

Compared with the dependent type approaches [28,5,23,27], we separate type
and contract declarations so that type related work (e.g. type inference) and
contract related techniques can be developed independently.

In Hoare Type Theory (HTT) [22,21], higher-order predicates and inductive
predicates can be used in specifications. We share the same expressiveness from
these two aspects as we allow higher-order functions and recursive functions to
be used in contracts. But our contracts do not contain quantifiers.

The Programatica toolset [13] verifies Haskell programs with P-Logic [16]
while we use Haskell itself as the specification language and rely on sound sym-
bolic evaluation for its reasoning. Our approach eliminates the effort of inventing
and learning a new logic together with its theorem prover.

In [15], a compositional assertion checking framework has been proposed with
a set of logical rules for handling higher order functions. Their assertion check-
ing technique is primarily for postcondition checking and is currently used for
manual proofs. Apart from our focus on automatic verification, we also support
precondition checking that seems not to be addressed in [15].

In [20], pattern matching failures can be inferred during compile time with-
out specifications from programmers. Notably they use a language of regular
expressions for contracts, which is incomparable with ours, and the technical
details are very different.

397

8 Conclusion

We have presented a sound and automatic static contract checking framework
for Haskell. Based on contract semantics and symbolic execution, our approach
gives precise blame assignments at compile-time in the presence of higher-order
functions and laziness. We have implemented this idea in GHC and experimented
with various small examples and are in the process of verifying larger programs.

Acknowledgements The first author would like to thank Microsoft Research
Cambridge for a scholarship as well as a grant for attending conferences.

References

1. Lennart Augustsson. Cayenne - language with dependent types. In ICFP ’98:
Proceedings of the third ACM SIGPLAN international conference on Functional
programming, pages 239–250, New York, NY, USA, 1998. ACM Press.

2. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming
system: An overview. CASSIS, LNCS 3362, 2004.

3. Matthias Blume and David McAllester. A sound (and complete) model of con-
tracts. In ICFP ’04: Proceedings of the ninth ACM SIGPLAN international con-
ference on Functional programming, pages 189–200, New York, NY, USA, 2004.

4. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, K. Leino, and E. Poll.
An overview of jml tools and applications, 2003.

5. Sa Cui, Kevin Donnelly, and Hongwei Xi. Ats: A language that combines program-
ming with theorem proving. In Bernhard Gramlich, editor, FroCos, volume 3717
of Lecture Notes in Computer Science, pages 310–320. Springer, 2005.

6. Rowan Davies. Refinement-type checker for standard ml. In AMAST ’97: Proceed-
ings of the 6th International Conference on Algebraic Methodology and Software
Technology, pages 565–566, London, UK, 1997. Springer-Verlag.

7. Robert Bruce Findler and Matthias Blume. Contracts as pairs of projections. In
Functional and Logic Programming, pages 226–241. Springer Berlin / Heidelberg,
2006.

8. Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions.
In ICFP ’02: Proceedings of the seventh ACM SIGPLAN international conference
on Functional programming, pages 48–59, New York, NY, USA, 2002. ACM Press.

9. Cormac Flanagan. Hybrid type checking. In POPL ’06: Conference record of
the 33rd ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 245–256, New York, NY, USA, 2006. ACM Press.

10. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended static checking for Java. In PLDI ’02: Pro-
ceedings of the ACM SIGPLAN 2002 Conference on Programming language design
and implementation, pages 234–245, New York, NY, USA, 2002. ACM Press.

11. Tim Freeman and Frank Pfenning. Refinement types for ml. In PLDI ’91: Pro-
ceedings of the ACM SIGPLAN 1991 conference on Programming language design
and implementation, pages 268–277, New York, NY, USA, 1991. ACM Press.

12. Jessica Gronski and Cormac Flanagan. Unifying hybrid types and contracts. In
Eighth Symposium on Trends in Functional Programming, April 2007.

13. Thomas Hallgren, James Hook, Mark P. Jones, and Richard Kieburtz. An overview
of the Programatica toolset. In High Confidence Software and Systems Conference,
2004.

398

14. Ralf Hinze, Johan Jeuring, and Andres Löh. Typed contracts for functional pro-
gramming. In FLOPS ’06: Functional and Logic Programming: 8th International
Symposium, pages 208–225, 2006.

15. Kohei Honda and Nobuko Yoshida. A compositional logic for polymorphic higher-
order functions. In PPDP ’04: Proceedings of the 6th ACM SIGPLAN international
conference on Principles and practice of declarative programming, pages 191–202,
New York, NY, USA, 2004. ACM Press.

16. Richard B. Kieburtz. P-logic: property verification for haskell programs. Draft,
2002.

17. Kenneth Knowles and Cormac Flanagan. Type reconstruction for general refine-
ment types. In Programming Languages and Systems, 16th European Symposium
on Programming, ESOP 2007. Springer-Verlag, April 2007.

18. Kenneth Knowles, Aaron Tomb, Jessica Gronski, Stephen N. Freund, and Cormac
Flanagan. SAGE: Unified hybrid checking for first-class types, general refinement
types, and dynamic (extended report. http://sage.soe.ucsc.edu/sage-tr.pdf, 2006.

19. K. Rustan M. Leino and Greg Nelson. An extended static checker for Modular-3. In
CC ’98: Proceedings of the 7th International Conference on Compiler Construction,
pages 302–305, London, UK, 1998. Springer-Verlag.

20. Neil Mitchell and Colin Runciman. Unfailing Haskell: A static checker for pattern
matching. In TFP ’05: The 6th Symposium on Trends in Functional Programming,
pages 313–328, 2005.

21. Aleksandar Nanevski, Amal Ahmed, Greg Morrisett, and Lars Birkedal. Abstract
predicates and mutable adts in hoare type theory. In Rocco De Nicola, edi-
tor, ESOP, volume 4421 of Lecture Notes in Computer Science, pages 189–204.
Springer, 2007.

22. Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymorphism and sep-
aration in hoare type theory. In John H. Reppy and Julia L. Lawall, editors, ICFP,
pages 62–73. ACM, 2006.

23. Tim Sheard. Languages of the future. In OOPSLA ’04: Companion to the 19th
annual ACM SIGPLAN conference on Object-oriented programming systems, lan-
guages, and applications, pages 116–119, New York, NY, USA, 2004. ACM Press.

24. The GHC Team. The Glasgow Haskell Compiler User’s Guide.
www.haskell.org/ghc/documentation.html, 1998.

25. J Visser, J. N. Oliveira, Barbosa L. S., J. F. Ferreira, and A. Mendes. CAMILA
revival: VDM meets haskell. In Nico Plat and Peter Gorm Larsen, editors, Overture
Workshop (co-located with FM’05), 2005.

26. Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed.
In Workshop on Scheme and Functional Programming, Sept 2007.

27. Edwin M. Westbrook, Aaron Stump, and Ian Wehrman. A language-based ap-
proach to functionally correct imperative programming. In Olivier Danvy and
Benjamin C. Pierce, editors, ICFP, pages 268–279. ACM, 2005.

28. Hongwei Xi and Frank Pfenning. Dependent types in practical programming.
In POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 214–227, New York, NY, USA, 1999.
ACM Press.

29. Dana N. Xu. Extended static checking for haskell. In Haskell ’06: Proceedings of
the 2006 ACM SIGPLAN workshop on Haskell, pages 48–59, New York, NY, USA,
2006. ACM Press.

30. Dana N. Xu, Simon Peyton Jones, and Koen Claessen. Sound Haskell - Techni-
cal Report. http://www.cl.cam.ac.uk/users/nx200/research/hvs.ps, 2007.

399

Debugging Lazy Functional Programs by
Asking the Oracle?

Holger Siegel, Bernd Braßel

CAU Kiel usw

Abstract. The complexity of lazy evaluation forbids classic debugging
techniques like a simple step-by-step representation of the buggy pro-
gram run. Therefore, most sophisticated tools for searching bugs in lazy
functional programs try to display the run as if the program’s underlying
semantics was strict. In order to provide such a strict representation cur-
rent approaches gather much information about the executed program.
We utilized a new technique to drastically reduce the amount of gath-
ered data and show how to use the reduced information to implement a
debugging tool which supports declarative debugging as well as a strict
step-by-step tracer.

1 Introduction

The task of designing tools to find bugs in lazy functional programs is demanding.
On one hand, the sophisticated strategy employed by the underlying implemen-
tation enables the programmer to write code on a high level of abstraction. On
the other hand the same sophisticated strategy makes it very hard to under-
stand how a given program is executed step-by-step. Most successful approaches
to debugging solve this problem by collecting enough data to represent the pro-
gram’s execution as if the underlying strategy was strict, which is much easier
to understand. Examples for such approaches are declarative debugging, cf. [4,
5], observations, cf. [3], and redex trailing, cf. [7]. The most comprehensive tool,
HAT [2], comprises all three approaches among others.

In order to present information about the program in a simple way, the above
approaches collect data during its execution. This is especially true, the more
powerful the tool is, e.g., the HAT system collects megabytes of data in many
cases. In [1], we developed an approach to collect considerably less data and still
be able to provide the user with a strict view on the execution of his program.
The basic idea is that the critical information to replay a lazy computation as
if the underlying semantics was strict is when unneeded redexes are discarded.
Therefore, we only count the number of strict steps between such discarding
steps. We call the resulting list of numbers an oracle. Different debugging tools
can then be realized as strict monadic versions of the original program correctly
consuming the number of steps in an oracle. [1] contains a soundness proof for
this technique, this paper presents the implementation of a debugging tool based
on the oracle technique.
? This work has been partially supported by DFG grant Ha 2457/5-2.

400

module Example where

import Prelude hiding (length)

length [] = 0

length (_:xs) = length xs

exp = length (take 2 (fiblist 0))

fiblist x = fib x : fibs (x+1)

fib :: Int -> Int

fib _ = error "this will not be evaluated"

Fig. 1. Example program

2 Example Sessions

So far, our debugging tool supports two modes. The first is an implementation
of the well known declarative debugging method, described in Section 2.1. The
second is a step-by-step tracer allowing us to follow a program’s execution as if
the underlying semantics was strict, skipping uninteresting sub computations.
In addition, the tool gives some support to search bugs in programs employing
I/O. This approach to “virtual I/O” is presented along with the step-by-step
mode in Section 2.2.

2.1 Declarative Debugging

Figure 1 shows a small example program containing an intentional error to
demonstrate the declarative debugging mode. The function fiblist creates a
potentially infinite list of delayed calls to function fib. Due to laziness, fib is
never evaluated in our example, so we omit its definition. The infinite list is cut
to the first three elements by a call to function take, which is defined in the
usual way. On top level, function length is applied to count the elements of the
resulting list. It is to be expected that the program returns the number 2.

> :l Example
Example> exp
0

We see that running the program reveals the result 0, which indicates that there
must be a bug somewhere. Therefore, we switch on the debug mode and execute
the program once again.

Example> :set +d
Example> exp

401

In the background, our example program (along with all of its imported modules)
is transformed to a program OracleExample.

Example> exp
processing: OracleExample
up-to-date: OraclePrelude

As we see, our OraclePrelude is still up to date, and thus not generated again.
The programs resulting from this transformation behave exactly like the original
program. The only difference is that – as a side effect – it will produce an “oracle”.
Before continuing with the debugging session we take a look at this oracle.

After evaluating exp in OracleExample has successfully terminated, the cur-
rent directory contains a file called Example.steps:

$ cat Example.steps
[2,0,1,0,0,23]

These numbers compactly represent the laziness information. If every expression
in the program was evaluated there would have been only a single number. This
number indicates how many steps that evaluation would have taken. The fact
that there are six numbers for this example tells us that five expressions have
been discarded without evaluation. (Two calls to fib, two to (+) and one to
fiblist). For more details about the oracle format, how it is produced and why
it can be utilized to correctly execute the traced program strictly, cf. [1].

The user does not see anything of the oracle or the steps file. Directly after
the steps file has been produced, the debugging tool proceeds by applying a
second transformation on the modules.

up-to-date: StrictPrelude.hs
generating ./StrictExample.hs

The second transformation produces Haskell modules named Strict*.hs. These
Haskell modules contain the definitions to execute the original program with an
underlying strict semantics. The details of this transformation will be presented
in Section 3 on page 7.

After the second transformation the actual debugging session is started.

____ ____ _____
(_ \ (_ _) (_) Believe
) _ < _)(_)(_)(in
(____/()(____)()(_____)() Oracles
--------type ? for help----------

exp

Initially, we only see a call to function exp which represents the whole program.
By pressing i we turn on inspect mode. In inspection mode, the result of every
sub computation is directly shown and can be “inspected” by the user, i.e., rated
as correct or wrong. Inspection mode corresponds therefore to the declarative

402

debugging method. But as we will see in the next section, showing the results of
sub computations can be turned on and off at will. (Of course, there is a help
menu available, showing a list of all possible inputs.)

After pressing i the debugger evaluates the expression and displays the result.

exp ~> 0

We expected main to have value 2, but the program delivered value 0. Thus,
we enter w (wrong) in order to tell the debugger that the result was wrong. The
debugging tool stores this choice as explained in Section 3. As the value of exp
depends on several function calls on the right hand side of its definition, the tool
now displays the first of these calls in a left-most innermost order:

fiblist 0 ~> _ : (_ : _)

The line above shows that the expression fiblist 0 has been evaluated to a list
that has at least two elements. This might be correct, but we are not too sure,
since this result depends strongly on the evaluation context. A “don’t know” in
declarative debugging actually corresponds to the skipping of sub computations
in the step-by-step mode, as described in the next section. We therefore press s
(skip).

take 2 (_ : (_ : _)) ~> [_,_]

Actually, this looks quite good. By entering c (correct) we declare that this sub
computation meets our expectation. Now the following calculation is displayed:

length [_,_] ~> 0

The function length is supposed to count the elements of a list. Since the argu-
ment is a two-element list, the result should be 2, but it is actually 0. By pressing
w we therefore state that this calculation is erroneous. Now the debugger asks
for the first sub computation leading to this result:

length [_] ~> 0

This is wrong, too, but for the sake of demonstration we delay our decision. By
pressing the space bar (step into) we move to the sub expressions of length
[_]. We now get to the final question:

length [] ~> 0

The length of an empty list [] is zero, so by pressing c (correct) we state that
this evaluation step is correct. Now we have reached the end of the program
execution, but a bug has not been isolated yet. We have narrowed down the error
to the function call length [_,_], but still there are unrated sub computations
which might have contributed to the erroneous result. The tool asks if the user
wants to restart the debugging session re-using previously given ratings:

end reached. press ’q’ to abort or any other key to restart.

403

module IOExample where

import Prelude hiding (getLine)

getLine :: IO String

getLine = getChar >>= testEOL

testEOL :: Char -> IO String

testEOL c = if c==’\n’ then return []

else getLine >>= \ cs -> return (c:cs)

main = getLine >>= writeFile "userInput"

Fig. 2. I/O example

After pressing <SPACE>, the debugger restarts and asks for the remaining func-
tion calls. There is only one unrated call left within the erroneous sub compu-
tation:

length [_] ~> 0

Now we provide the rating we previously skipped. After entering w (wrong) it is
evident which definition contains the error:

found bug in rule:
lhs = length [_]
rhs = 0

2.2 Step-by-Step Debugging and Virtual I/O

A further interesting advantage of our approach to reexecute the program with a
strict evaluation strategy is the possibility to include “virtual I/O”. During the
execution of the original program, all externally defined I/O-actions with non-
trivial results, i.e., other than IO (), are stored in a special file. These values are
retrieved during the debugging session. In addition, selected externally defined
I/O-actions, e.g., putChar, are provided with a “virtual implementation”. To
show what this means, we demonstrate how the main action of the program found
in figure 2 is treated by our debugging tool. As described in the previous section,
the program is executed to obtain the oracle in the file IOExample.steps. As
this program contains user interaction, we also have to enter a line. We type abc
for this demonstration. Meanwhile, along with the file containing the steps, a file
IOExample.ext was written, containing only the sequence of values of getChar
(and their size).

~/oracle> cat IOExample.ext
3,’a’3,’b’3,’c’4,’\n’

404

There is no need to identify the different calls to external functions, since I/O-
actions will be executed in the strict version in exactly the same order as in the
original program. This is of course essential for correctness. We now start the
debugging tool, and look st single steps by typing <SPACE> twice. This is, what
the tool displays:

main
getLine
getLine ~> getChar >>= testEOL
main ~> (getChar >>= testEOL) >>= writeFile "userInput"
initial action computed. press any key to execute it

In step-by-step mode, we only get to see results when a subcomputation is fin-
ished. The above lines mean that the evaluation of both, getLine and main is
now complete. The results are partial calls of the bind operator (>>=) waiting
for the world, so to speak. We press an arbitrary key to start the action followed
by a <SPACE> to make on more single step and get:

getChar >>= testEOL
getChar

When we hit <SPACE> now, two things happen at once. First, the value ’a’ is
retrieved from the file and, second, the GUI called B.I.O.tope is started, which
represents the virtual I/O environment. The B.I.O.tope is told that someone
has typed an a on the console. This is the “virtual I/O-action” we connected
with getChar. The window coming up is shown in Figure 3. Meanwhile on the

Fig. 3. The B.I.O.tope Virtual I/O Environment

console we see the call testEOL ’a’, which we skip by typing s. We directly see
the result:

testEOL ’a’ ~> (getChar >>= testEOL) >>= testEOL_lambda ’a’
(getChar >>= testEOL) >>= testEOL_lambda ’a’

405

Admittedly, the expression testEOL_lambda ’a’ shows that the source code
binding is improvable. Now we wonder, whether or not the current sub compu-
tation is interesting or not. We type r to have a look at the result and get:

(getChar >>= testEOL) >>= testEOL_lambda ’a’ ~> IO "abc"

This is fine, so we decide to skip the computation by pressing s. Note, that as
soon as a result is shown, we could also rate the sub computation, i.e., tell the
tool that this result is correct or wrong. This information will then be considered
if we restart the debugging session in inspection mode, cf. Section 2.1. It is also
noteworthy that the virtual I/O commands are never issued twice although even,
if we would have decided on going into the sub computation instead of skipping
it.

The final action of our program is:

writeFile "userInput" "abc"

Executing this action brings another change to the B.I.O.tope as shown in
Figure 4. There we can see the GUI has switched to the file dialog. It contains
a list of files which have been read (R:) or written (W:) during the debugging
session and clicking a file in this list makes the file contents visible as they are
at the current point of the debugging session.

Fig. 4. Files in the B.I.O.tope Virtual I/O Environment

3 Implementation

In this section we present the runtime library StrictSteps.hs and its interac-
tion with the programs that have been generated by the transformation intro-
duced in Section 2.1. Reconsider the program in Figure 1. For this program the
transformation creates a Haskell program called StrictExample.hs. Each gener-
ated module uses the functions that are exported by the library StrictSteps.hs.
It also imports the transformed versions of its original imports. In this case the
only such module is StrictPrelude. Finally, some functions from the original
Haskell Prelude are needed. All in all, the module head of the generated module
looks like this:

406

module StrictExample where

import StrictSteps
import Prelude (Maybe(..),(.),Eq(..),Show(..),Ordering(..),

Either(..),String,Bool(..),Char(..),Float(..))
import qualified Prelude (IO,return,(>>=))
import StrictPrelude

3.1 Encoding of Oracles

Conceptually, an oracle is a list of logical values. This list is being consumed
while an instrumented program is evaluated according to a leftmost innermost
strategy. If the next entry of the oracle has value True, the next reduction step
according to strict evaluation order will be evaluated. If the next entry has value
False, then the next redex will be skipped and the result will be replaced by
a placeholder value called underscore. In order to represent this oracle in a
compact way it is encoded as a list of natural numbers. A number n stands for
a list of n entries whose value is True followed by one entry of value False.

type Oracle = BoolStack
type BoolStack = [Int]

The function popBoolStack removes the first entry from an encoded oracle and
returns the resulting oracle paired with the value of the removed entry. The
function pushBoolStack appends an entry to the head of an oracle and returns
the resulting oracle.

popBoolStack :: BoolStack -> (BoolStack, Bool)
pushBoolStack :: BoolStack -> Bool -> BoolStack

An empty oracle is constructed according to the following declaration:

emptyBoolStack :: BoolStack
emptyBoolStack = [0]

For example, the oracle produced in Section 2.1 to evaluate exp in Figure 1
was [2,0,1,0,0,23]. It stands for a list containing 31 entries: the first two
entries have value True, then there are two False followed by one True, then
three False and finally 23 True. Having value True, the first entry indicates
that expression exp has to be evaluated. The next entry tells us that the next
leftmost innermost call in Figure 1, i.e., fiblist 0, is also unfolded. The next
two entries have value False and thereby indicate that the leftmost innermost
calls fib x and x+1 must not be evaluated but replaced by an underscore (also
denoted by _) as a placeholder value. Replacing x+1 by _ the next call is fibs
_. This call is then also evaluated whereas the next free expressions, fib _, x+1
and another fibs _ are discarded. The final 23 entries tell us that the remaining
computation is totally strict (and 23 steps long).

407

3.2 The Representation of underscore

Expressions which are not evaluated are replaced by the special value underscore.
Therefore, at least conceptually, every data type has to be augmented with
a new element which represents that value. From a semantical point of view
underscore resembles the undefined value ⊥. If we were only interested in
computing the same result with a strict semantics, we could actually represent
underscore by a call to the Haskell function undefined as discarded expres-
sions are guaranteed to be never needed in the evaluation. However, we want the
debugging tool to print intermediate results and, therefore, we need to be able
to tell undefined values from defined ones.

Another option is to add a new constructor to every data declaration. How-
ever, this would make the inclusion of external functions and data types much
more complicated. In order to, e.g., call (+), we would need to convert to and
fro for each argument and the result. In addition, much of the behavior already
provided would have to be duplicated, e.g., the way strings of characters are
shown.

Therefore a trick is applied, which makes use of the fact that underscore is
never evaluated outside of the display routines. We represent underscore by an
exception:

underscore :: a
underscore = throw NonTermination

Since the oracle that guides the evaluation indicates which expressions are needed
to run the program, it is guaranteed that this value will never be accessed while
the program is being evaluated. It will be accessed when the debugger tries to
print out a data value. As the whole evaluation is monadic, cf. the next sub
section, the exception can be safely caught whenever values are printed.

3.3 Representing Values

The debugger must be able to display a textual representation of the arguments
and results of the function calls being debugged. In order to provide more flexi-
bility for the debugging tool, we represent expressions in a term structure rather
than a simple string. This makes it possible to, e.g., restrict the depth in which
expressions are shown and enables pretty printing. Therefore, the data type Term
is introduced:

data Term = Term String [Term] | Underscore | Fail String

The constructor Term contains the name of the applied symbol and a term
representation of its arguments. As discussed above, Underscore stands for those
expressions, which were not evaluated. Finally, Fail represents exceptions that
occurred during the execution along with an error message. The implementation
of the corresponding mechanism is, however, not finished by now.

In order to retrieve term representations of a given expression, each data type
has to be an instance of the class ShowTerm:

408

class ShowTerm a where
showCons :: a -> DebugMonad Term

These instances are automatically generated by the transformation. For example,
the following instance declaration is generated for lists:

instance ShowTerm a => ShowTerm [a] where

showCons [] = return (consTerm "[]" [])

showCons (x1:x2) = do sx1 <- showTerm x1

sx2 <- showTerm x2

return (consTerm ":" [sx1,sx2])

The generated instances depend on the generic function showStep, which is
responsible for catching the exception thrown by underscore:

showTerm :: ShowTerm a => a -> DebugMonad Term

showTerm x = liftIO (catch (x ‘seq‘ return Nothing) (return . Just)) >>=

maybe (showCons x) (e -> case e of

NonTermination -> return Underscore

ErrorCall s -> return (Fail s))

3.4 The Debug Monad

The whole evaluation of the generated program takes place in a monad, the
DebugMonad. This monad is a state monad, managing the following state:

data DebuggerState = DebuggerState { oracle :: Oracle,
displayMode :: IORef DMode,
skipped :: BoolStack,
unrated :: BoolStack }

oracle contains the part of the oracle that has not yet been consumed.
displayMode contains display options like the verbosity level and the depth

up to which terms should be printed. In addition this field contains a flag
indicating, which of the two debugging modes introduced in Section 2 is
active.

skipped, unrated are encoded the same way as oracles. They indicate which
functions are still unrated (True) or have been rated as correct (False).
The list skipped holds the ratings of the functions that have already been
displayed in the current program run, whereas unrated holds the ratings of
the function calls that still have not been displayed in the current program
run, but might have been rated in a former evaluation cycle. The purpose of
skipped and unrated will be explained in greater detail in Section 3.5.

In addition to the DebugState, three evaluation modes are encoded in data type
StepMode:

StepBackground The expression is evaluated without user interaction. For every
sub expression previously given information about its correctness will be
preserved by moving the corresponding entries from unrated to skipped.

409

StepInteractive Function calls are displayed and rated by the user. To display
its result, an expression is evaluated in mode StepBackground. When the
user presses <SPACE>, meaning that he wants to inspect a sub computation
in greater detail, the calls of that sub computation are re-evaluated in mode
StepInteractive.

StepCorrect Like in background mode, the expression is evaluated without user
interaction. When an expression is rated as correct, all its subexpressions are
considered correct, too. Thus, its subexpressions are evaluated with evalua-
tion mode StepCorrect, and the information stored in skipped and unrated
will remain unchanged.

The monad DebugMonad a is used by the debugger to manage its internal state
while evaluating an expression that has result type a.

type DebugMonad a
= StateT DebuggerState (ErrorT (Maybe BugReport) IO) a

Values of type BugReport are used to report an erroneous program rule which
is represented by two constructor terms, i.e., the call along with arguments and
its result.

The result delivered by the debugger is lifted into monad IO, because the
debugger has to interact with the user via IO actions while it evaluates the
expression.

This monad is transformed by the monad transformer ErrorT, so that not
only the result can be returned, but also the evaluation can be truncated report-
ing the location of an error (Just bug) or indicating that the user has aborted
the debugging session (Nothing). As soon as a program error has been pinned
down to a single program rule, the evaluation is truncated and that program
rule is reported to the user.

Going one step further, this monad is transformed by the monad transformer
StateT in order to let the debugger read and write its state while executing a
program.

type Step a = StepMode -> DebugMonad a

Step a is the type of an evaluation step with result type a. Since the evaluation
of an expression depends on its evaluation mode, an evaluation step consists of
an expression of type DebugMonad a that is parameterized with an evaluation
mode of type StepMode.

The function eval consumes one entry from the current oracle. Depending
on the value of this entry, it either evaluates its argument and returns the re-
sult of this evaluation, or it refrains from evaluating its argument and returns
underscore as a placeholder.

eval :: ShowTerm a => Step a -> Step a
eval a mode = do state <- get

let (orc, needed) = popBoolStack (oracle state)
put (state {oracle = orc})

410

if needed then a mode
else return underscore

The following pair of functions is used to combine evaluation steps:

(>>>=) :: ShowTerm a => (Step a) -> (a -> Step b) -> Step b
a >>>= b = \ mode -> do a’ <- eval a mode

b a’ mode

return’ :: ShowTerm a => a -> Step a
return’ x = \ _ -> return x

At first, function (>>>=) calls eval with parameter a as its argument. Depend-
ing on the current entry of the oracle, it either evaluates this parameter and
returns the result, or it returns a placeholder value underscore. Then the sec-
ond argument is applied to the value returned by eval. Since this application
is done by function (>>=) of type DebugMonad, managing the debugger state
by StateT as well handling exceptions by ErrorT is done in background by the
monad DebugMonad.

The function return’ turns its argument into an evaluation step which re-
turns this argument as a result when evaluated.

Assuming that all entries of the current oracle have value True, type Step
a, together with functions (>>>=) and return’, form a monad.

For example, the types of the transformed versions of the functions in Figure 1
are:

length :: ShowTerm a => [a] -> Step Int
exp :: Step Int
fiblist :: Int -> Step [Int]
fib :: Int -> Step Int

In the original program exp is a value of type Int, but in the transformed pro-
gram every evaluation takes place in the debug monad. The resulting function is
an evaluation step which may return a value of type Int or a bug report. Simi-
larly, the transformed version of length is still a function taking two arguments,
but now it yields an evaluation step that has to be executed in the debug monad
to retrieve its result.

The transformation also adds a function main, an action of type IO (). This
action contains the whole debugging session from loading the oracle from disk
to debugging the program interactively. The details of this transformation will
be explained in Section 3.6.

3.5 The Function traceFunCall

The function traceFunCall interfaces the instrumented program with the in-
teractive debugger. Every top level declaration is augmented with a call to this
function, which has the following type signature:

411

traceFunCall :: ShowTerm a => DebugMonad Term -> Step a -> Step a

The first argument contains an action to retrieve the term representation of the
function call about to be evaluated, cf. Section 3.3. The second argument is the
function body that has been lifted into the debugging monad as described in the
previous section. The class context ShowTerm a => makes sure that the result
can be displayed to the user. There is a third argument hidden in the resulting
type Step a as given in the type declaration above: the current evaluation mode
of the debugger. Depending on the evaluation mode, traceFunCall shows one
of the following behaviors:

Mode StepCorrect If a function call is rated as correct, all its sub computations
are considered as correct, too, so that the components skipped and unrated
of the global state do not contain entries for those calls. Therefore, skipped
and unrated will not be changed while evaluation a sub expression with mode
Stepcorrect.

Mode StepBackground The resulting value is calculated without uesr interac-
tion. Since unrated might contain ratings for sub computations and those rat-
ings shall be preserved, with mode StepBackground every call of traceFunction
takes one rating from unrated and puts it onto skipped. Therefore at the end of
a debugging cycle, the entries of skipped can be put back onto unrated, so that
in the next debugging cycle those ratings will be reused and there is no need to
re-state the correctness of the function calls that have already been rated.

There is one exception from this rule: If the entry that was taken from
unrated is True, the current function call has been rated as correct in a for-
mer evaluation, and this function call is evaluated with mode StepCorrect.

Mode StepInteractive All interaction between the user and the debugger takes
place with mode StepInteractive. In inspection mode, cf. Section 2.1, function
traceFunCall first evaluates the function body with mode StepBackground.
Then the function call is – preliminary – rated as correct by appending value
False to the component skipped of the debugger state. After that the resulting
value is displayed and the user is asked whether it is correct.

– Since for every function call that has been rated as as correct all its subfunc-
tion calls are considered as correct, too, their rating as well as the prelimi-
nary rating of the current function call are removed from skipped and from
unrated. They are replaced by a single entry of value True that states the
correctness of the whole subexpression.

– If the user has rated the resulting value as wrong, the debugging session will
confine itself to searching the bug in the current expression. If it finds a bug
in one of them, then in turn it restricts itself to searching the bug in that
subexpression. If it finds no bug in any of its subexpressions, it is clear that
the definition of the currently called function is erroreous, and the current
function call will be returned as the result of the debugging session.

412

– If rating the current function call is skipped, the ratings that had already
been present in unrated – and have been moved to skipped while evaluating
the function call with mode StepBackground – are kept, so that they will
be available in subsequent evaluation cycles.

– If the user moves to evaluating the subexpressions of the current function
calls (step into), the body of the function currently called is evaluated with
mode StepInteractive. The rating of the current expression, that has al-
ready been appended to skipped, will be kept, since it resembles the fact
that the current function call is still unrated.

If the debugging tool is in step-by-step mode, cf. Section 2.2, traceFunCall
will not calculate the result of the current function call until the user requests
it. Instead it starts by displaying only the function call and giving the user
an opportunity to move forward to rating its subexpressions without having to
evaluate the whole function first.

We have now explained all the components introduced by the transforma-
tion and can now give show how, for example, function fiblist of Figure 1 is
transformed:

fiblist :: Int -> Step [Int]
fiblist x1 = traceFunCall (do sx1 <- showTerm x1

return (Term "fiblist" [sx1]))
(fib x1 >>>= \x4 ->
x1 + 1 >>>= \x2 ->
fiblist x2 >>>= \x3 ->
return’ (x4 : x3))

3.6 Starting the Debugger

The functions traceWithStepfile and traceProgram are used to start a de-
bugging session. The function traceProgram has the following type signature:

traceProgram :: ShowTerm a => Step a -> DebuggerState -> IO ()

As parameters it receives both an expression of type Step a, which represents
the program to be debugged, and the state containing an oracle, which will guide
the evaluation of this program.

The program will be repeatedly executed, and the evaluation is stopped when
the location of a bug is found, when every function call is rated as correct, or
when the user cancels the debugging session.

The function traceWithStepfile has the following type signature:

traceWithStepfile :: ShowTerm a => String -> Step a -> IO ()

It loads an oracle from a file whose name is given in the first parameter, and then
it debugs the program given in the second parameter by calling traceProgram.
The name of the file from which the oracle is loaded consists of the string given
in the first argument followed by a suffix ".steps".

413

The expression to be evaluated by the debugger is included in function main
:: IO (). In addition to the transformed expression, the resulting declaration of
main also contains a call to function traceProgram. The first parameter, which
indicates the name of the oracle file, is derived from the name of the program
file being transformed, and the second parameter is the transformed expression
of type Step a, where a is the type of the expression to be evaluated.

For example, the function main added to the program in Figure 1 in order
to evaluate the expression exp is:

main :: IO ()
main = traceWithStepfile "Example"

(return (traceFunCall "main" []))
exp

Since main has type IO (), the transformed program can now be compiled by
the Haskell compiler ghc. Also one can start a debugging session by first loading
the transformed program into a Haskell interpreter and then calling main.

4 Conclusion and Future Work

We have presented the usage and implementation of a debugging tool utiliz-
ing the oracle technique developed in [1]. Up to now, the debugger features a
declarative debugging mode as well as a step-by-step mode corresponding to a
leftmost innermost evaluation strategy. In addition, a virtual I/O environment
gives the user the opportunity to see side effects issued by the program. Up to
now, this environment features console output and file access. An extension to
other often used I/O actions like IORefs and sockets is straight forward. The
main limitation of the approach as it is developed by now is the lack of treating
run-time errors. Improving this is clearly important for debugging purposes.

Other room for improvement is of course adding to the list of debugging
features. Many useful techniques are easy to integrate into the framework like
spy points, trusted functions and remembering questions already asked. We plan
to include some of the features described in [6] as well as those provided by HAT
[2], as far as they fit into the framework.

A thorough benchmarking comparison with HAT [2] is also future work. First
impressions are that tracing computations is about five times faster than HAT
due to the fact that our approach needs much less space. The size of programs
that HAT and our approach can handle in declarative debugging mode seem to
be roughly the same. The size of programs manageable in step-by-step mode is
only limited in the size of programs that can be traced and we have not yet seen
a program that could be successfully executed but not be traced due to memory
limitations.

414

References

1. B. Braßel, S. Fischer, M. Hanus, F. Huch, and G. Vidal. Lazy call-by-value eval-
uation. In Proceedings of the 12th ACM SIGPLAN International Conference on
Functional Programming (ICFP’07), 2007. To be published.

2. O. Chitil, C. Runciman, and M. Wallace. Freja, hat and hood – a comparative evalu-
ation of three systems for tracing and debugging lazy functional programs. In Proc.
of the 12th International Workshop on Implementation of Functional Languages
(IFL 2000), pages 176–193. Springer LNCS 2011, 2001.

3. Andy Gill. Debugging Haskell by observing intermediate datastructures. Electronic
Notes in Theoretical Computer Science, 41(1), 2001.

4. H. Nilsson and J. Sparud. The Evaluation Dependence Tree as a Basis for Lazy
Functional Debugging. Automated Software Engineering, 4(2):121–150, 1997.

5. B. Pope. Declarative Debugging with Buddha. In V. Vene and T. Uustalu, edi-
tors, Advanced Functional Programming, 5th International School, AFP 2004, vol-
ume 3622 of Lecture Notes in Computer Science, pages 273–308. Springer Verlag,
September 2005.

6. Josep Silva. A comparative study of algorithmic debugging strategies. In Germán
Puebla, editor, LOPSTR, volume 4407 of Lecture Notes in Computer Science, pages
143–159. Springer, 2006.

7. J. Sparud and C. Runciman. Tracing Lazy Functional Computations Using Redex
Trails. In Proc. of the 9th Int’l Symp. on Programming Languages, Implementations,
Logics and Programs (PLILP’97), pages 291–308. Springer LNCS 1292, 1997.

415

Uniqueness Typing Simplified

Edsko de Vries1?, Rinus Plasmeijer2, and David M Abrahamson1

1 Trinity College Dublin, Ireland, {devriese,david}@cs.tcd.ie
2 Radboud Universiteit Nijmegen, Netherlands, rinus@cs.ru.nl

Abstract. We present a uniqueness type system that is simpler than
both Clean’s uniqueness system and than the system we proposed pre-
viously. At the same time, our new type system is more expressive, is
straightforward to implement or add to existing compilers, and can eas-
ily be extended with advanced features such as higher rank types and
impredicativity. We have integrated this type system in Morrow, an ex-
perimental functional language with a very advanced type system that
supports higher rank types and impredicativity.

1 Introduction to Uniqueness Typing

An important property of pure functional programming languages is referential

transparency: the same expression used twice must yield the same result. This
makes reasoning about programs easier, since we do not need to know global
properties about the state of the program to deduce local properties about a
small part of the program. Imperative languages, and even some functional lan-
guages, do not have this property. For example, in the following C fragment,

int f(FILE * file)

{

int a = fgetc(file); // Read a character from ’file ’

int b = fgetc(file);

return a + b;

}

it is understood that a and b can (and typically will) have different values, even
though we are applying the same function (fgetc) to the same input (file).
The problem is that even though the input is syntactically identical in both
statements, the structure denoted by file is modified by each call to fgetc

(the file pointer is advanced): fgetc has a side effect.
Nevertheless, even in a pure functional programming language, we would

like to be able to read from files or perform other actions with side effects. Key
to understanding how we can add a function such as fgetc without sacrificing
referential transparency is noting that in the small C example above, there would
be no problem with referential transparency if there was only a single reference

to file : a side effect on a variable (file) is okay as long as that variable is
never used again. Put another way, it is okay for a function to modify its input

? Supported by the Irish Research Council for Science, Engineering and Technology.

416

if the input is not shared. Referential transparency then trivially holds because
the same expression (the same function applied to the same input) never occurs
more than once.

The same function f implemented in a functional language using uniqueness
typing gives

f file0 = let (a, file1) = fgetc file0

(b, file2) = fgetc file1

in (a + b, file2)

Rather that just returning the read character, fgetc returns a pair consisting of
the read character and a new file, file1. Even though file0 and file1 point
to the same file on disk, they are conceptually and syntactically different, and
thus it is clear that a and b may have different values (because fgetc is applied
to two different inputs). The uniqueness type system guarantees that fgetc is
never applied to an argument which is used again (shared). For example, the
type checker would complain if we had written

f file0 = let (a, file1) = fgetc file0

(b, file2) = fgetc file0

in (a + b, file0)

Sharing information is recorded as an attribute on the type of a term. This
attribute is either • for unique (guaranteed not to be shared) or × for non-
unique (may or may not be shared). For example, File• is the type of files that
are guaranteed not to be shared, and the type of fgetc might be

fgetc :: File•
×
−→ (Char×, Fileu)v

The uniqueness attribute u on the file in the result of fgetc means that it is up
to the programmer to decide if she wants to treat it as unique or shared. This
is discussed in more detail in Section 7.

2 Contributions of This Paper

The type system we present in this paper is based on that of the programming
language Clean [1, 2]. However, Clean’s type system has a number of drawbacks.

– Types and attributes are regarded as two different entities, which limits
expressiveness and makes retrofitting uniqueness typing to existing compilers
more difficult.

– Types in Clean often involve implications between uniqueness attributes. For
example, the function const has type

const :: tu ×
−→ sv w

−→ tu, [w ≤ u]
const x y = x

The constraint [w ≤ u] denotes that if u is unique, then w must be unique
(u implies w)3. The need for this constraint will be explained in Section 4,

3 Perhaps the choice of the symbol ≤ is unfortunate. In logic a ≤ b denotes a implies b,
whereas here u ≤ v denotes v implies u. Usage here conforms to Clean conventions.

417

but the presence of constraints complicates the work of the type checker (the
heart of the typechecker is a unification algorithm, and unification cannot
deal with inequalities) and makes extending the type system to support
modern features such as arbitrary rank types difficult.

– Clean distinguishes between non-unique terms, unique terms, and neces-

sarily unique terms that are never allowed to become non-unique. Moreover,
Clean’s type system has a subtyping relation between unique and non-unique
terms. Both these features make the type system unnecessarily complicated.

In this paper, we make the following contributions.

– Section 3 shows that we can regard uniqueness attributes as type construc-
tors of a special kind, rather than regarding types and uniqueness attributes
as two different syntactic categories. If we do that, we gain expressive power
in the type system, types become more readable, and both the presentation
and the implementation of uniqueness typing is greatly simplified.

– Section 5 shows how we can recode inequalities as equalities (and thus remov-
ing the need for constraints) if we allow for arbitrary boolean expressions as
uniqueness attributes. This makes it much easier to extend the type system
with advanced features, and enables the use of unification to solve relations
between attributes.

– Section 7 shows that by distinguishing between non-unique and necessarily
unique (and no notion of “unique, but not necessarily unique”), we avoid the
need for subtyping. We argued a similar point in a previous paper [3], where
we distinguished between non-unique and unique instead (and no notion of
necessarily unique). Unfortunately, that approach requires a second unique-
ness attribute on the function arrow, which offsets the advantage of removing
subtyping somewhat. Our new approach does not have this disadvantage.

– We describe our implementation of uniqueness typing in Morrow in Section 8.
Morrow is an experimental functional language developed by Daan Leijen,
and has an advanced type system supporting, amongst other things, higher
rank types and impredicativity. Adding support for uniqueness typing to
Morrow required only a few changes to the compiler. This provides strong
evidence for our claim that retrofitting uniqueness typing to an existing
compiler, and extending uniqueness typing with advanced features such as
higher rank types and impredicativity, becomes straightforward with the
techniques in this paper. As far as the authors are aware, this is also the
first substructural type system that has these features.

3 Attributes are Types

In this section, we show that we can regard types and attributes as one syntactic
category. This simplifies both the presentation and implementation of a unique-
ness type system, makes types more readable, and increases the expressive power
of the type system.

418

Up to now, we have regarded types and attributes as two very different enti-
ties. Although it is certainly possible to formalize a uniqueness type system this
way, it makes things more complicated than necessary. If types and attributes are
completely different, then we need both type variables and attribute variables,
and we need to be able to quantify (∀) over both type variables and attribute
variables. The status of arguments to algebraic datatypes (such as List a) is
also not very clear: are they types, attributes, or do they correspond to a type
with an attribute?

Perhaps counter-intuitively, everything becomes much clearer when we regard
types and attributes as a single syntactic category. Thus, Int is a type, Bool is a
type, but so is • (unique) and × (non-unique). We regard Int• as the application
of a special type constructor (denoted infix by the superscript operation) to two
arguments, Int and •. To make that slightly more explicit, we can give the
operator a name, Attr, and write Int• as Attr Int •.

There are no values of type •, nor are there values of type Int, because Int

is lacking a uniqueness attribute. There are however values of type Int×; 1, 2,
and 1024 are all examples.

Types that do not classify values are nothing new. For example, they arise
in Haskell as type constructors ; a well-known example is [] (the list type con-
structor). We can make precise which types classify values and which do not by
introducing a kind system [4]. Kinds can be regarded as the “types of types”.
By definition, the kind of those types that classify values is denoted by ∗. In
Haskell, we have Int :: *, Bool :: *, but [] :: * → *; it takes a type as
argument, and returns a type as result.

But here is where we deviate from Haskell. Since we have already said that
we do not regard Int as a type classifying values in our type system, its kind
cannot be ∗. Instead, we introduce two new kinds, T and U , classifying “base
types” and uniqueness attributes, respectively. So, we have Int :: T , Bool ::

T , • :: U and × :: U . Since Attr combines a base type and an attribute into a
type of kind ∗, its kind must be

Attr :: T → U → ∗

The kind language and some type constructors along with their kinds are listed
in Figure 1. At this point it is useful to introduce the following convention.

(Syntactic convention.) Type variables4 of kind T will be denoted by
t, s. Type variables of kind U will be denoted by u, v, and type variables
of kind ∗ will be denoted by a, b.

We will discuss the consequences of treating uniqueness attributes as types of
kind U for the implementation of a compiler in Section 8; here we will focus
on the consequences for the programmer. The first consequence is that we can
simplify the way we write types. We can write the type of the identity function
as

4 Strictly speaking, these are meta variables, not object language type variables. Our
core language does not include universal quantification.

419

Kind language

κ ::= kind
T base type
U uniqueness attribute
∗ base type together with a uniqueness attribute
κ1 → κ2 type constructors

Type constants

Int :: T
Bool :: T
→ :: ∗ → ∗ → T function space
• :: U unique
× :: U non-unique
∨ :: U → U → U disjunction
∧ :: U → U → U conjunction
¬ :: U → U negation
Attr :: T → U → ∗ combine a base type and attribute

Syntactic conventions

tu ≡ Attr t u

a
u
−→ b≡ Attr (a → b) u

Fig. 1. The kind language and some type constructors with their kinds

id :: tu ×
−→ tu

(the attribute on the arrow will be explained in Section 4). But now we can also
write it as

id :: a
×
−→ a

In the first case we are using two type variables (t of kind T and u of kind U),
whereas in the second case we are using only a single type variable (a of kind
∗). Both types mean the same thing, but the second is easier to read than the
first. If we adopt Clean’s convention of denoting “non-unique” by the absence of
an attribute, we can even write the type of id as

id :: a → a

Although we will not discuss algebraic datatypes in much detail in this paper,
this way of treating types and attributes also gives more expressive power when
defining new datatypes. For example, we can define the following three datatypes:

newtype X a = X a

newtype Y t = Y t•

newtype Z u = Z Intu

The first datatype X is parametrized by an attributed type (a type of kind ∗),
the second by a base type (a type of kind T), and the third by a uniqueness
attribute (a type of kind U). The kinds of X, Y and Z are therefore ∗ → T ,
T → T and U → T , respectively. The co-domain is T in all cases, because X

420

Int× still lacks an attribute; (X Int×)• on the other hand (which we can also
write as X• Int×) is a unique X containing a non-unique Int.

In Clean, we can only define the first of these three datatypes, so we have
gained expressive power. What is more, although we have used syntactic con-
ventions to give a visual clue about the kinds of the type variables, the kinds of
these types can automatically be inferred by the kind checker, so the expressive
power comes at no cost to the programmer.

4 Partial Application

Dealing correctly with partial application is probably the most subtle aspect of
uniqueness typing. For example, this particular aspect is not dealt with correctly
in a recent paper comparing usage analysis and uniqueness typing [5]. So before
we delve into the details of the type system in the next section, we must look
into this issue.

In Haskell, the function const is defined as follows.

const :: a → b → a

const x y = x

Temporarily ignoring the attributes on arrows, the type of const in a uniqueness
type system is exactly the same. But now consider the following program:

dup x = (\f -> (f 1, f 2)) (const x)

What is the type of dup? Given the type of const, above, it would seem that
the type of dup is

dup :: a → (a, a)

But that cannot be correct, because this type of dup tells us that if we pass in a
single unique a to dup, it will return a pair of two unique as, an impressive feat.
However, the full type of const in our type system is

const :: tu ×
−→ b

u
−→ tu

If you pass in a unique t, you get a unique function from b to t: a function that
can only be used once. An alternative reading of this type is also possible: if you
use a partial application of const more than once, the argument to const must
be non-unique. The type of dup is therefore

dup :: t×
×
−→ (t×, t×)u

In general, a function must be unique (and can therefore be applied only once)
if it has any unique elements in its closure (the closure of a function is the
environment that binds the free variables in the function body).

421

e ::= expression
x� variable (used once)
x⊗ variable (used more than once)
λx · e abstraction
e e application

τk ::= type
ck constant
τk′→k τk′ (type) application

Fig. 2. Expression and type language for the core system

5 Removing Constraints

In this section we show that by allowing arbitrary boolean expressions5 as
uniqueness attributes, we can recode implications between uniqueness attributes
as equalities. That makes it easier to extend the type system with advanced fea-
tures such as arbitrary rank types, and simplifies the implementation. In fact,
this change makes the uniqueness type system so similar to the standard Hind-
ley/Milner type system that standard type inference algorithms can be applied.
The only change required is in the unification algorithm, as we shall see in Sec-
tion 6.

The expression language and type language are defined in Figure 2 (types
have been indexed by kinds k). Both are almost entirely standard, except that
we assume that a sharing analysis has annotated variable uses with � or ⊗.
A variable x marked as x� is used only once within its scope, but a variable
marked as x⊗ is used more than once. The typing rules are listed in Figure 3.
The typing relation takes the form

Γ ` e : τ |fv

which reads as “in environment Γ , expression e has type τ ; the attributes on
the types of the free variables in e are fv”. We represent fv as a relation Var ×
Attribute; it is used in rule Abs to determine whether a function needs to be
unique (this is discussed in more detail in Section 4).

The rules are very similar to the standard Hindley/Milner type system, ex-
cept that they maintain some extra information about uniqueness. The under-
lying base system is unchanged, so that uniqueness typing can be seen as an
“add-on”. In the rest of this section we will explain the rules in more detail.

5.1 Variables

We need to distinguish variables that are used once in their scope and variables
that are used multiple times. The rule for variables that are used only once

5 Although the typing rules only introduce disjunctions between uniqueness attributes,
more complicated expressions can be introduced by boolean unification when unify-
ing two boolean expressions.

422

Γ, x : tu ` x� : tu|(x,u)

Var
�

Γ, x : t× ` x⊗ : t×|(x,×)

Var
⊗

Γ, x : a ` e : b|fv fv ′ = x fv

Γ ` λx · e : a

∨

fv′

−−−→ b|fv′

Abs

Γ ` e1 : a
u
−→ b|fv Γ ` e2 : a|fv ′

Γ ` e1 e2 : b|fv ∪ fv ′

App

Fig. 3. Typing rules for the core lambda calculus

(Var�) is identical to the normal Hindley/Milder rule, and we simply look up
the type of the variable in the environment. Note that even when a variable is
used only once, that does not automatically make its type unique. For example,
there is only one use of x in the identity function:

id x = x�

but when a shared term is passed to id, it will still be shared when it is returned
from id. On the other hand, if a variable is used more than once (rule Var⊗),
its type must be non-unique (shared). This happens for example in dup:

dup x = (x⊗, x⊗)

Both rules also record the uniqueness attribute on the type of the variable.

5.2 Abstraction and Application

The rule for abstractions is the same as the Hindley/Milner rule, except that
we must determine the values of the attribute on the arrow. As discussed in
Section 4, a function must be unique if it has any unique elements in its closure.
The closure of a function λx · e consists of the free variables in the body e of
the function, minus x. The attributes on the free variables in the body of the
function are recorded in fv ; using fv ′ = x fv (domain subtraction) to denote fv

with x removed from the domain of fv , we use the disjunction
∨

fv ′ of all the
attributes in the range of fv ′ as the uniqueness attribute on the arrow.

The rule for application is the normal one, except that we collect the free
variables. The attribute on the arrow is ignored (we can apply both unique and
shared functions).

5.3 Encoding Constraints

In general, we can always recode a type of the form

. . . �u . . . �v . . . , [u ≤ v]

using a disjunction
. . . �u∨v . . . �v . . .

423

When v is unique, u∨v reduces to unique, but when v is non-unique, u∨v reduces
to u (a free variable), so this faithfully models the implication. For example, in
Clean the function fst that extracts the first element of a pair has the type

fst :: (au, bv)w → au, [w ≤ u]
fst (x, y) = x

which we can recode as

fst :: (au, bv)w∨u → au

However, in many cases we can do slightly better. For example, suppose the
typing rule for pairs is

Γ ` e1 : a|fv
1

Γ ` e2 : b|fv
2

Γ ` (e1, e2) : (a, b)u|fv
1
∪ fv

2

Pair

then for every derivation of e :: (a, b)•, there is also a derivation of e :: (a, b)×

(because the typing rule leaves the attribute on the pair free). That means that
we can simplify the type of fst to

fst ’ :: (au, bv)u → au

The only pairs accepted by fst but rejected by fst’ are unique pairs, but since
the type checker will never infer a pair to be unique, that situation will never
arise. We took advantage of the same principle in the rule for abstraction, where
we recoded a type

. . .
u

−→ . . ., [u ≤ v, u ≤ w, . . .]

as

. . .
v∨w∨...

−−−−−→ . . .

This will force some functions to be non-unique which would otherwise be poly-
morphic in their uniqueness, but that cannot cause any type errors: the rule
for function application ignores the uniqueness attribute on the function, and
non-unique functions can be used multiple times.

6 Boolean Unification

One advantage of removing constraints from the type language is that standard
inference algorithms (such as algorithm W [6]) can be applied without any mod-
ifications. The inference algorithm will depend on a unification algorithm, which
must be modified to use boolean unification when unifying two terms of kind U .
The rest of this section explains how boolean unification works.

Suppose we have two terms g and h

g :: a•
×
−→ . . . h :: au∨v

424

Should the application g h be allowed? If so, we must be able to unify u∨ v and
•. Of course, this equation has many solutions, for example

[

u 7→ •
v 7→ v

] [

u 7→ u

v 7→ •

] [

u 7→ •
v 7→ •

]

(Recall that we treat attributes as boolean expressions.) Unfortunately none of
the solutions listed above is most general, and it not obvious that the equation
u ∨ v = • even has a most general unifier, which means we would lose principal
types. Fortunately, unification in a boolean algebra is unitary [7]. In other words,
if a boolean equation has a solution, it has a most general solution. In the
example, one most general solution is

[

u 7→ u

v 7→ v ∨ ¬u

]

There are two well-known algorithms for unification in a boolean algebra, known
as Löwenheim’s formula and successive variable elimination. For the core sys-
tem from Section 5 either algorithm will work, but when arbitrary rank types
are introduced and we need to use skolemization [8], only successive variable
elimination is practical6. The description of successive variable elimination we
give here combines the methods from [7] and [9]. Temporarily using the more
common 0 for false (not unique) and 1 for true (unique), to unify two terms p

and q of a boolean algebra it suffices to unify

t = (p ∧ ¬q) ∨ (¬p ∧ q) = 0

This is implemented by unify
0
, shown in Figure 4, which gets a term t in a

boolean algebra a and the list of free variables in t as input, and returns a
substitution and the “consistency condition”, which will be zero if unification
succeeded.

7 On Subtyping

In this section we compare our approach to subtyping to that of Clean [2] and
to that of our previous paper on the topic [3]. Readers not familiar with either
of those two type systems can skip this section if they wish.

Consider again the function dup:

6 Löwenheim’s formula maps any unifier to a most general unifier, reducing the prob-
lem of finding an MGU to finding a specific unifier. For the two-element boolean
algebra, that is very simple (just try all possible instantiations of the variables) but
it is not so easy in the presence of skolem constants. Skolem constants introduce new
elements into the boolean algebra, making it much more difficult to guess ground
unifiers. For example, assuming that uR and vR are skolem constants, and w is a
uniqueness variable, the equation uR∨vR ' w has an obvious solution [w 7→ uR∨vR],
but we can no longer guess this solution by instantiating all variables to either true
(•) or false (×).

425

unify0 :: BooleanAlgebra a ⇒ [V ar] → a → (Subst a, a)

unify0 [] t = ([], t)

unify0 (x : xs) t = (st ∪ se, cc)

where

st = [x 7→ se t0 ∨ (x ∧ se (¬t1))]

(se, cc) = unify0 xs (t0 ∧ t1)

t0 = [x 7→ 0] t

t1 = [x 7→ 1] t

Fig. 4. Boolean unification

dup :: t×
×
−→ (t×, t×)u

dup x = (x, x)

In Clean, dup gets the same type, but that type is interpreted slightly differently.
Clean’s type system uses an explicit subtyping relation: a unique type is consid-
ered a subtype of a non-unique type. That is, we can pass in something that is
unique (such as a unique Array) to a function that is expecting a non-unique
type (such as dup).

The fact that a unique array can become non-unique is an important feature
of a uniqueness type system. A non-unique array can no longer be updated,
but can still be read from. However, adding subtyping to a type system leads
to considerable additional complexity, especially when considering a contravari-
ant/covariant system (such as Clean’s). It becomes simpler when considering an
invariant subtyping relation such as the one proposed in [5], but we feel that
subtyping is not necessary at all.

In our previous paper, we argued that the type of dup should be

dup :: tu
uf
−−→
×

(t×, t×)v

The (free) uniqueness variable on the t in the domain of the function indicates
that we can pass unique or non-unique terms to dup. Since it is always possible to
use a uniqueness variable in lieu of a non-unique attribute, an explicit subtyping
relation is not necessary (this can be compared to the use of phantom types in
wxHaskell to encode inheritance [10]).

But there is a catch. As we saw in Section 4, functions with unique elements
in their closure must be unique, and must remain unique: they can only be
applied once. In Clean, this is accomplished by regarding unique functions as
necessarily unique, and the subtyping is adjusted to deal with this third notion
of uniqueness: a necessarily unique type is not a subtype of a non-unique type.
Hence, we cannot pass functions with unique elements in their closure to dup.

Unfortunately, when dup gets the type from our previous paper it can be used
to duplicate functions with unique elements in their closure. To remedy that
problem, we introduced a second uniqueness attribute on the function arrow,

426

indicating whether the function had any unique elements in its closure. The
typing rule for application then enforced that functions with unique elements
in their closure (second attribute) were unique (first attribute). That means
that functions with unique elements in their closure can be duplicated, but once
duplicated can no longer be applied. While this removed the need for subtyping,
that advantage was offset by the additional complexity introduced by the second
uniqueness attribute on arrows.

An important contribution of the current paper is the observation that we
can avoid this additional complexity (without reintroducing an explicit subtyping
relation) by disallowing sharing unique elements, but giving the programmer the

option of treating a term as unique or non-unique. For example, a function that
returns a new empty array should get the type

newArray :: Int
×
−→ Arrayu

rather than

newArray :: Int
×
−→ Array•

Similarly, the function that resets all elements of an array back to zero should
get the type

resetArray :: Array•
×
−→ Arrayu

rather than

resetArray :: Array•
×
−→ Array•

An Array that is polymorphic in its uniqueness can be passed to resetArray as
easily as it can be passed to dup (but of course, a shared array still cannot be
passed to resetArray). If we are careful never to return a unique array from a
function, we will always be able to share arrays. We still do not have an explicit
subtyping relation but we get the same functionality: the subtyping is encoded
in the type of Array, rather than in the type of dup.

Besides simplifying the type system (we no longer need the additional unique-
ness attribute on arrows, nor do we need subtyping), we also gain expressive
power. While for some types sharing makes sense (such as Arrays), for others
it does not. For example, many functions with side effects in Clean have a type
such as

fun :: · · · → (World• → World•)

where the World is a token object representing the world state. It never makes
sense to duplicate the world, and we can now enforce that by returning a unique
World (rather than a World which is polymorphic in its uniqueness)7.

7 In a sense, Clean already has this expressiveness, as it has both the notions of unique
and necessarily unique. However, only unique functions are regarded as necessarily
unique; it is not possible to define a function that returns a necessarily unique World,
for example.

427

8 Implementation in Morrow

We have integrated our type system in Morrow8, an experimental functional
language developed by Daan Leijen in Microsoft Research, Redmond. Morrow’s
type system is HMF [11], which is a Hindley/Milner-like type system that sup-
ports first class polymorphism (higher rank types and impredicativity). As such,
it is an alternative to both Boxy Types [12] and MLF [13]. However, unlike boxy
types, it is presented as a logical system which makes it more predictable, and
at the same time it is much simpler than MLF.

HMF derives much of its simplicity from being invariant. Many higher rank
type systems define a subsumption relation, which can be seen as a subtyping
relation between type schemes. For example, ∀ab.a → b → a is a “subtype”
of ∀a.a → a → a in the sense that whenever a function of the second type is
expected, we can also pass in a function of the first. Since HMF is invariant, it
does not use subtyping, which makes it a very natural fit with with the type
system we propose9.

As it turns out, the implementation of our type system in Morrow is agree-
ably straightforward. This provides strong evidence for our claim that adding
uniqueness typing to an existing compiler, and more importantly, extending
uniqueness typing with advanced features such as higher rank types and im-
predicativity, poses little difficulty when using the techniques from this paper.
We outline the most important changes we had to make to Morrow:

– We implemented sharing analysis, annotating variables with information on
how often they are used within their scope (once or more than once)

– We modified the rules for variables and abstraction, so that shared variables
must be non-unique, and abstractions become unique when they have unique
elements in their closure. To be able to do the latter, all the typing rules had
to be adapted to return the fv structure from Section 5.

– Let bindings had to be adapted to remove the variables bound from fv .
Moreover, the type of every binding in a recursive binding group must be
non-unique (as is standard in a uniqueness type system [2]).

– Most of the work was in modifying the types of the built-in functions and
the kinds of the built-in types, and adding the appropriate type constants
(such as Attr) and kind constants (T , U). However, all of these changes were
local and did not affect the rest of the type checker.

– Unification had be adapted to do boolean unification, as explained in Sec-
tion 6. In addition, it is necessary to simplify boolean expressions, so that for
example au∨× is simplified to au. This is not really optional, because if no
simplification is used, the boolean expressions can quickly get complicated.
Fortunately, we can use an independent module for boolean unification and
simplification. When unifying a ' b, it suffices to check the kinds of a and

8 Our implementation can be downloaded from http://www.cs.tcd.ie/~devriese.
9 Nevertheless, it is quite possible to integrate our type system in other type systems,

too. For example, we have a prototype implementation of a variant on the type
system of this paper that uses the arbitrary rank type system from [8].

428

b, and if they are U , to call the boolean unification module. In Morrow, this
is implemented as

unify t1 t2 | getKind t1 == kindU && getKind t2 == kindU

= case BooleanAlgebra .try_unify t1 t2 of

Nothing -> unifyError NoMatchType

Just subst -> return (subNew subst , ksubNull)

The details do not matter, but we want to emphasize that the boolean unifi-
cation does not in any way complicate the unification algorithm of the type
checker.

– Morrow uses System F (with pattern matching) as its typed internal lan-
guage. Although the “attributes are types” approach of Section 3 means
that the internal language does not need to change at all, Morrow also in-
cludes a System F type checker to ensure that the various phases of the
compiler generate valid code. This type checker had be adapted in a similar
way to the main type checker (alternatively, it would also have been possible
not to include any uniqueness information in the System F types).

The most important point, perhaps, is that the majority of these changes were
local (did not require any significant refactoring of the compiler), and none of
the changes were very complicated. No new subtleties arise when scaling our
core type system up to include advanced features.

9 Conclusions

By treating uniqueness attributes as types of a special kind U , the presentation
of a uniqueness type system is much simplified, types become more readable, and
we gain expressiveness in the definition of algebraic datatypes. We can recode
attribute inequalities (implications between uniqueness variables) as equalities if
we allow for arbitrary boolean expressions as uniqueness attributes. This makes
type inference easier (unification cannot deal with inequalities, but can deal with
equalities between boolean expression using a well-known technique of boolean
unification). Finally, no explicit subtyping relation is necessary when we are
clever in the types we assign to functions: we require that unique terms must
never be shared, but make sure that functions never return unique terms (but
rather terms that are polymorphic in their uniqueness).

Taken together these observations lead to an expressive and yet very simple
uniqueness type system, which can easily be extended with advanced features
such as higher rank types and impredicativity. We have integrated our type
system in Morrow, an experimental programming language with a very advanced
type system. The implementation required only minor changes to the compiler,
which provides strong evidence for our claim that retrofitting our type system
to existing compilers is straightforward.

429

Acknowledgments

We thank Daan Leijen, John Gilbert and Wendy Verbruggen for their insightful
and helpful comments on various drafts of this paper. Daan Leijen was also
the first to question whether it would be possible to remove subtyping without
making dup more polymorphic. We eventually realized that this is possible if we
are careful when specifying the return type of functions (Section 7).

References

1. Barendsen, E., Smetsers, S.: Conventional and uniqueness typing in graph rewrite
systems. Technical Report CSI-R9328, University of Nijmegen (December 1993)

2. Barendsen, E., Smetsers, S.: Uniqueness typing for functional languages with graph
rewriting semantics. Mathematical Structures in Computer Science 6 (1996) 579–
612

3. De Vries, E., Plasmeijer, R., Abrahamson, D.: Uniqueness typing redefined. In
Horváth, Z., Zsók, V., Butterfield, A., eds.: Revised selected papers from IFL 2006,
LNCS 4449. (2007)

4. Jones, M.P.: A system of constructor classes: overloading and implicit higher-
order polymorphism. In: FPCA ’93: Proceedings of the conference on Functional
programming languages and computer architecture, New York, NY, USA, ACM
Press (1993) 52–61

5. Hage, J., Holdermans, S., Middelkoop, A.: A generic usage analysis with subeffect
qualifiers. In: Proceedings of the 12th ACM SIGPLAN International Conference
on Functional Programming. (To appear).

6. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: POPL
’82: Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, New York, NY, USA, ACM Press (1982) 207–212

7. Baader, F., Niphow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

8. Peyton Jones, S., Vytiniotis, D., Weirich, S., Shields, M.: Practical type inference
for arbitrary-rank types. Journal of Functional Programming 17(1) (Jan 2007)
1–82

9. Brown, F.M.: Boolean Reasoning, The Logic of Boolean Equations. Dover Publi-
cations, Inc. (2003)

10. Leijen, D.: wxHaskell – a portable and concise GUI library for Haskell. In: ACM
SIGPLAN Haskell Workshop (HW’04), ACM Press (September 2004)

11. Leijen, D.: HMF: Simple type inference for first-class polymorphism. Technical
Report MSR-TR-2007-118, Microsoft Research, Redmond

12. Vytiniotis, D., Weirich, S., Peyton Jones, S.: Boxy types: inference for higher-
rank types and impredicativity. In: ICFP ’06: Proceedings of the Eleventh ACM
SIGPLAN International Conference on Functional Programming, New York, NY,
USA, ACM Press (2006) 251–262

13. Botlan, D.L., Rémy, D.: MLF: raising ML to the power of System F. In: ICFP ’03:
Proceedings of the eighth ACM SIGPLAN international conference on Functional
programming, New York, NY, USA, ACM Press (2003) 27–38

430

Tabular Expressions and Total Functional
Programming

Baltasar Trancón y Widemann and David Lorge Parnas

Software Quality Research Laboratory (SQRL)
University of Limerick, Ireland

http://www.sqrl.ie

Abstract. Tabular expressions are a multidimensional structured nota-
tion for complex mathematical definitions of relations or functions. In or-
der to create tools to check and evaluate tabular expressions, we have in-
vestigated functional programming as an implementation paradigm that
reflects mathematical semantics faithfully. We explain why and how the
restriction to total functions improves the semantic correspondence sub-
stantially, and describe the basic design and capabilities of our total
functional programming tools for tabular expressions.

1 Introduction

1.1 Context

Our research group is developing methods of producing practical reference doc-
umentation for software products and components. Our document contents are
defined by a relational model in which each document is required to be a repre-
sentation of a specified relation. In effect, we are using mathematical descriptions
of relations to provide specifications and descriptions of programs written in con-
ventional programming languages.

Key to making these documents readable is a multidimensional form of ex-
pressions, which we call tabular expressions or just tables. These parse complex
expressions into arrays of simpler expressions allowing readers to “look up” the
information that they seek without understanding the whole expression.

Tools that check and evaluate these expressions would be very useful when
these methods are applied and we are looking for effective and efficient imple-
mentations of such tools.

1.2 This Work

This paper reports on our experiences with applying the functional program-
ming paradigm to the construction of tools for tabular expressions. Functional
programming is a natural choice because

1. The tasks of checking and evaluating tabular expressions are typical exam-
ples of side-effect-free processing and interpretation of structured data.

431

2. The formal semantic model of tabular expressions, as presented to some
degree in the earlier work [1] and more generically in the forthcoming [2], is
given largely in terms of functions.

3. The intended application of these expressions is software documentation us-
ing a relational model [3] but the relations are described by their character-
istic predicate and those are always functional.

Our intent is to give a reference implementation of the formal model that is
not only executable, but also mirrors the intended semantics and the model’s
theoretical properties as faithfully as possible. We shall argue that our goals can
almost, but not quite, be achieved by using a universal functional language, and
describe an alternative.

1.3 Related Work

This is not the first time that the relation between tabular expressions and
functional programming has been noticed or exploited. In [4], Kahl presents an
inductive approach to tables of certain regular types that is compositional in
table content and semantics at the same time. He provides an implementation
of table constructors and inductive interpretation in Haskell, and correspond-
ing formal proofs in the proof system Isabelle. Because of the restricted set of
constructors, the resulting theory is compact and elegant.

In contrast, our current work is intended to implement the more generic
table model of [2], that allows all constructs of a mathematical base language
to be used freely in content and semantics of tables. This paper discusses the
requirements of such a generic view, and presents preliminary results from the
approach we have taken.

2 Example Tabular Expression

We shall use a simple tabular expression taken from [5] as the running example
for explaining the basic usage of tables and the services we expect from an
evaluation tool.

PwrCnd(Prev : bool ;Power , Kin , Kout : real) : bool =

Power ≤ Kout Kout < Power < Kin Power ≥ Kin

false Prev true

Table 1. Power Conditioning (Specification)

432

The tabular expression depicted as table 1 is a small, but real example.1 It
specifies a family of control functions of a nuclear reactor shutdown system. As
some of the status monitoring logic is only applicable when the reactor is oper-
ating near its maximum output power level, they need to be “conditioned in”
(activated) above a certain power level, and “conditioned out” (deactivated) be-
low. To avoid jitter (many changes separated by very short intervals), hysteresis
is simulated by setting the threshold for conditioning in (Kin) slightly higher
than that for conditioning out (Kout). In between, the previous state (Prev) is
maintained. A graph illustrating some change of power over time is depicted in
figure 1. The relevant state transitions and their effects are marked.

t

Kout

Kin

Power

© effective

• suppressed

Fig. 1. Power Conditioning (Example Graph)

2.1 Meaning of a Tabular Expression

The concrete syntax for this table is deceivingly straightforward; for multidimen-
sional or irregular tables, there may not be such an obvious graphical represen-
tation. Hence the mathematical table model only represents the abstract syntax
of the content of the table as an indexed set (aka family or map) of grids. Each
grid is in turn an indexed set of cells, each of which contains a (conventional
or nested tabular) expression. A table type complements the content to make
the tabular expression semantically self-contained. The table type, that may be
shared by many similar tables, comprises

1. an evaluation term, i.e., an algorithm for evaluating the table’s content,
depending on a valuation of free variables,

2. a restriction predicate, i.e., a well-formedness condition that a table’s content
must satisfy for the evaluation algorithm to be applicable.

The table type is an integral part of the table expression. One can consider it as
an instance of dynamic typing, or as semantically rigorous meta-data.
1 Although we have chosen the simplest possible real example to illustrate these expres-

sions, many much more complex tables were used in the inspection of the Darlington
Nuclear Power Generation Station described in [5].

433

The given example table is an instance of the one-dimensional normal func-
tion table type:

1. It contains two grids of three cells each.
(a) The upper grid is a header grid that contains predicate expressions.
(b) The lower grid is a main grid that contains value expression (also of type

bool in this case).
2. To evaluate the table, choose an index to the header grid, such that

(a) the selected predicate expression evaluates to true,
(b) then evaluate only the corresponding cell of the main grid.
(For more than one dimension, one index for each header grid would be
chosen independently.)

3. The table is well-formed, if
(a) the main grid has the same indexes as the header grid (for higher dimen-

sions, the index set of the main grid must be the Cartesian product of
the index sets of the header grids), and

(b) each header grid partitions the set of possible variable valuations, i.e.,
exactly one is found to be true in any case.

See [1, 2] for more exact definitions of the normal function table type and other
types of tabular expressions.

2.2 Tool Requirements

We expect an evaluation tool to enable us to

1. evaluate a tabular expression for a given variable valuation, by applying the
evaluation term specified by the table’s type to its content,

2. check the restriction predicate, distinguishing two parts for practical reasons:
(a) clauses that do not depend on variable values (called the static restric-

tion), to be checked universally for the table’s content,
(b) clauses that do depend on variable values (called the dynamic restric-

tion), to be checked specifically for the table’s content and a given vari-
able valuation,

all with reasonable efficiency.
We do not expect an evaluation tool to support checking dynamic restric-

tions universally for all possible variable valuations. This is a task for a theo-
rem proving system, and may involve much more complex computations. In [5],
based on earlier work [6], the authors show how a flaw in the specified table
has been discovered by the automatic theorem prover PVS: the header cells are
only a partition of the valuation space, if the (intuitive, but unstated) assertion
Kout < Kin holds. Otherwise, the first and third columns overlap, and the table
does not specify a function.

434

3 The Logic Behind Tabular Expressions

If tabular expressions are to be used for describing real problems, they must
be able to deal with partial functions. Partial functions can lead to undefined
expressions, and there are many ways to handle undefinedness in logic, e.g., by
having three or more truth values.

The meaning of partial functions in tabular expressions here is the one defined
in [7]. It was chosen to give the shortest possible expressions in the table cells.
It can be summarized as follows:

1. There is a special value (∗), distinct from all proper values of interest. This
value is assigned to the application of a partial function to arguments outside
its domain.

2. The domain of partial functions never contains (∗). This implies that the
result of a partial function is (∗) whenever one of its arguments is (∗), i.e.,
functions are strict. A partial function is being treated as if it were a total
function whose range includes (∗).

3. Predicates are treated differently from functions. A predicate is simply false
if any of its arguments is (∗). Consequently, the truth value of a formula is
always true or false, but never (∗). I.e., predicates are non-strict.

Note that (=) is also a predicate, so (by the third rule) the seemingly trivially
true predicate expression f(x) = f(x) is not true if x is outside the domain of f .
On the other hand, the equation f(x) = y is logically equivalent to F (x, y) where
F is the characteristic predicate for f . It has been argued in [7] and later work
that this interpretation of partial functions is particularly concise and useful for
writing software descriptions and specifications in the tabular notation.

This semantic decision has consequences for the construction of an effective
universal evaluation algorithm for tabular expressions. The intuitively appealing
representation of (∗) by the element (⊥) of standard domain-theoretic semantics
does not work as intended: Since (⊥) is also assigned to expressions that cannot
be evaluated effectively, e.g., a nonterminating recursive function application,
writing a program that would evaluate any predicate of the formalism becomes
as hard as solving the halting problem, i.e., impossible without restrictions.

1. The pragmatic approach is to use a universal language to implement the
model, accepting some semantic deviations. It is impossible to preclude un-
determined predicate expressions in this case; so the responsibility is placed
on the programmer to find the appropriate termination arguments.

2. The rigorous approach is to use a restricted language with the “right” se-
mantics to implement the model. If we have to decide whether an expression
evaluates to (∗), it has to be an proper value in a calculus of total functions.
The advantage of this approach is that properties of the implementation are
closely related to (and not much more complex to prove than) properties of
the formal model. The price is that one has to obey the restrictions of the
implementation language.

435

4 Total Functional Programming

In [8], Turner expresses similar, albeit more fundamental concerns regarding the
relation of universal functional programming calculi and mathematical functions:

The driving idea of functional programming is to make programming
more closely related to mathematics. [. . .] The existing model of func-
tional programming [. . .] is compromised to a greater extent than is com-
monly recognized by the presence of partial functions.

He strives for a language that abolishes partial functions, but retains as much
as possible of the notational ease of Miranda or Haskell.

A quite different approach to total functions is taken by total function calculi
in the style of Martin-Löf’s type theory or Coquand’s calculus of constructions.
These are closely connected to higher-order logic (via the Curry-Howard isomor-
phism), a fact that is exploited in constructive proof systems like Coq.

We have chosen a “middle road”, employing a rigorous explicit type system
like the latter, but focusing on computation (rather than logic) like the former.
The result is FCN2, the design and implementation of a practical programming
language for pure total functions. Like other total languages, it is characterized
by the absence of general recursion: The syntax forbids recursive definitions, and
the type system forbids fixpoint operators.

5 Functional Programming Techniques Applied

Limited space prohibits the detailed description of the FCN language. The fol-
lowing subsections can provide only brief examples of how our requirements have
been mapped successfully onto features of the functional paradigm.

5.1 Partial Functions

The logical rules concerning partial functions and predicates can be implemented
in a completely explicit way using a simple error monad [9].

1. For each type A, a dubious type A? is defined to contain one additional
element:

type A? = A + ∗

Readers familiar with Haskell will easily recognize this as the Maybe functor.
2. A partial function f : A 9 B is represented as a total function f ′ : A → B?.

Consider another partial function g : B 9 C, totalized as g′ : B → C?. The
composition g′ ◦ f ′ is not type-correct, so a canonical transformation

bind : ∀B,C. (B → C?) → (B? → C?)

2 Functional Core Notation

436

is inserted. It satisfies the strictness law

bind(g′)(x) =

{
∗ x = ∗
g′(x) x 6= ∗

such that the composition of total functions bind(g′)◦f ′ correctly implements
the composition of partial functions g◦f . The operation bind can be extended
to the functorial operation of (?) to deal with total functions:

lift : ∀B,C. (B → C) → (B? → C?)

3. For predicates, a different canonical transformation

prim : ∀A. (A → bool) → (A? → bool)

is used to compose them with partial functions. It satisfies the non-strictness
law

prim(p)(x) =

{
false x = ∗
p(x) x 6= ∗

Apart from reflecting the intended semantics precisely, this approach has
several additional benefits:

1. Algebraic simplification laws that do not hold for the original implicit nota-
tion are restored. These include the aforementioned f(x) = f(x) ⇐⇒ true,
as well as general β-reduction.

2. A single boolean-valued function can be re-used to define both a partial
function and a total predicate, by exchanging lift and prim.

3. There is no ambiguity which symbols are primitive predicates and thus sub-
ject to the non-strictness rule: they are explicitly qualified with prim.

5.2 Cells and Variables

Tabular expressions are used to define functions and relations, hence they are
likely to contain (free) variables. In a language with first-order functions, the
grid structure of a table and the functionality of individual cells can be separated
cleanly by closure conversion, aka lambda lifting : The open expression in each
cell is turned into a function of the table’s variables, which can then be stored
in a data structure. In the given example table, the effect is that the phrase

λPrev : bool ;Power ,Kin ,Kout : real . · · ·

is prepended to each cell expression. A variable valuation then takes the form of
an argument vector that is applied uniformly to all cells of the table.

437

5.3 Table Interpretation

Table content is structured as grids and cells, organized in list-like collections.
All typical access operations required to define a table type, such as the nor-
mal function table type described above, are easily defined in terms of primitive
recursion, applying a recursion operator (aka fold) to a non-recursive step func-
tion. So far, we have not encountered any problem in this specific domain that
would have required recursion support from the language.

6 Tool Support

Programming in FCN is supported by tools, most notably a parser, type checker
and compiler. All of these are written in Java. The compiler produces Java code
that runs on the JVM, together with a small runtime library. Figure 2 shows a
compiled version of the running example table. It is controlled by a GUI that is
derived directly from the function signature, and will be generated automatically
by a future version of the tools.

Fig. 2. Power Conditioning (Simulation Screenshot)

A library of about 1000 lines of FCN code defines the ubiquitous basic types
and operations: booleans, natural numbers, tuples, lists monads, etc. The pow-
erful type system of the calculus of constructions allows the definition of all of
these in terms of the λ operator only; no additional primitive constructs are
needed or used.

A second level of library code, about 500 lines of FCN, defines the table
model in terms of standard functional data structures and operations, as well
as some common table types, including the multidimensional normal function
table type used in the example. This library will be extended in the future to
support other table types.

A tabular expression is simply data structured according to the model, con-
taining functions at the cell level. Evaluation and restriction checking are com-
pletely generic operations, because all semantic information is explicit in the
“type” part of the table data.

438

Tabular expressions that describe software behaviour can be “animated” with
compiled FCN code to produce simulations, test oracles or prototypes.

6.1 Total Functions and Theorem Proving

There is ongoing work [10] to represent the formal model of tabular expressions
as a theory in the proving system PVS. This would complement the services of
the evaluation tools by allowing to prove properties of tables universally for a
class of variable valuations.

Because of the close similarity between the calculi of total functions and the
higher-order logic of PVS, and because of the explicit treatment of partiality
issues in the FCN implementation, large parts of the implementation’s design
carry over to PVS directly. The FCN type checker has proved a valuable tool
for quick consistency checking in the design process, helping to keep consistency
proof obligations in the PVS theory tractable.

7 Conclusion

The work described in this paper is an experimental use of functional program-
ming in the creation of software engineering tools. The approach has provided a
formulation of the mathematical model of tabular expressions that can reflect se-
mantics precisely, but is also directly and effectively executable. The strict type
system has proven a valuable consistency check. The features of functional pro-
gramming that are supposed to support abstraction and reuse in functional pro-
gramming, namely parametric polymorphism and higher-order functions, have
found essential use, e.g., as primitive recursion operators and monadic liftings.

We have also found that the notion of total functional programming, that is
looked upon with some scepticism by most of the community, is quite feasible for
this specific application. The absence of general recursion does not impede the
construction or interpretation of tables unduly. The pervasive use of recursion
operators even encourages a point-free programming style.3

The absence of infinite evaluation branches greatly simplifies the choice of,
and encourages experiments with, evaluation strategies. This applies both at run-
time, where no semantic difference between eager and lazy evaluation exists, and
also at compile-time to program specialization by partial evaluation. Both cases
are investigated in ongoing work.

Finally, we have found that a calculus of total functions greatly reduces
the impedance mismatch between the implementation of a formalism and its
formalization in a proof system, making it attractive for projects that involve
both evaluation and verification.

3 An obvious benefit from the viewpoint of the functional programmer, but of ques-
tionable merit for the software engineer.

439

Acknowledgements

Thanks to Dennis Peters, Mark Lawford and other SQRL members for helpful
discussions.

References

1. Parnas, D.L.: Tabular representation of relations. CRL Report 260, McMaster
University (1992)

2. Balaban, A., Bane, D., Jin, Y., Parnas, D.L.: Mathematical model of tabular
expressions. SQRL draft (2007) available for review.

3. Parnas, D.L., Madey, J., Iglewski, M.: Precise documentation of well-structured
programs. IEEE Trans. Softw. Eng. 20(12) (1994) 948–976

4. Kahl, W.: Compositional syntax and semantics of tables. SQRL Report 15, Mc-
Master University (2003)

5. Lawford, M., Froebel, P., Moum, G.: Application of tabular methods to the specifi-
cation and verification of a nuclear reactor shutdown system. Submitted to Formal
Methods in System Design (2000)

6. Jing, M.: A table checking tool. SERG Report 384, McMaster University (2000)
7. Parnas, D.L.: Predicate logic for software engineering. IEEE Trans. Softw. Eng.

19(9) (1993) 856–862
8. Turner, D.A.: Total functional programming. Universal Computer Science 10(7)

(2004) 751–768
9. Spivey, M.: A functional theory of exceptions. Sci. Comput. Program. 14(1) (1990)

25–42
10. Peters, D.K., Lawford, M., Trancón y Widemann, B.: An IDE for software devel-

opment using tabular expressions. In: CASCON 2007. (2007) to appear.

440

Positive Supercompilation
for a higher order call-by-value language

Peter A. Jonsson and Johan Nordlander

{pj,nordland}@csee.ltu.se
Lule̊a University of Technology

Abstract. Previous deforestation and supercompilation algorithms may
introduce termination when applied to call-by-value programs. This hides
looping bugs from the programmer, and changes the behaviour of a pro-
gram depending on whether it is optimized or not. We present a su-
percompilation algorithm for a higher-order call-by-value language that
preserves termination properties. This algorithm utilizes strictness infor-
mation for deciding whether to substitute or not and compares favorably
with previous call-by-name transformations.

1 Introduction

Intermediate lists in functional programs allow the programmer to write clear
and concise programs, but carry a cost at run time since list cells need to be both
allocated and garbage collected. Both deforestation [19] and supercompilation
[14] are automatic program transformations that remove many of these interme-
diate structures. In a call-by-value context these transformations are unsound,
and might hide looping bugs from the programmer. Consider the program

(λx.y)⊥.

Applying Wadler’s deforestation algorithm [19] to the program will result in
y, which is sound under call-by-name or call-by-need. The non-termination under
call-by-value in the original program has been removed, and hence the meaning
of the program has been altered by the transformation. Removal of intermediate
structures in a strict language is still desirable though, perhaps even more than
in a lazy language since the entire intermediate structure has to stay alive during
the entire computation.

We show how to construct a meaning-preserving supercompilation scheme
for call-by-value languages. It might seem like such a result should be easily
obtainable from a call-by-name algorithm by simply delaying beta-reduction
until every function argument has been specialized to a value. However, it turns
out that this strategy misses even simple opportunities to remove intermediate
structures. The explanation is that eager specialization of function arguments
risks destroying fold opportunities that might otherwise appear, something which
may even prohibit complexity improvements to the resulting program.

441

The novelty of our supercompilation algorithm is that it concentrates all call-
by-value dependencies to a single rule that relies on the result from a separate
strictness analysis for correct behavior. In effect, our algorithm delays transfor-
mation of function arguments past inlining, much like a call-by-name scheme
does, although only as far as is legal with respect to call-by-value semantics.
The result is an algorithm that is able to improve a wide range of illustrative
examples like the existing algorithms do, but without the risk of introducing
superficial termination. The specific contributions of our work are:

– We provide an algorithm for positive supercompilation including folding, for
a strict and pure higher-order functional language (Section 4).

– Section 5 outlines extensions to improve transformational power.
– We prove that a restricted version of our algorithm preserve call-by-value

semantics (Section 6).

We start out with some examples in Section 2 to give the reader an intuitive
feel of how the algorithm behaves. Our language of study is defined in Section 3
right before the technical contributions are presented.

2 Examples

We call our transformation algorithm D and let DJeK denote the result of trans-
forming an expression e. The transformation takes an expression and a set of
global definitions as input, and returns a new expression together with a new
set of global definitions.

The inherent conflict between having call-by-value semantics and delaying
evaluation of arguments as long as possible is the core of the problem we face
when trying to construct an equally powerful call-by-value deforestation algo-
rithm as the previous call-by-name ones. Consider a slightly contrived example,
DJ skipFst ⊥ True K. Under call-by-name this evaluates to 1. However, this re-
sult is not possible to reach under call-by-value semantics, since there is obvious
non-termination in the original code snippet. The call-by-value semantics force
worse performance; the best transformation result that still preserves semantics
is let x = ⊥ in 1.

skipFst x cond = case cond of {True → 1; False → 2}
append xs ys = case xs of {[] → ys; (x : xs) → x : append xs ys}

Wadler [19] uses the example append (append xs ys) zs and shows that his
deforestation algorithm transforms the program so that its complexity is reduced
from 2|xs|+ |ys| to |xs|+ |ys|, thereby saving one traversal of the first list.

If we näıvely change Wadler’s algorithm to call-by-value semantics by eagerly
attempting to transform arguments before attacking the body, we do not achieve
this improvement in complexity. An example from a fictional driving algorithm
that attacks arguments first is:

442

DJ append (append xs ′ ys ′) zs ′ K

(Drive append xs ′ ys ′ in the context append [] zs ′)

= DJ case xs ′ of
[] → append ys ′ zs ′
(x : xs) → append (x : append xs ys ′) zs ′K

(Drive each branch, we focus on the (x:xs) case)

= DJ append (x : append xs ys ′) zs ′ K

(The expression has a previously seen expression embedded in it.
x : append xs ys ′ is extracted for separate driving)

= DJ x : append xs ys ′ K
= DJ x : case xs of

[] → ys ′
(x ′ : xs ′) → x ′ : append xs ′ ys ′ K

(A renaming of a previous expression in the (x’:xs’) branch)

The end result from this driving is:

DJ append (append xs ′ ys ′) zs ′ K = case xs ′ of
[] → h1 ys ′ zs ′

(x : xs) → h1 (h2 x xs ys ′) zs ′

h1 xs ys = case xs of {[] → ys; (x ′ : xs ′) → x ′ : h1 xs ′ ys}
h2 x xs ys = x : case xs of {[] → ys; (x ′ : xs ′) → h2 x ′ xs ′ ys}

The intermediate structure in the input is still there after the transformation,
and the complexity remains at 2|xs|+ |ys|!

However, doing the exact opposite — that is, carefully delaying transforma-
tion of arguments to a function past inlining of its body — actually leads to the
same result as Wadler obtains after transforming append (append xs ys) zs.

Notice that the primitive operations ranged over by ⊕ in this language are
supposed to be strict with regards to both arguments. This stands in contrast
to ordinary functions, which can be inlined and partially evaluated for a couple
of steps even if the arguments are unknown. Our algorithm leaves a primitive
operation in place if any of its arguments fails to specialize to a primitive value.

If we had a perfect strictness analysis and could decide whether an arbitrary
expression will terminate or not, the only difference in results between our algo-
rithm and a call-by-name counterpart would be for the non-terminating cases.
In practice, we have to settle for an approximation, such as the simple analysis
defined in Figure 3. One may speculate whether the transformations thus missed
will have adverse effects on the usefulness of our algorithm in practice. We believe

443

we have seen clear indications that this is not the case, and that crucial factor
instead is the ability to inline function bodies irrespective of whether arguments
are values or not.

We claim that our algorithm compares favorably with previous call-by-name
transformations, and proceed with demonstrating the transformation of common
examples. The results are equal to those of Wadler [19]. Our first example is
transformation of sum (map square ys). The functions used in the examples are
defined as:

square x = x ∗ x
map f xs = case xs of {[] → []; (x ′ : xs ′) → (f x ′) : (map f xs ′) }
sum xs = case xs of {[] → 0; (x ′ : xs ′) → x ′ + sum xs ′ }

We start our transformation by allocating a new fresh function name (h0) to
this expression, inlining the body of sum and substituting map square ys into
the body of sum:

DJcase (map square ys) of {[] → 0; (x ′ : xs ′) → x ′ + sum xs ′ }K.

After inlining map and substituting the arguments into the body the result
becomes:

DJ case (case ys of {[] → []; (x ′ : xs ′) → (square x ′) : (map square xs ′)}) of
[] → 0
(x ′ : xs ′) → x ′ + sum xs ′ K

We duplicate the outer case in each of the inner case’s branches, using the
expression in the branches as head of that case-statement. Continuing the trans-
formation on each branch with ordinary reduction steps yields:

case ys of {[] → 0; (x ′ : xs ′) → DJ square x ′ + sum (map square xs ′) K})

Now inline the body of the first square and observe that the second argument
to (+) is similar to the expression we started with. A most specific generalization
(msg) between the starting expression and the current expression is calculated,
effectively splitting the expression in several parts. These expressions are trans-
formed separately. We replace the second parameter to (+) with h0 xs ′. The
result of our transformation is h0 ys, with h0 defined as:

h0 ys = case ys of
[] → 0
(x ′ : xs ′) → x ′ ∗ x ′ + h0 xs ′

This new function only traverses its input once, and no intermediate struc-
tures are created. If the expression sum (map square xs) or a renaming thereof
is detected elsewhere in the input, a call to h0 will be inserted there instead.

The following examples are due to Ohori and Sasano [8]. We need the fol-
lowing new function definitions:

444

mapsq xs = case xs of { [] → []; (x ′ : xs ′) → (x ′ ∗ x ′) : (mapsq xs ′) }
f xs = case xs of { [] → []; (x ′ : xs ′) → (2 ∗ x ′) : (g xs ′)
g xs = case xs of { [] → []; (x ′ : xs ′) → (3 ∗ x ′) : (f xs ′)

Evaluating DJ mapsq (mapsq xs)K will inline the outer mapsq , substitute the
argument in the function body and inline the inner call to mapsq :

DJ case (case xs of {[] → []; (x ′ : xs ′) → (x ′ ∗ x ′) : (mapsq xs ′)}) of
[] → []
(x ′ : xs ′) → (x ′ ∗ x ′) : (mapsq xs ′) K

As previously, we duplicate the outer case in each of the inner case’s branches,
using the expression in the branches as head of that case-statement. Continuing
the transformation on each branch by ordinary reduction steps yields:

case xs of {[]→ [];(x ′ : xs ′)→ DJ (x ′ ∗ x ′ ∗ x ′ ∗ x ′) : (mapsq (mapsq xs ′)) K }

This will fold in a few steps, and the final result of our transformation is
h1 xs, with the new residual function h1 that only traverses its input once:

h1 xs = case xs of {[] → []; (x ′ : xs ′) → ((x ′ ∗ x ′) ∗ (x ′ ∗ x ′)) : (h1 xs ′)) K }

For an example of transforming mutually recursive functions, consider the
transformation DJ sum (f xs)K . Inlining the body of sum, substituting its argu-
ments in the function body and inlining the body of f yields:

DJ case (case xs of {[] → []; (x ′ : xs ′) → (2 ∗ x ′) : (g xs ′)}) of
[] → 0
(x ′ : xs ′) → x ′ + sum xs ′ K

Moving down the outer case into each branch, performing reductions to end
up with:

case xs of {[] → 0; (x ′ : xs ′) → DJ (2 ∗ x ′) + sum (g xs ′) K }

We notice that unlike in previous examples, sum (g xs ′) is not similar to
what we started transforming. For space reasons, we focus on the transformation
of the expression in the last branch, DJ(2 ∗ x ′) + sum (g xs ′) K, while keeping
the functions already seen in mind. We inline the body of sum, perform the
substitution of its arguments and inline the body of g :

DJ (2 ∗ x ′) + case (case xs ′ of {[] → []; (x ′′ : xs ′′) → (3 ∗ x ′′) : (f xs ′′)}) of
[] → 0
(x ′ : xs ′) → x ′ + sum xs ′ K

We now move down both (2 ∗ x ′) and the outer case into each branch, and
perform reductions:

case xs ′ of
[] → (2 ∗ x ′) + 0
(x ′′ : xs ′′) → DJ (2 ∗ x ′) + (3 ∗ x ′′) + sum (f xs ′′) K

445

We notice a familiar expression in sum (f xs ′′), and fold when reaching it.
Adding it all together gives a new function h2:

h2 xs = case xs of
[] → 0
(x ′ : xs ′) → case xs ′ of

[] → (2 ∗ x ′) + 0
(x ′′ : xs ′′) → (2 ∗ x ′) + (3 ∗ x ′′) + h2 xs ′′

Kort [4] studied a ray-tracer written in Haskell, and identified a critical func-
tion in the innermost loop of a matrix multiplication, called vecDot :

vecDot xs ys = sum (zipWith (∗) xs ys)

This is simplified by our positive supercompiler to:

vecDot xs ys = h1 xs ys
h1 xs ys = case xs of

(x ′ : xs ′) → case ys of
(y ′ : ys ′) → x ′ ∗ y ′ + h1 xs ′ ys ′

→ 0
→ 0

The intermediate list between sum and zipWith is transformed away, and
the complexity is reduced from 2|xs| + |ys| to |xs| + |ys| (since this is matrix
multiplication |xs| = |ys|).

3 Language

Our language of study is a strict, higher-order, functional language with let-
bindings and case-expressions. Its syntax for expressions, values and patterns
is:

e, f ::= n | x | g | f e | λx.e | k e | e1 ⊕ e2 | let x = f in e
| case e of {pi → ei}

p ::= n | k x
v ::= n | λx.e | k v

We let constructor symbols be denoted by k. Let g range over a set G of global
definitions whose right-hand sides are all values. Recursion is only allowed at the
top level but this restriction is not particularly burdensome – if a local function
needs to be recursive, it can always be lambda-lifted [3] to the top level.

The language contains integer values n and arithmetic operations⊕, although
these meta-variables can preferably be understood as ranging over primitive
values in general and arbitrary operations on these. We let + denote the semantic
meaning of ⊕.

All functions have a specific arity and all applications must be saturated;
hence λx .map (+1) x is legal whereas map (+1) is not. We abbreviate a list of
expressions e1 . . . en as e, and a list of variables x1 . . . xn as x.

446

Reduction contexts

E ::= [] | E e | (λx.e) E | k E | E ⊕ e | n⊕ E | let x = E in e | case E of {pi → ei}

Evaluation relation

E〈g〉 7→ E〈v〉, if (g = v) ∈ G (Global)
E〈(λx.e) v〉 7→ E〈[v/x]e〉 (App)
E〈let x = v in e〉 7→ E〈[v/x]e〉 (Let)
E〈case k v of {ki xi → ei}〉 7→ E〈[v/xj]ej〉, if k = kj (KCase)
E〈case n of {ni → ei}〉 7→ E〈ej〉, if n = nj (NCase)
E〈n1 ⊕ n2〉 7→ E〈n〉, if n = n1 + n2 (Arith)

Fig. 1. Reduction semantics

A program is an expression with no free variables except those defined in
G. The intended operational semantics is given in Figure 1, where [e/x]e′ is the
capture-free substitution of expressions e for variables x in e′.

A reduction context E is a term containing a single hole [], which indicates
the next expression to be reduced. The expression E〈e〉 is the term obtained by
replacing the hole in E with e. E denotes a list of terms with just a single hole,
evaluated from left to right. We use ≡ to denote equality up to renaming of
variables.

If a variable appears no more than once in a term, that term is said to be
linear with respect to that variable. Like Wadler [19], we extend the definition
slightly for linear case terms: no variable may appear in both the selector and a
branch, although a variable may appear in more than one branch. The definition
of append is linear, although ys appears in both branches.

4 Higher Order Positive Supercompilation

Our supercompiler is defined as a set of rewrite rules that pattern-match on ex-
pressions. This algorithm is called the driving algorithm, and is defined in Figure
2. Two additional parameters appear as subscripts to the rewrite rules: a mem-
oization list ρ and a driving context R. The memoization list holds information
about expressions already traversed and is explained more in detail in Section
4.1. The driving context R is smaller than E , and is defined as follows:

R ::= [] | R e | caseR of {pi → ei} | R ⊕ e | e⊕R

Interestingly this definition coincides with the evaluation contexts for a call-by-
name language. The reason our algorithm still preserves a call-by-value semantics
is that beta-reduction (rule R8) results in a let-binding, whose further special-
ization in rule R11 depends on whether the body expression f is strict in the
bound variable x or not.

In principle, an expression e is strict with regards to a variable x if it even-
tually evaluates x; in other words, if e 7→ . . . 7→ E〈x〉. Such information is in

447

DJnKR,ρ = R〈n〉 (R1)
DJk eK[],ρ = kDJeK[],ρ (R2)
DJx eKR,ρ = R〈xDJeK[],ρ〉 (R3)
DJλx.eK[],ρ = (λx.DJeK[],ρ) (R4)
DJn1 ⊕ n2KR,ρ = DJR〈n〉K[],ρ, where n = n1 + n2 (R5)
DJe1 ⊕ e2KR,ρ = DJe1K[],ρ ⊕DJe2K[],ρ, if e1 ⊕ e2 = a (R6)

DJe2KR〈e1⊕[]〉,ρ, if e1 = n or e1 = a
DJe1KR〈[]⊕e2〉,ρ, otherwise

DJg eKR,ρ = DappJg eKR,ρ (R7)
DJ(λx.f) eKR,ρ = DJlet x = e in fKR,ρ (R8)
DJe eKR,ρ = DJeKR〈[] e〉,ρ (R9)
DJlet x = v in fKR,ρ = DJR〈[v/x]f〉K[],ρ (R10)
DJlet x = e in fKR,ρ = DJR〈[e/x]f〉K[],ρ, if e = g|x or x ∈ strict(f) (R11)

let x = DJeK[],ρ inDJR〈f〉K[],ρ, otherwise
DJcase x of {pi → ei}KR,ρ = case x of {pi → DJR〈[pi/x]ei〉K[],ρ} (R12)
DJcase kj e of {ki xi → ei}KR,ρ = DJlet xj = e in ejKR,ρ (R13)
DJcase nj of {ni → ei}KR,ρ = DJR〈ej〉K[],ρ (R14)
DJcase a of {pi → ei}KR,ρ = caseDJaK[],ρ of {pi → DJR〈ei〉K[],ρ}, (R15)
DJcase e of {pi → ei}KR,ρ = DJeKR〈case []of {pi→ei}〉,ρ

(R16)

DJeK[],ρ = DJe1K[],ρ, . . . ,DJenK[],ρ (R17)

Fig. 2. Driving algorithm

general not computable, although call-by-value semantics allows for reasonably
tight approximations. One such approximation is given in Figure 3, where the
strict variables of an expression e are defined as all free variables of e except
those that only appear under a lambda or not inside all branches of a case.

strict(x) = {x}
strict(n) = ∅
strict(g) = ∅
strict(k e) = strict(e)
strict(λx.e) = ∅
strict(f e) = strict(f) ∪ strict(e)
strict(let x = e in f) = strict(e) ∪ (strict(f)\{x})
strict(case e of {pi → ei}) = strict(e) ∪ (

T
(strict(ei)\fv(pi))

strict(e1 ⊕ e2) = strict(e1) ∪ strict(e2)

Fig. 3. The strict variables of an expression

There is an ordering between rules; i.e., all rules must be tried in the order
they appear. Rules R9 and R16 are the default fallback cases which extend the
given driving context R and zoom in on the next expression to be driven. Meta-
variable a in rules R6 and R15 stands for an “annoying” expression; i.e., an
expression that would be further reducible were it not for a free variable getting

448

in the way. The grammar for annoying expressions is as follows:

a ::= x | n⊕ a | a⊕ n | a⊕ a | a e

It is important to note that we allow empty argument vectors for all rules.
Further, we assume that rule R7 matches the largest possible redex. The first
alternative for rule R6 will only be selected if R is the empty context since rule
R15 catches any ⊕s that are in the head of a case statement.

Some expressions should be handled differently depending on context. If a
constructor application appears in an empty context, there is not much we can
do but to drive the argument expressions (rule R2). On the other hand - if the
application occurs at the head of a case expression, we may choose a branch
on basis of the constructor and leave the arguments unevaluated in the hope of
finding fold opportunities further down the syntax tree (rule R13).

The argumentation is analogous for lambda abstractions: if there is a sur-
rounding context we perform a beta reduction, otherwise we drive its body.

The algorithm only performs substitutions of expressions in one rule (R11),
hence there is only one possible source of code duplication. Duplicating code
forces evaluation of the same expression multiple times, in addition to the in-
crease in code size.

If duplication must be avoided, restrict substitution in R11 to the cases where
the body of f is linear with respect to the bound variable x. However, this issue is a
bit more complicated, as it might sometimes be beneficial to duplicate code that
enables further transformations. The current algorithm has no means of finding
a suitable trade-off, so it ignores the problem and always performs substitution
when strictness so allows. Obtaining a more refined behavior in this respect is
left for future work.

4.1 Application Rule

In the driving algorithm rule R7 refers to DappJ K, defined in Figure 4. This
algorithm destructively updates a set defs with new function definitions as a
side-effect. The input definitions are also accessed as the implicit parameter G.
DappJ K can be inlined in the definition of the driving algorithm, it is merely
given a separate name for improved clarity of the presentation.

DappJg eKR,ρ =h′ x, if ∃(t, h′)∈ρ . t ≡ R〈g e〉
θ′2DJtgK[],ρ, if ∃(t, h′)∈ρ . t E R〈g e〉 and tg 6=x
θ3DJR〈y〉K[],ρ, if ∃(t, h′)∈ρ . t E R〈g e〉 and tg=x
h x, defs := defs ∪ (h, λx.e′), if h ∈ fv(e′)
e′, otherwise

where (g = v) ∈ G, e′ = DJR〈v e〉K[],ρ′ , (tg, θ1, θ2) = msg(t,R〈g e〉)
x = fv(R〈g e〉), ρ′ = ρ ∪ (R〈g e〉, h), h, y and x′ fresh,
θ′2 = DJθ2K[],ρ, θ3 = [DJg x′K[],ρ/y,DJeK[],ρ/x′]

Fig. 4. Driving applications

449

Care needs to be taken to ensure that recursive functions are not inlined
forever. The driving algorithm keeps a record of previously seen applications
in the memoization list ρ; whenever it detects an expression that is equivalent
(up to alpha conversion) to a previous expression, the algorithm creates a new
recursive function hn for some n. Whenever such an expression is encountered
again, a call to hn is inserted. This is not sufficient to guarantee termination of
the algorithm, but the mechanism is crucial for the complexity improvements
mentioned in Section 2.

To ensure termination, we use the homeomorphic embedding relation E to
define a predicate called “the whistle”. The intuition is that when e E f , f
contains all subterms of e, possibly embedded in other terms. For any infinite
sequence e0, e1, . . . there exists i and j such that i < j and ei E ej . This condition
is sufficient to ensure termination.

We need a definition of uniform terms analogous to the work by Sørensen
and Glück [13], with some small adjustments specific to our language.

Definition 1 (Uniform terms). Let s range over a the set G ∪ X ∪ K ∪
{caseof , letin}, and let caseof(e) (letin(e)) denote a case (let) expression con-
taining subexpressions e. The set of small terms T is the smallest set of arity
respecting symbol applications s(e).

Definition 2 (Homeomorphic embedding). Define E as the smallest rela-
tion on T satisfying:

x E y, n1 E n2,
e E fi for some i
e E s(f1, . . . , fn)

,
e1 E f1, . . . , en E fn

s(e1, . . . , en) E s(f1, . . . , fn)

Whenever the whistle blows, our algorithm splits the current input expres-
sion into strictly smaller terms that are driven separately in the empty context.
We split the expression by calculating the most specific generalization of the
input and the embedded expression. The most specific generalization entails the
smallest possible loss of knowledge, and is defined as:

Definition 3 (Most specific generalization).

– An instance of a term e is a term of the form θe for some substitution θ.
– A generalization of two terms e and f is a triple (tg, θ1, θ2), where θ1, θ2 are

substitutions such that θ1tg ≡ e and θ2tg ≡ f .
– A most specific generalization (msg) of two terms e and f is a generalization

(tg, θ1, θ2) such that for every other generalization (t′g, θ
′
1, θ

′
2) of e and f it

holds that tg is an instance of t′g.

We refer to tg as the ground term. For background infromation and an algo-
rithm to compute most specific generalizations, see Lassez et. al [5]. An example
of the homeomorphic embedding and the msg is:

e f tg θ1 θ2

e E Just e x [e/x] [Just e/x]
Right e E Right (e, e ′) Right x [e/x] [(e, e′)/x]
fac y E fac (y − 1) fac x [y/x] [(y − 1)/x]

450

4.2 Positive Supercompilation versus Deforestation

The additional strength in positive supercompilation comes from propagating
information about the pattern of each branch in a case statement (rule R12 in
our definition). It is not hard to craft a program by hand that benefits from
this extra information propagation. It turns out that this information is useful
for real programs as well. An example collected from Conway’s Life in the nofib
benchmark suite [9] is the expression concat (map star xs) with star defined as:

star n = case n of {0 → ′′ ′′; 1 → ′′o′′}

Evaluating DJ concat (map star xs)K results in the function h ′1 xs:

h ′1 (x : xs) = case x of
0 → case xs of

[] → [′ ′]
(x ′ : xs ′) → let h2 = h ′1 xs in [′ ′, h2]

1 → case xs of
[] → [′ ′,′ o′])
(x ′ : xs ′) → let h3 = h ′1 xs in [′ ′, ′o′, h3]

h1 (x : xs) = case x of
0 → case xs of

[] → case x of { 0 → [′ ′]; 1 → [′ ′, ′o′] }
(x ′ : xs ′) → let h2 = h1 xs in case x of

0 → [′ ′, h2]
1 → [′ ′, ′o′, h2]

1 → case xs of
[] → case x of { 0 → [′ ′]; 1 → [′ ′, ′o′] }
(x ′ : xs ′) → let h3 = h1 xs in case x of

0 → [′ ′, h3]
1 → [′ ′, ′o′, h3]

In comparison, the function h1 is the output from our algorithm if we remove
the extra information propagation from rule R12. There are two case-statements
in this function that pattern matches on x. The second one is not necessary, since
the value of x must be either 0 or 1 depending on which branch it has previously
taken.

5 Extended Let-rule

The driving algorithm can be extended in various ways that will make it more
powerful. We show that with an extended Let-rule in combination with a disabled
whistle for closed expressions we can evaluate arbitrary closed expressions.

If the let-expression contains no free variables we could drive either the right
hand side or the body and see what the result is. We could augment rule R11

451

with a second and third alternative:

DJlet x = e in fKR,ρ = DJR〈[e/x]f〉K[],ρ, if e = g, e = x or x ∈ strict(f)
DJR〈[v/x]f〉K[],ρ, if DJeK[],ρ = v
DJR〈[e/x]f ′〉K[],ρ, if DJfK[],ρ = f ′, and x ∈ strict(f ′)
let x = DJeK[],ρ inDJR〈f〉K[],ρ, otherwise

The reasoning behind this is that a closed expression contains all information
that is needed to evaluate it, thus a fold should be unnecessary. If the expression
diverges, then so does the final program.

The immediate question following from the above is whether this is beneficial
for expressions that are not closed, a question we have no definite answer to. An
example of the benefit of driving the body is bodyEx as shown below.

bodyEx = let x = e in case [] {[] → x ; (x : xs) → y}

DJ bodyEx K
= DJ let x = e in case [] of { [] → x ; (x : xs) → yK } (R7)
= DJ e K (R11)

We can see how the body becomes strict after driving it, which opens up for
further transformations.

Disabling the whistle for closed expressions in combination with the let rule
above yields 6 from DJ fac 3 K. This works for arbitrary closed expressions that
are in the language, so, for example DJ sum [1..3] K = 6.

6 Total Correctness

The problem with previous deforestation and supercompilation algorithms in a
call-by-value context is that they might change termination properties of pro-
grams. In this section, we prove that a slightly restricted version of our super-
compiler does not alter whether a program terminates or not.

We define the standard notions of operational approximation and equiva-
lence. A general context C which has zero or more holes in the place of some
subexpressions is introduced.

Definition 4 (Operational approximation, Operational Equivalence).

– e operationally approximates e’, e@˜e′, if for all contexts C such that C[e],
C[e’] are closed, if evaluation of C[e] terminates then so does evaluation of
C[e’].

– e is operationally equivalent to e’, e ∼= e′, if e@˜e′ and e′@˜e

The correctness of deforestation in a call-by-name setting has previously been
shown by Sands [10] using his improvement theory. Notice that improvement D
below is not the same as the homeomorphic embedding E defined previuosly.
We use Sands’s definitions for improvement and strong improvement:

452

Definition 5 (Strong Improvement, Cost equivalent).

– e is improved by e’, e D e′, if for all contexts C such that C[e], C[e’] are
closed, if computation of C[e] terminates using n function calls, then com-
putation of C[e’] also terminates, and uses no more than n function calls.

– e is strongly improved by e’, e Ds e′, iff e D e′ and e ∼= e′.
– e and e’ are cost equivalent, e ED e′ iff e D e′ and e′ D e

Cost equivalence implies strong improvement. With these definitions in place,
total correctness for a transformation can be stated:

Theorem 1 (Sands). If e Ds e′, a transformation that replaces e by e’ is totally
correct.

Improvement theory in a call-by-value setting requires Sands’s operational
metatheory for functional languages [11], where the improvement theory is a sim-
ple corollary of improvement induction over the well fonded resource structure
〈N, 0,+,≥〉.

Our set G corresponds to Sands’s global recursive constants. We therefore
label evaluation in one step using the Global-rule with the resource 1. We use
e 7→k v to denote that e will evaluate to v using the Global rule k times, and
any other rule as many times as it needs.

The expression let x = e in (x , x) is not improved by (e, e), so we restrict
rule R11 to only allow substitution if the body is both strict and linear with
respect to the variable bound. We let v R† v′ for some relation R mean that
v = (λx.e), v′ = (λx.e′) and eR e′ or v = v′.

Proposition 1 (Total Correctness). For all well-formed and well-typed ex-
pressions e, e Ds DJeK[],ρ.

Proof (Proof sketch for D of R11).
Let R be the relation containing ≡, together with all pairs of closed expres-

sions where f is linear and strict with respect to x on the form (R〈let x = e in f〉,
R〈[e/x]f〉). Assume f 7→l E〈x〉, e 7→k v, and notice that R〈let x = [] in f〉 is a
reduction context.

Evaluation yields R〈let x = e in f〉 7→k R〈let x = v in f〉 which will evaluate
to R〈[v/x]f〉, and proceed R〈[v/x]f〉 7→l E〈v〉. There are matching evaluation
steps (in different order) in R〈[e/x]f〉: R〈[e/x]f〉 7→l E〈e〉 7→k E〈v〉. From this
we conclude that R〈let x = e in f〉 7→n v, for some n ≥ k + l.

The remaining conditions for improvement simulation are satisfied since v ≡†

v, which implies v R† v as required.

The proof for rule R7 is similar in structure to the proof by Sands [10, p.
24], and all other rules are cost equivalences, which implies strong improvement.
The structure of the proofs for cost equivalence closely resembles the example
by Sands [10, p. 14].

453

7 Termination

The homeomorphic embedding is a sufficient condition for ensuring termination.
When the whistle blows, we split our expression into several strictly smaller
expressions that are driven in the empty context. Termination can be proved
using the framework by Sørensen [16].

Our proof is similar in structure to Sørensen’s termination proof for super-
compilation [16]. It is however simpler since we avoid partitioning nodes into
trivial and non-trivial nodes and use a single predicate (the homeomorphic em-
bedding) to control inlining.

8 Related work

There exists much literature concerning algorithms that remove intermediate
structures in functional programs. Most of it is however in a call-by-name or
call-by-need context which makes it a different, yet difficult, problem.

8.1 Transformations for Strict Languages

The seminal work by Turchin on Supercompilation [17] is closely related to
our work. The supercompiler was originally intended for the strict functional
language Refal [18]. The supercompiler could therefore introduce termination in
Refal programs, the problem we set out to solve with our work.

More recently Ohori and Sasano presented a lightweight fusion algorihtm [8],
which they applied to variant of Standard ML. They limit their algorithm to in-
lining each function at most once, thereby avoiding termination problems. This
gives the unfortunate side effect that it does not handle two successive applica-
tions of the same function, nor mutually recursive functions as our examples in
Section 2.

8.2 Transformations for Lazy Languages

Focusing on the closest relatives to our algorithm will bring out Wadler’s defor-
estation algorithm [19] for a first order language as the start for deforestation
research. This was later extended to a higher-order language by Marlow and
Wadler [6]. Refinements to this was made by Marlow [7] and Hamilton [1, 2].

Work by Sørensen et. al. on the positive supercompiler [14] deserves a special
mention. Their work clearly explains the difference between deforestation and
supercompilation, giving lots of illustrative examples. While the context is a lazy
language, many of their insights apply to our work as well. Secher and Sørensen
later refined this work to propagate both negative and positive information in
the perfect supercompiler [12].

454

9 Conclusion

We have presented a positive supercompiler for a higher-order call-by-value lan-
guage. It is proven correct for all input.

The adjustment to the algorithm for preserving call-by-value semantics is
new and works surprisingly well for many examples that were intended to show
the usefulness of call-by-name transformations.

9.1 Future work

We believe that the restriction of rule R11 in the proof of correctness is not
necessary for the soundness of our algorithm, but have not found a way to prove
it yet. We will investigate how the concept of an inline budget may be used to
obtain good balance between code size and inlining benefits.

The current termination strategy could be improved with respect to the
transformation result, the current definition inlines a little too much. The algo-
rithm should start over and calculate a msg at the expression t when the whistle
blows, just like Supercompilation [15] does.

More work could be done on strictness analysis component of our supercom-
piler. We do not intend to focus on that subject, though; instead we hope that
the modular dependency on strictness analysis will allow our supercompiler to
readily take advantage of general improvements in the area.

Acknowledgements

The authors would like to thank Simon Marlow, Duncan Coutts and Neil Mitchell
for valuable discussions. We would also like to thank Viktor Leijon for reading
earlier drafts of this paper and providing useful comments for improvements.

References

1. G. W. Hamilton. Higher order deforestation. In PLILP ’96: Proceedings of the 8th
International Symposium on Programming Languages: Implementations, Logics, and
Programs, pages 213–227, London, UK, 1996. Springer-Verlag. ISBN 3-540-61756-6.

2. G. W. Hamilton. Higher order deforestation. Fundam. Informaticae, 69(1-2):39–61,
2006.

3. T. Johnsson. Lambda lifting: Transforming programs to recursive equations. In
FPCA, pages 190–203, 1985.

4. J. Kort. Deforestation of a raytracer. Master’s thesis, University of Amsterdam,
1996.

5. J-L. Lassez, M. Maher, and K. Marriott. Unification revisited. In Jack Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 587–625.
Morgan Kaufmann, 1988.

6. S. Marlow and P. Wadler. Deforestation for higher-order functions. In John Launch-
bury and Patrick M. Sansom, editors, Functional Programming, Workshops in Com-
puting, pages 154–165. Springer, 1992. ISBN 3-540-19820-2.

455

7. S. D. Marlow. Deforestation for Higher-Order Functional Programs. PhD thesis,
Univ. of Glasgow, 27 April 1995.

8. A. Ohori and I. Sasano. Lightweight fusion by fixed point promotion. In M. Hof-
mann and M. Felleisen, editors, Proceedings of the 34th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2007, Nice, France,
January 17-19, 2007, pages 143–154. ACM, 2007. ISBN 1-59593-575-4.

9. W. Partain. The nofib benchmark suite of haskell programs. In John Launchbury
and Patrick M. Sansom, editors, Functional Programming, Workshops in Comput-
ing, pages 195–202. Springer, 1992. ISBN 3-540-19820-2.

10. D. Sands. Proving the correctness of recursion-based automatic program transfor-
mations. Theoretical Computer Science, 167(1–2):193–233, 30 October 1996.

11. D. Sands. From SOS rules to proof principles: An operational metatheory for
functional languages. In Proceedings of the 24th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). ACM Press, January
1997.

12. J. P. Secher and M. H. Sørensen. On perfect supercompilation. In D. Bjørner,
M. Broy, and A. Zamulin, editors, Proceedings of Perspectives of System Informatics,
volume 1755 of Lecture Notes in Computer Science, pages 113–127. Springer-Verlag,
2000.

13. M. H. Sørensen and R. Glück. An algorithm of generalization in positive super-
compilation. In J.W. Lloyd, editor, International Logic Programming Symposium,
pages 465–479. Cambridge, MA: MIT Press, 1995.

14. M. H. Sørensen, R. Glück, and N. D. Jones. A positive supercompiler. Journal of
Functional Programming, 6(6):811–838, 1996.

15. M.H. Sørensen and R. Glück. Introduction to supercompilation. In Partial Evalu-
ation - Practice and Theory, DIKU 1998 International Summer School, pages 246–
270, London, UK, 1999. Springer-Verlag.

16. M.H. Sørensen. Convergence of program transformers in the metric space of trees.
Sci. Comput. Program, 37(1-3):163–205, 2000.

17. V. F. Turchin. The concept of a supercompiler. ACM Transactions on Program-
ming Languages and Systems, 8(3):292–325, July 1986.

18. V. F. Turchin. Refal-5, Programming Guide & Reference Manual. Holyoke, MA:
New England Publishing Co., 1989.

19. P. Wadler. Deforestation: transforming programs to eliminate trees. Theoretical
Computer Science, 73(2):231–248, June 1990. ISSN 0304-3975.

456

The Simple Category of Modules

MikoÃlaj Konarski
mikon@mimuw.edu.pl

Institute of Informatics, University of Warsaw,
Banacha 2, 02-097 Warszawa, Poland

Research and Development Division, Comarch SA
PuÃlawska 525, 02-844 Warszawa, Poland

Abstract. Dule is a module system for functional programming lan-
guages, modeled using elementary category theory and straightforwardly
implemented on an simple categorical abstract machine. The focus of
Dule is the ease of maintenance of complete programs at the cost of
marginalizing code-reuse mechanisms. Fine-grained modularization with-
out prohibitive programming overhead is made possible by introducing
mechanisms inspired by category theory, such as default name-driven
sharing and implicit module composition.
In this paper we concentrate on the semantics/implementation of our
module system in the abstract categorical machine, via Simple Cate-
gory of Modules (SCM), where modules are morphisms, signatures are
objects, module composition is SCM composition and categorical do-
main lists module parameters. The construction of SCM from a simple
2-categorical model of the abstract machine provides set-theoretic mod-
els for Dule and ensures that its implementation is independent of the
core language; in particular, it does not require second-order polymor-
phism nor dependent types (nor even function types). SCM is cartesian
and has enough limits to model type sharing; the constructive proof pro-
vides implementation of the related module operations. The semantics
of Dule is compositional and constructive, enabling a straightforward,
faithful implementation that follows and verifies the semantics.

Key words: module systems, type sharing, category theory, semantics
of programming languages, categorical abstract machines

1 Introduction

1.1 Background

Modular programming is necessary due to the growing size, complication and the
requirement of modifiability of computer programs. The most useful approach
appears to be the integration of rigorous module systems into high level pro-
gramming languages, as in Standard ML [16] or OCaml [14]. However, strictly
modular programming style, with explicitly defined modular dependencies, can
be sustained only in small programming projects written in these languages [10].

457

The Simple Category of Modules

In large projects, managing the many layers of abstraction, introduced with the
module hierarchy, turns out to be harder even than manual tracing of each
particular dependency in unstructured code. Abstract and fine-grained modular
programming is cumbersome, because the headers to be written are complicated
and module applications often trigger global type sharing errors [20]. When a
module has n parameters, O(n2) potential typing conflicts await at each appli-
cation, making not only creation of modules, but also their maintenance and
reuse very costly.

Another problem is the tension between abstraction, expressiveness and ap-
plicability of a module. In simplification: the more abstract a signature of a
module result is, the easier it is to implement the module, but the harder it is to
use the module. Without specialized module system mechanisms, this global ten-
sion can only be solved by making each module excessively powerful and general.
However, the usual practical approach is to gradually sacrifice abstraction as the
program grows, whereas, especially for ensuring correctness of large programs,
the abstraction is crucial [4]. Huge collections of interdependent modules them-
selves require modularization, lest managing the modules becomes as tedious
as tending the mass of individual entities in non-modular programs. Grouping
of modules performed using the mechanism of submodules often overloads the
programmer with type sharing bureaucracy or requires a violation of the abstrac-
tion guarantees. Other solutions, some of them using external tools, tend to be
cheaper, but are usually very crude and incur the risk of name-space clashes or
ignore type abstraction.

1.2 The Module System

The Dule project is an experiment in large-scale fine-grained modular program-
ming employing a terse notation based on an elementary categorical model. The
Dule module system remedies the known bureaucratic, debugging and main-
tenance problems of functor-based modular programming (SML, OCaml) by
introducing simple modular operations with succinct notation inspired by the
simplicity of its semantic categorical model and a modularization methodology
biased towards program structuring, rather than code-reuse [1] (the latter is par-
tially supported through an auxiliary layer of the module system, not described
here). The same categorical model and its natural extensions induce an abstract
machine [5] based on their equational theories and inspire novel functional core
language features that sometimes complement nicely the modular mechanisms
and sometimes are language experiments on their own (not described here either;
see the formal definition of Dule [12]).

The assets of the Dule project are gathered on its homepage at http://www.
mimuw.edu.pl/~mikon/dule.html, where the formal definition of the current
version of the language as well as an experimental compiler with a body of Dule
programs can be obtained. The version of code designed specifically for this pre-
sentation is at http://www.mimuw.edu.pl/~mikon/Dule/download/dule-src.
2007-08-31.tgz. The compiler works adequately, but it still does not bootstrap
and the lack of low-level libraries precludes practical applications. There is 10000

458

MikoÃlaj Konarski

lines of fine-grained modular Dule code, including a fine-grained modular rewrite
of the main parts of the compiler itself, but surely much more will be needed to
discover all scaling problems and fine-tune the modularization methodology.

spec DrawChart = DrawChart =

~YearTable ~Picture -> struct

sig value draw =

value draw : Picture.t if YearTable.patents_expired

end then Picture.ok

else Picture.crash

end

Fig. 1. An example signature and module in the full, sugared version of Dule. The
application of the module to its arguments (which should be defined earlier, not shown
here) is implicit; notice also the small signature and module headers.

Below we give an overview of the features of the full version of Dule mod-
ule system. We refer the reader to the long informal tutorial of Dule available
from its homepage that accompanies the Dule formal definition for an illustrated
overview. Main highlights of Dule:

– module composition with both transparent and non-transparent versions
(the latter is the categorical composition from the semantic model)

– various module grouping mechanisms (including module categorical product
operations)

– no sharing equations (nor ‘with’ clauses nor type abbreviations); default
sharing by names

– no substructures (submodules)
– pseudo-higher-order notation for module signatures (flattened, because no

higher-order modules, but type dependencies on parameters remain; not dis-
cussed here)

– recursive signatures (flattened in a more complex way; not discussed here)
– (co)inductive modules (mutually dependent modules [6] constructed using

inductive types instead of recursive types; not discussed here)
– default implicit module composition
– signatures of transparent functor applications [13] are expressible (actually

all signatures of module operations are expressible)
– compositional semantics ensures separate compilation
– no references to environments in the semantics ensures the types from module

parameters are abstract; on the other hand the abstraction can be sidestepped
in a controlled way and limited scope, if necessary

– no dependencies between declared core language level entities (all dependen-
cies are expressed through modules)

459

The Simple Category of Modules

1.3 The Abstract Machine

The compiler of Dule, after type and signature reconstruction, computes the
semantics of modular programs in the language of our categorical abstract ma-
chine. The semantics, that is the machine code, can then be executed by the
machine, yielding results as expected in a programming language. The elemen-
tary notion of 2-category [11] with products is the categorical model of the
abstract machine. An equational theory of 2-categories is the basis for the typed
combinator reduction engine [7] that powers the machine.

The abstract mathematical model of the machine helped in proving its prop-
erties, in particular type-soundness and confluence. Preserving type information
in the machine language offers many benefits, among them the ability to ver-
ify type-correctness of any received piece of machine code. The machine is very
simple, especially considering that even advanced module operations can be per-
formed exclusively on the machine language module representations, without the
need to consult any additional annotations or modules’ sources.

It is possible to extend the machine (and its mathematical model) with func-
tion types, sum types, inductive and coinductive types and general recursion
(the reduction rules of our basic machine are listed in the Appendix, rules for
the extended machine can be found in Appendix A.1.4 of [12]). The resulting
machine language, with some syntactic sugar and type reconstruction, makes
for an interesting core programming language, making available to the user,
e.g., raw categorical composition (explicit substitution) and rigorously typed
built-in structured (co)recursion. The construction of the module system on top
of the abstract machine carries over to such extensions. The machine can also
be extended to execute fully typed OCaml or Standard ML code. Inversely,
simply typed λ-calculus with products, system F and ML can be presented as
2-categories with products, as needed for modeling our module system. In such
presentations, the vertical composition in the 2-categories would be substitution
and the composition of 1-morphisms would be type instantiation.

For our purposes, let’s define 2-category as comprising of two ordinary cat-
egories and, additionally, a family of categories C(c, e). The first of the two
categories is the underlying category U, that is, the category of objects and 1-
morphisms with the composition of 1-morphisms. Then, for each pair of objects
c, e, there is a category C(c, e) of all 1-morphisms with source c and target
e as objects and all 2-morphisms between them as morphisms with their ver-
tical composition. Horizontal composition yields the category of objects and
2-morphisms H, with the identity on object c equal to the 2-identity on the
1-identity on object c.

Cat, the category of all (small) categories is an example of a 2-category.
By analogy to Cat we will call objects ’categories’, 1-morphisms ’functors’ and
2-morphisms ’transformations’. The 2-categories that are models of our abstract
machine have a distinguished category (object) * and finite products in the U and
H categories and in all categories C(c, *). If we take Set (the category of sets and
functions) for the distinguished category *, then Cat has all the required prod-
ucts, so it is a model of our abstract machine. We will denote a finite U-product

460

MikoÃlaj Konarski

of categories c1, . . . , cn labeled i1, . . . , in, respectively, by <i1 - c1; . . . ; in - cn>.
Products in C(c, *) will be written {i1 : f1; . . . ; in : fn}.

Below we present our chosen syntax and typing of basic operations of 2-
categories with products, which is also the typing of the combinators of the
abstract machine. The ‘record’ operations that appear below are generalized
labeled tuples. First, we assign the U-source and U-target categories to functors
(which can be seen as types of the core language).

(U-identity)
F ID(c) : c→ c

f : c→ d g : d→ e

f . g : c→ e
(U-composition)

F PR(lc, i) : <i - c; . . . >→ c
(U-projection)

f1 : c→ e1 · · · fn : c→ en
<i1 : f1; . . . ; in : fn> : c→ <i1 - e1; . . . ; in - en>

(U-record)

f1 : c→ * · · · fn : c→ *

{i1 : f1; . . . ; in : fn} : c→ *
(C(c, *)-product)

Now we present the C(c, e)-domains and codomain of transformations (gen-
eralized values of a programming language). Many of the rules below have ad-
ditional, unwritten premises ensuring that the terms that appear in them have
compatible source and target categories. For example, in rule (H-comp) we re-
quire that the target of functor f1 is equal to the source of functor f2.

(H-id)
T ID(c) : F ID(c)→ F ID(c)

t1 : f1 → h1 t2 : f2 → h2

t1 ∗ t2 : f1 . f2 → h1 . h2
(H-comp)

(C(c, *)-id)
(: g) : g → g

t : f → g u : g → h

t . u : f → h
(C(c, *)-comp)

(H-pr)
T PR(lc, i) : F PR(lc, i)→ F PR(lc, i) i : {i : f; . . . } → f

(C(c, *)-pr)

t1 : f1 → h1 · · · tn : fn → hn
<i1 = t1; . . . ; in = tn> : <i1 : f1; . . . >→ <i1 : h1; . . . >

(H-record)

t1 : f → h1 · · · tn : f → hn
{i1 = t1; . . . ; in = tn} : f → {i1 : h1; . . . ; in : hn} (C(c, *)-record)

In the rules, many combinators are written in abbreviated form and their no-
tation does not contain all the typing information, e.g., the C(c, *)-projection.
Others are written including full typing annotations, e.g., the H-projection. Later
we may sometimes switch between the abbreviated and not abbreviated nota-
tion. The C(c, *)-composition plays the role of substitution in a programming
language and C(c, *)-projections can be used as variables, but all these opera-
tions are combinators — there are no free variables anywhere — otherwise it
wouldn’t be an abstract machine, but an interpreter.

461

The Simple Category of Modules

2 Simple Category of Modules

The heart of my module system is its mathematical model, the Simple Category
of Modules (SCM), which can be based on any 2-category with products that
models the core language to be used inside modules. Consequently, no dependent
products or sums [18] or second-order polymorphism [2] or even function types
are needed for the construction of SCM nor of the operations of the module
system, to be presented in the next section. The construction of Simple Category
of Modules (SCM) should look quite intuitive to a programmer with a minimal
categorical background. The objects of this category are module signatures and
the morphisms are modules themselves.

struct

value draw =

if YearTable.patents expired

then Picture.ok

else Picture.crash

end

{YearTable;
Picture}

sig

value draw : Picture.t

end

-

Fig. 2. Objects and morphisms in SCM.

The domain of a module is the signature of its parameters and the codomain is
the result signature of the module. The identity morphism of SCM is the identity
module and the composition is the operation of supplying implementation of
parameters to a module. Other kinds of module composition are categorically
definable, as will be shown later.

Mod1

Sign1 Sign2
-

Mod2

Sign3
-

Fig. 3. Composition in SCM.

Categorical products model parameters (for example, the domain of a module
is usually the product of signatures of parameter modules) allowing the program-
mer to express a kind of ’module variables’ as projections in SCM. Moreover there
is enough equalizers (limits) in SCM to model type sharing specifications. Com-
plex limits built using equalizers model type sharing among parameter modules
and also between parameters and the result signature. The kind of equalizers to
be used for the semantics of our module language has a simple construction in
SCM.

Now we will proceed with the formal definition of SCM. For the rest of this
paper let us fix an arbitrary 2-category with products. Objects and morphisms
of the SCM will be built from the morphisms of the fixed 2-category. Since

462

MikoÃlaj Konarski

the category can be, in particular, Cat with * equal to Set, SCM has a set-
theoretic semantics [17] and the signatures and modules can be thought of as
(quite complex but not higher-order) functions. Our account here is somewhat
simplified. For a totally strict and detailed account see [12].

2.1 Objects and morphisms

Objects of SCM are called signatures and are defined as follows.

Definition 1 A functor f : <i1 - c1; . . . ; ik - ck> → * of the fixed 2-
category is a signature if it can be presented as {i1 : f1; . . . ; in : fn} for
some categories lc = i1 - c1; . . . ; ik - ck and functors lf = f1, . . . , fn :
<i1 - c1; . . . ; ik - ck>→ *. The indexed list of categories lc is called the type
part of f , while the indexed list lf is called the value part of f .

This simple form of signatures resembles the syntax of simple Standard ML
or OCaml signatures where lc would correspond to names of types and lf to
types of values in module signature. In general, beside the names of types, lc
will usually contain names and kinds of parameter modules with nested names
of types (in our syntax for base module signatures the information about pa-
rameters is passed around in so-called context signatures, see Section 3.1 below).
Also, when f is the signature of a group (record) of modules, lf is an indexed list
of types of value parts of the modules, as defined below. Anyway, our 2-category
product operations are enough to capture the diversity.

Definition 2 A module is a triple of a functor f, a transformation t and a
signature s such that there is a signature r satisfying the following conditions:

1. f : src r → src s
2. t : r → f . s

where src produces the source category of a functor and the dot in the second
condition is the U-composition. The (uniquely determined) signature r is the
categorical domain of the above module seen as a morphism of SCM and the
signature s is the categorical codomain (also uniquely determined, because given
in the triple). Functor f is called the type part of the module and t is called the
value part.

We will use the notation m : r → s to mark the categorical domain and
the categorical codomain of module m in SCM. Concrete examples of triples
constituting modules are given below.

2.2 Identity and composition

The identity module on signature s in SCM is the triple (F_ID(c), (: s), s),
where category c is the source of s. So, for example, an identity on an empty
signature will be (F_ID(<>), (: {}), {}).

463

The Simple Category of Modules

Composition in SCM is the operation of supplying implementation of pa-
rameters to a module. Let us look at the OCaml code from the Dule compiler
that generates the abstract machine code for the module composition operation
m_Comp. The code should be self-explanatory except for f_COMP f1 f2, which is
an abstract syntax notation for U-composition written f1 . f2 in our concrete
syntax, t_FT f1 t2, which is the multiplication from the left by a functor f1,
that is H-composition (: f1) ∗ t2 and t_comp t1 it2, which is the composition
of transformations t1 . it2.

let m_Comp m1 m2 = (* : r1 -> s2 *)
let f1 = Dule.type_part m1 (* : r1 -> s1 *) in
let t1 = Dule.value_part m1 in
let f2 = Dule.type_part m2 (* : r2 -> s2 *) in
let t2 = Dule.value_part m2 in
let f = f_COMP f1 f2 in (* s1 = r2 *)
let it2 = t_FT f1 t2 in
let t = t_comp t1 it2 in
let s2 = Dule.codomain m2 in
Dule.pack (f, t, s2)

The following drawing shows the domains and codomains of the transfor-
mations appearing in the code of m_Comp, according to Definition 2. Transfor-
mations are here depicted by arrows. U-compositions are denoted by horizontal
bars (double minuses).

t1 f1 t2 f2 t f1
r1 ------> -- r2 ------> -- r1 -----> --

s1 s2 f2
--
s2

The drawing below illustrates the value part of the result of module com-
position. H-composition is here represented by placing the first transformation
above the second. Vertical composition is represented by sharing a common
domain/codomain. Transformation (: f1) is the identity on f1.

(: f1)
t1 f1 ------> f1

r1 ------> -- --
f2

s1 ------> -- s1 = r2
t2 s2

Modularly speaking: m_Comp instantiates the values of m2 with the concrete
implementation of the types given in m1 and then applies the instantiated pro-
cedure to the values of m1. Consider the following composition written in the
concrete syntax of our module language (to be defined shortly):

464

MikoÃlaj Konarski

{M = :: {} -> sig type t1 value v1 : t1 end

struct type t1 = {} value v1 = {} end}

.

:: {M : sig type t1 value v1 : t1 end} ->

sig value v2 : M.t1 end

struct value v2 = M.v1 end

When the generated machine code is executed by the abstract machine, the
implementation of value v2, which is the composition of projections M.v1, is
multiplied from the left by the implementation of the types of the first module,
that is

<M : <t1 :{}>>

resulting again in the composition of projections. The composition is then ver-
tically composed (as the second operand) with the implementation of values of
the first module, that is

{M : {v1 = {}}}

resulting in transformation {}, which is the value of v2 in the outcome module.
After some more computation, the result of composition is seen to be ex-

pressible in our module language, using the mechanism of context signatures
(the signatures written just after sig, automatically reconstructed in full Dule,
see Section 3.1 below) to retain the signature M, as follows.

:: {} ->

sig {M : sig type t1 value v1 : t1 end}

value v2 : M.t1

end

struct value v2 = {} end

Theorem 3 The above definitions result in a category, where signatures are
objects, modules are morphisms and m_Comp is the composition.

Proof. The domains and codomains of modules are well defined. The equalities
about identity as the neutral element of composition follow promptly from the
properties of identities in 2-categories. The associativity of composition is easy
to establish, again using the properties of 2-categories.

2.3 Products

Products are necessary in our model to give semantics to modules that depend
on many arguments. It turns out that SCM has (labeled) products.

Theorem 4 Simple Category of Modules is cartesian.

The proof (that we omit) is constructive, by defining in OCaml, similarly
as we defined m_Comp, module operations of product of signatures, projection
module and record module. The three operations are well defined; in particular
when given correct operands they produce signatures and modules as required
in Definition 1 and 2.

465

The Simple Category of Modules

Once we have products, we can easily model in SCM a module system similar
to the one of Standard ML but with no sharing requirements. Sharing require-
ments are used in modular programming to ensure that certain types, possibly
appearing in distant modules, are equal. In a framework enabling abstraction,
such as ours, guarantees of type equality are crucial to enable inter-operation
between modules. However, sharing can be difficult to model. In particular, the
ordinary labeled products of SCM do not suffice for this task.

2.4 Equalizers

Pullback of signatures (categorical limit of diagrams consisting of morphisms
with a common codomain) is a good model of a signature of a pair of modules
with some sharing between the two. Consider the following example, in which we
write ‘sharing type’ to mark an ad hoc notation for a sharing equation that, in
this case, requires two product types to be equal (and if the product operation
is injective in the fixed 2-category, then M1.t is equal to M2.t and M2.u is equal
to {}).

{M1 : sig type t end;

M2 : sig type t type u end;

sharing type

{t : M1.t; u : {}}

= {t : M2.t; u : M2.u}}

Such a signature can be interpreted as a pullback of two morphisms (modules)
from signatures M1 and M2, respectively, to a common target (e.g., signature
sig type c end). The morphisms determine the types to be identified. The
first of the morphisms could look as follows:

struct type c = {t : M1.t; u : {}} end

and the second as follows:

struct type c = {t : M2.t; u : M2.u} end

However, pullbacks are not adequate for a similar task in case of many signa-
tures. A sharing requirement may refer to components that are absent in some
of the (possibly numerous) signatures, while the pullback construction is based
on diagrams with morphisms from all the objects. We could overcome the prob-
lem by considering multiple sharing equations and adding a trivial equation for
each signature absent from the main equation, but there are more elegant and
efficient solutions.

A pullback of given morphisms can be constructed as an equalizer (general-
ized from two morphisms to a family of morphisms) of the morphisms prefixed
with projections [19]. The projections come from the product of sources of the
morphisms. This representation is valid for the labeled pullbacks as well, and
involves labeled products and equalizers. If we allow the equalizer to be taken of
a smaller family than the one used in the product, we can capture the sharing of
components of only the chosen signatures. In fact, this construction is just the

466

MikoÃlaj Konarski

construction of the general limit of a diagram ([15], Theorem V.2.1). It turns
out that a product of signatures with some sharing is just the limit of the dia-
gram formed by all the signatures and the morphisms representing the sharing
requirement.

Let’s suppose we are to represent categorically a collection of five signatures
with a type shared among three of them.

{M1 : sig value v : {} end;

M2 : sig type t end;

M3 : sig type t end;

M4 : sig type u type w end;

M5 : sig type t end;

sharing type

M2.t = M3.t = M5.t}

First, we can represent the types to be shared as three morphisms (t2, t3, t5,
in this case just identities) into a common target T. Then, to construct the limit,
we take the product of the five signatures and compose the respective projections
(pi2, pi3, pi5) with the three morphisms. The equalizer of the family of the
three compositions is the sought limit signature P.

pi1

M1 -----> M1

x pi2 t2

M2 -----> M2 ----____

equalizer x pi3 \

P -----------> M3 -----> M3 ---------> T

x pi4 t3 __/

M4 -----> M4 __/

x pi5 __/ t5

M5 -----> M5

If there are several sharing equations, the sought signature is again the limit
of the diagram, this time containing several families of morphisms, each shar-
ing a codomain. In the construction using product and equalizer, the equalizers
representing consecutive sharing equations have to be composed. For a formal-
ization of the main concepts see Section 5.1.4 of [12]. Here we only cite the result
that has a constructive proof that guides the implementation of type sharing in
our module system.

Lemma 5 Let us fix an SCM over an arbitrary 2-category. For each categor-
ical diagram in the SCM representing sharing requirement between whole type
parts (the collection of all types) of modules, if the type names agree, a product
signature with sharing represented by the diagram exists.

In our module system we will apply a variant of the whole type parts sharing
requirements, in which the modules to be equated are determined by names of
nested signatures contained in a product. The sharing should take place between
type parts of module signatures having the same labels. For instance, the fol-
lowing signature (featuring context signatures, as described in the next section)
requires values M1.v1 and M2.v2 to have the same type.

467

The Simple Category of Modules

{M1 : sig {M : sig type c end} type t1 value v1 : M.c end;

M2 : sig {M : sig type c end} value v2 : M.c end}

In the following example, type M.c occurring in three context signatures and
one main signature of the product will be shared in all four main signatures.

{M1 : sig {M : sig type c end} type t1 end;

M2 : sig {M : sig type c end} end;

M3 : sig {M : sig type c end} value v : M.c end;

M : sig type c end}

The context signature of M1 indicates that M is imported into M1, or rather
that module M1 is supposed to be built from M. The name M, assigned to one of
the main signatures of the product, is interpreted as marking the same module
that was used in construction of M1. The module M is, in this particular case,
required to be provided separately as the fourth component of module record,
perhaps to be used for building other modules later on.

Our operation, equating whole type parts of modules with the same names,
has the same syntax as for the ordinary labeled product, as no explicit sharing
specifications need to be written (notice the absence of explicit ‘sharing type’
requirements in the above examples). The operation will be called product with
name-driven sharing or (ambiguously but succinctly) just product. Every prod-
uct with name-driven sharing is a categorical limit of a simple sharing diagram
and can be constructed as a composition of a number of equalizers of whole type
parts of modules (slightly generalized to allow nesting), taken on the product of
signatures. The operations of projection with name-driven sharing and record
with name-driven sharing are expressible in an analogous way using the opera-
tions of the ordinary product and the equalizer. The proof of Lemma 5 shows
how to construct the equalizer operations using the abstract machine code.

3 Semantics/Implementation of the Module System

After constructing and analyzing the SCM we use it to develop a module sys-
tem — a programming-oriented language for SCM (though without signature
reconstruction, etc., it is not yet user-friendly, see [12]). If we fix a 2-category for
the core language, we can construct the unique SCM built upon that 2-category.
Our module system is an extension of the SCM (treated as a partial algebra)
by several module operations, most of which are partial. The carriers are not
extended and we don’t need any additional assumptions on the core language,
in particular we do not require function types.

The semantics of our module system is compositional and environment-free,
which implies that the modules may be compiled separately. The correctness
and the result of a module operation depend only on the target code (SCM
morphisms, abstract machine code) obtained from the operands, so the origi-
nal source code can be compiled only once and then forgotten. The lack of any
environments also ensures that module parameters are abstract. Upon supply-
ing arguments the abstraction can be retained or overcome, depending on the
operations used (composition vs. instantiation).

468

MikoÃlaj Konarski

3.1 Basic operations

We start an overview of the typing and semantics of operations of our mod-
ule system. In the typing rules we do not formulate additional definedness side
conditions, hence the rules do not completely capture definedness properties of
the operations. They only indicate whether a raw term belongs to the language
and what its domain and codomain are. The complete definedness conditions
are given and discussed in detail in the formal definition of Dule [12], where also
the abstract machine code for the operations is given.

In the formal definition we also argue that each case of partiality of any of
the modular operations corresponds to a class of modular programming errors.
We prove that the semantics of the operations is well defined; in particular,
their results belong to the set of objects and morphisms of the SCM. We check
that the declared parameter and result signatures of modules coincide with SCM
domains and codomains of the morphisms the module expressions denote. The
proof of well-definedness of the semantics of the module language constitutes a
major part of the proof of correctness of the Dule compiler.

Here are the rules for the already defined identity and composition operations
and for base modules that use elements available from an argument satisfying
signature r to define core language types and values as specified in s.

(identity)
(: s) : s→ s

m1 : r1 → s m2 : s→ s2

m1 . m2 : r1 → s2
(composition)

s = sig r′ type i . . . value j : f . . . end

(:: r -> s struct type i = g . . . value j = t . . . end) : r → s
(base)

Signatures of the same for as s above are called base signatures and r′ inside
them can specify less components than r. Such r′, occurring inside s, is called
a context signature, on which types of values in s may depend (if r is {}, it is
usually omitted in writing; in sugared Dule syntax r disappears altogether). Base
signatures can be viewed as products with name-driven sharing (as defined in the
next subsection) of micro-signatures f, . . ., while base modules are isomorphic
to records with name-driven sharing of micro-modules that only define one type
or one value.

3.2 Cartesian structure

As told in Section 2.3, SCM is cartesian, which allows for parameterization by
named modules. Inside a modular expression with product domain the parameter
modules are treated as ‘locally’ abstract. When several module expressions are
put within a module record with a product domain, they all share the same
locally abstract arguments. However, this abstraction does not prevent specifying
equalities between individual types.

For the semantics of our module system we choose to employ implicit shar-
ing of whole type parts of modules, determined by names of components, as
illustrated in Section 2.3. When grouping signatures in a product, all top-level
context types (types inherited from context signatures) with the same name are

469

The Simple Category of Modules

to be shared. In the result, top level type components of a product of signa-
tures are the sets of types defined in the signatures themselves indexed by the
signature names, together with all their context types.

This particular merger of labeled product and equalizer, will be called prod-
uct with name-driven sharing, or just product. The notation for the operations
is the same as for the ordinary labeled categorical product. This setup results
in concise syntax, with somewhat limited expressiveness, which is recoverable
with the help of instantiation operation (e.g., to rename module parameters),
described later on.

i : {i : r; . . . } → r
(projection)

m1 : r → s1 · · · mn : r → sn
{i1 = m1; . . . ; in = mn} : r → {i1 : s1; . . . ; in : sn} (record)

Whenever the product operations are defined, they satisfy all the equalities
required of a categorical product. Moreover, whenever they are undefined their
signature operands show that the programmer tried to impose a contradicting
sharing requirement, or their module operands show that the programmer vio-
lated the sharing requirements he had imposed earlier.

Observation 6 The product signature with the projection modules form a cat-
egorical cone over the diagram of sharing requirement representing name-driven
sharing among the product operands.

3.3 Specialization, instantiation and trimming

There are two modular operations, instantiation and trimming, without clear
categorical meaning in the context of SCM, though they have a simple mathe-
matical definition in terms of 2-categories with products.

(instantiation)
m1 : r1 → s m2 : s→ s2

m1 | m2 : r1 → m1 | s2

m1 : r1 → s1

m1 :> r2 : r1 → r2
(trimming)

The operation m1 | s2 specializes signature s2 to a narrower field of use —
restricted to the types of module m1. The operation m1 |m2 instantiates module
m2 so that it has more concretely defined manner of operation and more strictly
specified field of operation, determined by module m1.

The instantiation operates on the value parts of operand modules in exactly
the same way as the module composition m_Comp does. Yet instantiation is not a
good candidate for an alternative composition in SCM: it is not always defined
even if codomain of the first operand agrees with the domain of the second. A
second phenomenon differentiating instantiation from composition is that the
codomain of the whole operation may differ from the codomain of the second
operand. This implies that instantiation is not associative.

Despite not having the pleasant properties of composition, instantiation has
a profound programming meaning. While composition corresponds to non-trans-
parent functor application [8], where arguments are used as tools only, instan-
tiation corresponds to transparent application [13], where arguments specialize
the output signature of the functor.

470

MikoÃlaj Konarski

The trimming operation performs a coercion of a module to a given signature.
If necessary, some type and value components of an operand module are removed,
and only those mentioned in the operand signature remain. Ideally trimming
should be absent from the language, but it is indispensable when we want to
present an instantiated module as if it had not been instantiated. Moreover,
when a larger module is used in a role of a smaller one, trimming relieves the
user from writing the interface module.

3.4 Linking

The linking operation is the Dule standard way of supplying modules with argu-
ments. It is defined (just as two other, simpler grouping operations, omitted here
due to space constraints) using the already described operations of our module
system. This witnesses the power of the system, as well as greatly simplifies
proving properties of linking, in particular the proof of its well-definedness and
the adequacy of its declared domains and codomains.

m1 : {ik1 : sk1; . . . ; j1 : r1; . . . } → s1

...
mn : {ikn : skn; . . . ; jn : rn; . . . } → sn

link {i1 = m1; . . . ; in = mn} :
{j1 : r1; . . . ; jn : rn; . . . } → {i1 : s1; . . . ; in : sn}

(linking)

The domains of linking operands have to be product signatures, and needn’t
be strictly equal to each other. It suffices if there are equal components at the
same labels. The domains may contain components not present in the domain
of the whole linking expression but each of these has to be a codomain of one
of the operand modules, indexed by the name of the module. These components
will not be propagated from the domain of the linking operation, but will be
the places at which compositions with other operands occur. Like in the module
record operation, the codomain of the linking expression is just the product of
codomains of all operand modules.

The linking operation eases the grouping of modules (already enabled by the
module record operation) that alleviates the need for submodules, as known from
conventional module systems. The linking operation fits well with our choice of
sharing mechanism. The module product operation assumes that components
with the same names are shared, while the linking operation assumes parame-
ters are implemented by modules of the same names. Inside linking expression,
supplying implementation of the parameters is automatically performed with
multiple compositions and the user is free from writing the compositions by
hand. There is also no need to artificially introduce submodules for the purpose
of specifying their sharing with others; together with implicit composition this
greatly reduces common modular bureaucracy. Linking facilitates naming pa-
rameterized modules and applying named modules, but the language remains
first-order, readily compilable to the abstract machine language and its imple-
mentation avoids copying or storing the source code of modules.

471

The Simple Category of Modules

References

1. Anya Helene Bagge, Martin Bravenboer, Karl Trygve Kalleberg, Koen Muilwijk,
and Eelco Visser. Adaptive Code Reuse by Aspects, Cloning and Renaming. Tech-
nical Report UU-CS-2005-031, Institute of Information and Computing Sciences,
Utrecht University, 2005.

2. E. S. Bainbridge, P. J. Freyd, A. Scedrov, and P. J. Scott. Functorial polymorphism.
Theoretical Computer Science, 70(1):35–64, January 1990.

3. Dave Berry. Lessons from the design of a Standard ML library. Journal of Func-
tional Programming, 3(4):527–552, October 1993.

4. Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Architectural specifications
in Casl. Formal Aspects of Computing, 13:252–273, 2002.

5. G. Cousineau, P. L. Curien, and M. Mauny. The Categorial Abstract Machine.
Science of Computer Programming, 8:173–202, 1987.

6. Karl Crary, Robert Harper, and Sidd Puri. What is a Recursive Module? In SIG-
PLAN Conference on Programming Language Design and Implementation, 1999.

7. P.-L. Curien. Categorical Combinators. Information and Control, 69(1-3):189–254,
1986.

8. Robert Harper and Mark Lillibridge. A Type-Theoretic Approach to Higher-Order
Modules with Sharing. In Proceedings of the ACM Conference on Principles of
Programming Languages, pages 123–137, Portland, Oregon, January 1994.

9. Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-Order Modules and
the Phase Distinction. In Conference Record of the Seventeenth Annual ACM Sym-
posium on Principles of Programming Languages, pages 341–354, San Francisco,
CA, January 1990.

10. Robert Harper and Benjamin C. Pierce. Advanced module systems: a guide for
the perplexed. In Proceedings of the ACM Sigplan International Conference on
Functional Programming (ICFP-00), volume 35.9 of ACM Sigplan Notices, pages
130–130, N.Y., September 18–21 2000. ACM Press.

11. C. B. Jay. An introduction to categories in computing. Technical Report UTS-
SOCS-93.9, University of Technology, Sydney, 1993.

12. MikoÃlaj Konarski. Application of Category-Theory Methods to the Design of a Sys-
tem of Modules for a Functional Programming Language. PhD thesis, MIMUW,
2007.

13. Xavier Leroy. Applicative functors and fully transparent higher-order modules.
In Proc. 22nd symp. Principles of Programming Languages, pages 142–153. ACM
Press, 1995.

14. Xavier Leroy. The Objective Caml system: Documentation and user’s manual,
2000. With Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon.
Available from http://caml.inria.fr.

15. S. MacLane. Categories for the Working Mathematician. Springer-Verlag, 1971.
16. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition

of Standard ML (Revised). The MIT Press, 1997.
17. John C. Reynolds. Polymorphism is not set-theoretic. In Gilles Kahn, David B.

MacQueen, and Gordon D. Plotkin, editors, Semantics of Data Types, volume 173
of Lecture Notes in Computer Science, Berlin, 1984. Springer-Verlag.

18. Claudio V. Russo. Non-dependent Types for Standard ML Modules. In Principles
and Practice of Declarative Programming, pages 80–97, 1999.

19. D. Sannella and A. Tarlecki. Category theory. In Foundations of Algebraic Specifi-
cations and Formal Program Development, chapter 3. Cambridge University Press,
to appear. See http://wwwat.mimuw.edu.pl/~tarlecki/book/.

472

MikoÃlaj Konarski

20. Perdita Stevens. Experiences with the ML Module System, or, Why I Hate ML.
Transparencies for a talk given to the Edinburgh ML Club and Glasgow Functional
Programming group. http://www.dcs.ed.ac.uk/home/pxs/talksEtc.html, 1998.

Appendix: Abstract Machine Execution

Below, we abuse notation, writing multiplications by a functor, that is horizontal
compositions with C(c, e)-identity, without the identity term constructor, as in
f ∗ <i = u; . . . >, which is intended to mean T_id(f) ∗ <i = u; . . . >. Our abstract
machine executes machine code by combinator reduction as follows, where we
list the reduction rules for functors first.

f . F_ID(d)→ f (1)
F_ID(c) . g → g (2)
f . (g1 . g2)→ (f . g1) . g2 (3)

<i : fi; . . . > . F_PR(ld , i)→ fi (4)
f . <i : g; . . . >→ <i : f . g; . . . > (5)
f . {i : g; . . . }→ {i : f . g; . . . } (6)

These are the reduction rules for transformations.

f ∗ <i = u; . . . >→ <i = f ∗ u; . . . > (7)
f ∗ T_id(g)→ T_id(f . g) (8)
f ∗ (u1 . u2)→ (f ∗ u1) . (f ∗ u2) (9)
t ∗ F_ID(d)→ t (10)
t ∗ (f . g)→ (t ∗ f) ∗ g (11)

<i = ti; . . . > ∗ F_PR(ld , i)→ ti (12)
T_id(f) ∗ F_PR(ld , i)→ T_id(f . F_PR(ld , i)) (13)
(t1 . t2) ∗ F_PR(ld , i)→ (t1 ∗ F_PR(ld , i)) . (t2 ∗ F_PR(ld , i)) (14)

t ∗ <i : g; . . . >→ <i = t ∗ g; . . . > (15)
T_ID(c)→ T_id(F_ID(c)) (16)

T_PR(lc, i)→ T_id(F_PR(lc, i)) (17)
t . T_id(g)→ t (18)
T_id(f) . t→ t (19)
t . (u1 . u2)→ (t . u1) . u2 (20)

{i = ti; . . . } . T_pr(lg , i)→ ti (21)
t . {i = u; . . . }→ {i = t . u; . . . } (22)

f ∗ T_pr(i : g; . . . , j)→ T_pr(i : f . g; . . . , j) (23)
f ∗ {i = u; . . . }→ {i = f ∗ u; . . . } (24)

t ∗ u→ (f ∗ u) . (t ∗ h) (25)

473

Polytopes & Polytypes:
Generic Isosurfacing & Functional Programming

3

(DRAFT IN PROGRESS)
3

Colin Runciman1, David Duke2, Rita Borgo2, and Malcolm Wallace1

1 Department of Computer Science, The University of York, Heslington, York, YO10
5DD, UK,

{colin,malcolm}@cs.york.ac.uk
2 School of Computing, University of Leeds, Leeds, LS2 9JT, UK,

{djd,rborgo}@comp.leeds.ac.uk

Abstract. Isosurface extraction is a fundamental tool in data visu-
alization, usually implemented by a family of table-driven algorithms.
We show how these algorithms can be realised as instances of a single
generic scheme, which we implement in Haskell. The way the behaviour
of the generic function depends on the spatial dimension and geomet-
ric structure of the dataset is richer than the type-structure dependen-
cies exploited in current generic or polytypic programming systems, and
presents several challenges. We discuss three inter-related issues: (1) rep-
resentation types for polytopes and the extent to which they allow a com-
bination of security and genericity; (2) the form of specification, based
on predicates over higher-ranked sets, and the extent to which it sup-
ports both reasoning about correctness and feasible evaluation; (3) the
necessary refinement methods to derive an efficient state-based imple-
mentation.

1 Introduction

Scalar fields arise in many branches of science and engineering, for example
atmospheric temperature, gas density, height above sea-level, tissue density, or
pressure over an airfoil. Data about such phenomena are typically collected, by
measurement or simulation, as discrete samples within some space. One method
used to understand such phenomena is to plot the points at which the field takes
on certain values. Familiar 2D examples include contour lines on geographical
maps, and isobar lines on weather charts. In 3D, contour lines become surfaces,
generically referred to as isosurfaces, and higher-dimensional surfaces arise, for
example, from time-varying phenomena and in branches of physics. In this paper
we shall use the term “isosurface” whatever the dimension.

Our goal is a generic isosurfacing algorithm. One that can be applied, for
example, to fields sampled over a 2D sampling grid, or a 3D grid of tetrahedra,

474

or a 4D grid organised as hypercubes, without the need to spell out, case-by-case,
how to interpret different grid organizations. Reaching this goal is surprisingly
hard as The dependency between the structure of the isosurface and the dataset
is complex. To make progress we chose to write an executable specification in
Haskell. We call this program Polycell and it is based on a set of axiomatic
requirements characterising the required surface.

Section 2 of the paper gives a brief account of isosurface extraction through
dataset traversal, and the fundamental dependency between the algorithm and
the structural organization of the dataset. Section 3 shows that by using type
classes to abstract over features of the dataset, much of the work to compute an
isosurface can be expressed generically. However, by using type classes, we are
requiring the implementor to provide certain critical type-specific information
for each kind of dataset. We wish to define this information as a function of
the dataset organization; in other words, we want a type-indexed function —
or rather, a polytope-indexed function. Section 4 sets out some representation
issues in Polycell. Section 5 describes our approach to specification, which makes
extensive use of the test-and-generate paradigm. Although the specification is
an executable prototype, it is inefficient. Section 6 describes an approach to
systematic refinement of the specification, lifting tests into generators by re-
expressing them as constraining state-machines. Section 7 discusses some related
work on generic isosurfacing. Section 8 concludes by briefly summarising our
achievements so far and the work that remains.

2 Polytopes and Isosurfaces

The starting point for visualization is the dataset. Data may be sampled on
grids that are geometrically and topologically regular or irregular, resulting in a
range of dataset organizations [1]. As isolated values do not lend themselves to
visualization, it is usual to extrapolate between samples using an interpolation
function [2]. But this is expensive. For isosurfacing, rather than interpolate the
sample for every point required on the output, a widely used technique is to
approximate the true surface by decomposing the physical space into geometric
“cells” representing local neighbourhoods bounded by sample points. The only
constraint on the structure of the cell is that it be a convex polytope — in 2D a
convex polygon, in 3D a convex polyhedron, etc.

For each cell, the intersection (if any) between the cell edges and and a given
isolevel can be found by interpolating between the samples at the edge end-
points. Now the aim is to compute a set of simplices whose vertices are the edge-
intersection points, and which approximate the true interpolant of the surface
within the cell. In 2D, the simplices are straight line segments; in 3D, they are
triangles; and in 4D, tetrahedra. Figure 1 illustrates isosurface extraction on a
small 2D dataset: imagine that the values are heights above sea-level, and we are
interested in the “5m” contour. Part (a) of the figure shows the original sample
data, and part (b) the ‘real’ contour line.

475

Fig. 1. Cell-based approximation of isolines

In part (c), the grid has been subdivided into square cells. Each cell vertex
with a value above the required threshold (5m) has been marked with a filled
circle; vertices below the threshold are marked with an empty circle. Considering
each cell in turn, we look at edges which involve one marked and one unmarked
vertex; these edges will be intersected by the contour at points found by inter-
polation and marked as a small square in the figure. In this simple 2D case,
the simplices are just line-segments formed by joining appropriate pairs of edge
intersections.

More generally, while the geometry of simplices approximating an isosurface
depends on the threshold level and sample values of a cell’s vertices, their topol-
ogy depends only on the pattern of vertices above and below the threshold. This
observation underlies the widely implemented marching cubes algorithm [3] for
isosurface extraction. As traversal proceeds, each cell is inspected and the thresh-
old compared against the sample at each vertex. The resulting boolean vector
is then used to index a table of simplex templates, yielding a list of cell edges
involved in each constituent simplex. Full tables for even low-dimensional cases
are sizeable (e.g. 256 cases for the cube), but use of reflectional and rotational
symmetries reduces this number (to 14 canonical cases for the cube). Historically
such tables have been constructed by hand. Figure 2 gives the canonical table for
square cells, and illustrates one simple case for the cubic cell, where the surface
is approximated by two triangles.

Higher-dimensional cases are difficult to develop without automatic support,
because of the size of the tables and the difficulty of identifying symmetries.

3 A Generic Pipeline

In a previous paper [4] we showed how the marching cubes algorithm can be ex-
pressed in Haskell as a fine-grained pipeline of simple stream operations, with en-
couraging performance on large-scale datasets. But our program was specialised
to regular cubic grids. We have since been working to remove this constraint in
a generic isosurface implementation, still preserving features of the lazy pipeline
approach. A complete account of the generic pipeline is beyond the scope of

476

Fig. 2. Case table for squares, and a cube case.

this paper, but an outline will serve both to illustrate the informal introduction
given in the preceding section, and to provide the context in which the Polycell
program is intended to operate.

At the top level, a Haskell implementation of generic surface extraction is
pleasingly concise. There is one function for each of the three conceptual opera-
tions: dataset traversal, cell processing, and simplex generation. This brevity is
obtained in part through use of type classes and parametric polymorphism that
abstracts away from details of dataset and cell organization; the following are
all parameters to the function definitions:
a: the numeric type of sample values;
v: the type used to identify sample points/vertices;
pos: the numeric type underlying geometric coordinates;
c: the structure of cells;
Dataset: the organization of cells into datasets;
and the dimensionality of the space in which data is embedded.

Isosurfacing is a function that, given a sample threshold and a dataset of
samples, embedded within some geometric space, and topologically organized
into cell neighbourhoods, yields a list of simplices. Each simplex is defined by a
list of coordinates in the same geometric space as the original samples.

isosurface :: (Real pos, Num a, Cell c v, Ord v, Geom g) =>

a -> Dataset c v g a pos -> [[g a]]

isosurface th (DataSet coords_values) =

concatMap (uncurry (mcube th)) coords_values

The output surface is the union of the simplex sets obtained from each cell,
where each simplex set is generated by interpolating between end-point coordi-
nates of cell edges intersected by the surface. To find these edges, the samples at
cell vertices are compared with the threshold. From the resulting boolean struc-
ture a function mc_case determines the appropriate index by which to access
the case table.

477

mcube :: (Real pos, Num a, Cell c v, Ord v, Geom g) =>

a -> c v (g pos) -> c v a ->[[g pos]]

mcube th points values =

map (map $ interp th points values) $ mc_case $ fmap (>th) values

Interpolation between vertex coordinates is standard, but a notable detail
here is the use of the Geom class to abstract from the specific geometry in which
the data are located.

interp :: (Real pos, Num a, Cell c v, Ord v, Geom g) =>

a -> c v (g pos) -> c v a -> (v,v) -> g pos

interp thresh points values (v0,v1)

= c0 .+. (p .*. (c1 .-. c0))

where

p = realToFrac (thresh - sa) / realToFrac (sb - sa)

sa = select v0 values

sb = select v1 values

c0 = select v0 points

c1 = select v1 points

A full account of dataset and cell abstractions is beyond the scope of this
paper. But note the mc_case function used within mcube. The signature of this
function, defined in the cell class, is:

mc_case :: c v Bool -> [[(v,v)]]

That is, given a cell of boolean values, the function returns a list of vertex
identifier pairs, with each pair identifying an edge of the cell cut by the surface.
For example, in the fourth of the square cases shown in Figure 2, the resulting
entry would be

[[(A,B), (A,D)], [(B,C), (C,D)]]

that is, the intersection is approximated by two simplices, each of which is a
line segment between points lying on two cell edges and that will be found by
interpolating between the corresponding coordinates.

In order to isosurface a dataset, we require an instance of the Cell

class for the dataset’s topology. And to do this, we need an implemen-
tation of mc_case for the cell.

In the remainder of the paper, we explore the development of a function
that, given a polytope representing the topological structure of a cell, returns an
appropriate implementation of mc_case. Eventually, this function will be generic
with respect to the implementation of cell; we start however by developing an
encoding of cell structure, and consider the specification of what constitutes a
valid simplicial complex for a given cell marking.

478

Fig. 3. The polytope lattice of the triangle ABC.

4 Representation: Polytopes and Polytypes

The text-book representation of an n-dimensional polytope [5] is a lattice of
height n + 1. Elements at height d + 1 correspond 1-1 with the d-dimensional
components of the polytope. The unique top element corresponds to the entire
polytope, and the bottom element to the undefined polytope of dimension −1.
For example, Figure 3 shows the lattice for a triangle ABC. As a triangle is also
a simplex, for this example we could represent each element of the lattice by
a set of vertices (with the empty set for ⊥) and use the subset relation as the
lattice ordering. But in general this will not do: a square ABCD, for example,
does not have edges AC or BD. We therefore define:

data Poly = V {vertex: Vert}

| F {facets: Set Poly}

This definition raises at least two issues: (1) how to treat dimensions, and (2)
how to define sets.

Polytopes and dimensions

Just as lists of the same type may vary in length, so Poly data structures may
have vertices at varying depths. Indeed, depths at which vertices occur could
vary even within a single Poly value; there is nothing in the Poly type to say
that n-dimensional parents may have only (n− 1)-dimensional children.

479

We can express the intended dimensional invariant in the definition of a
boolean function.

dim :: Int -> Poly -> Bool

n ‘dim‘ V v = (n==0)

n ‘dim‘ F fs = forAll fs $ \f -> (n-1) ‘dim‘ f

Now applications such as (2 ‘dim‘ square) helpfully record intentions that
can be checked when the program runs, or in program properties tested using a
tool such as QuickCheck. But dimensional properties are not checked statically,
as we should prefer.

Class-level encoding?

The dependent typing of polytopes with dimensions can be “faked” [6] by re-
defining natural numbers (for dimensions) and polytopes as classes and their
alternative constructions as distinct types:

class Nat

data Zero = Zero

instance Nat Zero

data Succ n = Succ n

instance Nat n => Nat (Succ n)

class Poly c d | c -> d ...

instance Poly Vert Zero ...

data Facets c d = Facets (Set c)

instance Poly c d => Poly (Facets c d) (Succ d) ...

If the program can be reformulated to use this framework, and successfully
typechecked, then run-time assertions about dimensionality can be superceded
by static guarantees. However, in our experience this sort of class-level encoding
is a tricky business. The necessary extensions to the type-system, such as multi-
parameter type classes (MPCs) with functional dependencies [7], are subject to
subtle restrictions. Some functions become unreadably obfuscated by this kind of
encoding. Others exceed the limits of what the type-checker can do. It is possible,
but adds yet further to the cost, to include escape methods mapping type classes
and types down to the original dimensionless types and constructors, but there
is no way back.

Dimension-carrying Phantom Types

A less sophisticated approach to type-checked dimensions uses a wrapper type
with a phantom type parameter as the dimension.

480

newtype PolyD d = PolyD {poly :: Poly}

The PolyD constructor itself is hidden. Other functions for construction and de-
construction of PolyD values enforce the dimensional invariant. Natural number
dimensions are again coded as types. For example:

mkV :: Vert -> Poly Zero

mkV = Poly . V

mkF :: Nat n => Set (Poly n) -> Poly (Succ n)

mkF = Poly . F . mapS poly

polyFacets :: Nat n => Poly (Succ n) -> Set (Poly n)

polyFacets = mapS Poly . facets . poly

polyVertex :: Poly Zero -> Vert

polyVertex = vertex . poly

As the dimensions are carried by a phantom type there is no explicit mention of
dimensions in the value equations. The type-checker does the work.

Although some class-level encoding is needed for this approach too, it is less
problematic. For example, take the edges function, defined on the dimensionless
Poly type by case analysis of the dimension as computed by dimOf. Assuming
that the Poly argument obeys the dimensional invariant, dimOf can use any
branch to a vertex to compute its result.

dimOf :: Poly -> Int

dimOf (Vcell _) = 0

dimOf (Fcell fs) = 1 + dimOf (minS fs)

The edges function is defined as follows. We can see that result must be a set
of 1-dimensional edges, but this is not reflected in the type signature.

edges :: Poly -> Set Poly

edges p = case dim p of

0 -> emptyS

1 -> singleS p

_ -> unionMapS edges (facets p)

We want a PolyD version of edges defined generically for all dimensions. As its
behaviour depends on the dimension of the polytope, and dimensions are types,
we need a type class. This class will have instances only for the two Nat types,
but there are three cases — the behaviour for dimension (Succ n) depends on
n. Our solution is an auxiliary method.

type One = Succ Zero

type Edge = PolyD One

481

class Nat n => PolyEdges n where

polyEdges :: Poly n -> Set Edge

polyEdges’ :: Poly (Succ n) -> Set Edge

instance PolyEdges Zero where

polyEdges = const emptyS

polyEdges’ = singleS

instance PolyEdges n => PolyEdges (Succ n) where

polyEdges = polyEdges’

polyEdges’ = unionMapS polyEdges . polyFacets

Capturing such dimensional properties in the types of an n-dimensional applica-
tion seems inherently desirable in principle. Questions in practice include: Is it
possible? Is it convenient? Does it catch mistakes? Does it affect performance?

We have already indicated what is possible, and we do not find it too incon-
venient, despite the need for devices such as the auxiliary polyEdges’ method.
If any part of a program should prove problematic for dimensional checking, a
cheap escape route is always at hand: the selector poly :: PolyD d -> Poly

takes us directly to the dimensionless world if we need to go there; it is quite
straightforward to mix checked and unchecked components.

We have also found that dimensional checking catches mistakes. A routine
for checking paths between transitional edges, as originally defined over the
dimensionless Poly type, incorrectly passed polytopes of arbitrary dimension as
the edge argument to the function:

transitional :: Marking -> Poly -> Bool

transitional marked edge = sizeS (verts e /\ m) == 1

The mistake went undetected as the program gave correct results for a few test
polytopes. Happily, the correction of the mistake also made the program faster
— see later discussion of cardinality.

As to performance, construction and selection for newtypes has a zero run-
time overhead. What is more, explicit calculations of dimensions for Poly values
are no longer needed as the equivalent work is done at compile-time.

Set Representations for Polytopes

Polytopes of positive dimension have sets of facets, where each facet is again a
polytope. How shall we represent these sets? The main factors in this decision
are support for needed operations, and the feasibility of executing the specifica-
tion as a prototype. Mainstream Haskell libraries offer either raw (unordered)
lists or a clever implementation using balanced ordered trees. An intermediate
option would be to represent sets as ordered lists. Complexities of common set
operations in each case are shown in Table 1. There appears to be no real con-
test. Surely we should use the balanced trees? Actually, it is much better to use
ordered lists: Polycell runs about twenty times faster. Here is why:

482

Table 1. Complexity of set operations for different representations.

lists ordered lists balanced trees
∈ O(n) O(n) O(log n)
∪, ∩, \, ⊆ O(m× n) O(m + n) O(m + n)
♯ O(n) O(n) O(1)
min O(n) O(1) O(log n)

The tree-based library provides almost no support for higher-ranked sets.
Sets are permitted as elements, but functions such as powerset are not directly
provided. The cheapest way to define them in terms of available operations is by
first extracting the list of elements and performing a list computation anyway.
The complexity of extracting an element list from a tree is O(n).

Almost every operation on sets involves element comparison. The complex-
ities listed above assume that comparison is just an O(1) primitive operation.
But consider the comparison of (say) vertex sets from two components of a
polytope: the common case is that the sets are not equal, and a comparison of
just their least elements is sufficient to settle the outcome; now least element
comparison is O(1) for ordered lists, but O(log n) for trees.

Constraints on cardinalities occur quite a bit in the isosurface specification.
So isn’t the maintenance of cardinality information, with O(1) access, an ad-
vantage of the tree-based library? No: providing an integer-valued cardinality
requires a set to be fully evaluated, and is unnecessarily precise when the car-
dinality is only needed for comparison. Even if the comparison is an equality, it
may be better to define and use a function such as:

forExactly :: Int -> Set a -> (a->Bool) -> Bool

The speculative strict evaluation in the balanced-tree set library is helpful if sets
are typically long-lived structures that are frequently “updated” and eventually
needed in full. But none of these assumptions is true for Polycell. Lazily evalu-
ated ordered lists fare much better for transient sets about which only partial
information is needed.

Lastly, what about membership tests? Surely here is the big advantage of
balanced trees over lists? For some applications, yes. But although some sets
in Polycell computations are quite large (a few hundred elements) these are
typically generated sets in generate-and-test definitions, not arguments in mem-
bership tests. Polycell does perform a large number of membership tests and
related operations such as structural inclusion. But the sets involved are com-
paratively small, so the advantage of O(log n) over O(n) is less than might be
expected. Overall, Polycell spends about a quarter of its time performing these
operations.

483

5 Specification

The Polycell program is written as an executable specification. It is intended (1)
as a reference to define correct tables of isosurface intersections for any marked
polytope, (2) as a prototype for computing such tables, and (3) as the starting
point for a more refined implementation.

The specification style uses set-based operators to express generate and test

definitions of functions. For example, one generator from a given base set gives
the set of all subsets of a specified size:

elemSubsetsOf :: Ord a => Int -> Set a -> Set (Set a)

Tests are applied by a set-filtering operator:

(<|) :: Ord a => (a->Bool) -> Set a -> Set a

Here’s an illustration of these two functions used in combination. The context
is an expression in the body of the entryFor function for a list of valid sets of
simplices that form an isosurface within a marked cell:

entryFor :: Poly -> Marking -> Set Simplex

entryFor c m =

...

[validSimSet c m <| n ‘elemSubsetsOf‘ allValidSims c m

| n <- [minNoOfSims..maxNoOfSims]]

...

The details of allValidSims reflect a similar style — there are three further
<| applications in the body of allValidSims itself representing more instances
of generate-and-test. Test predicates are often expressed using quantifiers over
sets, such as:

forAll, thereExists :: Ord a => Set a -> (a->Bool) -> Bool

forExactly :: Ord a => Int -> Set a -> (a-> Bool) -> Bool

Figure 5 illustrates the use of these functions to define validSimSet. The infix
operator <<= is the containment relation on Poly.

6 Refining generate-and-test to state-space search

Our aim is a systematic refinement of the executable specification to an efficient
program, giving confidence in its correctness. A formal derivation would be bet-
ter still, but would be a demanding project in its own right. The main kind
of refinement we have investigated transforms generate-and-test into a form of
state-space search — we have a fast state-based implementation and our goal is
a rational reconstruction of it.

484

validSimSet :: Poly -> Marking -> Set Simplex -> Bool

validSimSet c m ss =

-- Simplex facets lying within a cell facet occur in

-- exactly one simplex; others occur in exactly two.

(forAll simFacets $ \sf ->

forExactly (if inCellFacet sf then 1 else 2) ss $ \s ->

sf <<= simPoly s) &&

-- Each transitional edge is used at least once.

(forAll simVerts $ \sv ->

thereExists simEdges $ \se -> sv <<= se)

where

inCellFacet = facial (facets c)

simEdges = unionMapS (faces . simPoly) ss

simFacets = unionMapS (facets . simPoly) ss

simVerts = transitional m <| edges c

Fig. 4. Predicates testing the validity of candidate simplex sets.

Filter promotion using state machines

The efficiency of generate-and-test routines can often be improved by promoting
the test so that it is built into the generator. Instead of generating a set S

of candidates and afterwards filtering out the subset SP with property P , we
generate only the SP subset in the first place. Efficiency is gained at the expense
of complexity as the SP generator is typically more complex than either the S

generator or the P test. Systematic refinement of this kind is a long-established
strategy, sometimes called filter promotion. In our set-based specification, the
generated candidates are typically subsets (of edges, simplices etc), so we seek
some systematic and flexible way of constraining the generation of subsets.

Even in the prototype specification, one form of filter promotion has already
been done. Instead of an expression such as (size n <| subsets s) we use a
generator already constrained to give only subsets of a specified size:

elementSubsetsOf :: Ord a => Int -> Set a -> Set (Set a)

One view of the size value here is that it is an initial state. As each element
is generated for a candidate subset there is a size-decrementing transition to a
generator for the rest of the subset; finally, the empty subset is generated exactly
when the size-state is zero.

Hence the following generalisation. We define a generator for just those sub-
sets whose element sequences are recognised by a given finite-state acceptor.

constrainedSubsetsOf :: Ord a => FSA a s -> Set a -> Set (Set a)

The FSA type of accepting machines is defined as follows.

data FSA a s = FSA { start :: s,

trans :: (a -> s -> Maybe s),

final :: s -> Bool }

485

For example, we have the following embedding:

elementSubsetsOf n = constrainedSubsetsOf FSA {

start = n,

trans = \e n -> if n > 0 then Just e else Nothing,

final = \n -> n == 0 }

Generator-constraining FSAs can replace tests quantified over the elements of
candidate subsets. For example:

forallFSA :: (a->Bool) -> FSA a ()

forallFSA p = FSA {

start = (),

trans = \e () -> if p e then Just () else Nothing,

final = \() -> True }

existsFSA :: (a->Bool) -> FSA Bool ()

existsFSA p = FSA {

start = False,

trans = \e b -> Just (b || p e)

final = id }

Compound and predicates can be replaced by composite acceptors. Conjunctions
by FSA products, for example:

(&&&) :: FSA a s1 -> FSA a s2 -> FSA a (s1,s2)

fsa1 &&& fsa2 = FSA {

start = (start fsa1, start fsa2),

trans = \e (s1, s2) ->

case (trans fsa1 e s1, trans fsa2 e s2) of

(Just s1’, Just s2’) -> Just (s1’, s2’)

(_ , _) -> Nothing

final = \(s1, s2) -> final fsa1 s1 && final fsa2 s2 }

If FSA constrained generators label each generated subset with its associated
final state then predicates over nested sets of different ranks can also be com-
bined.

We know that the order in which states are explored can be critical for
the efficiency of state-based search, but we have not yet systematised ordering
refinements. The element type in every set is required to be of class Ord, and
our basic generators simply consider elements in this standard order.

7 Related Work

As scalar fields arise in many application domains, and isosurfaces are a funda-
mental tool for their exploration, there is unsurprisingly a large body of results
concerning both strategies for surface extraction and, more fundamentally, differ-
ent views on what constitutes the isosurface itself. However, work on case-table

486

generation is comparatively limited. Bhaniramka et.al. [8] set out an approach
that computes simplices starting from a geometric model of the polytope. Their
work exploits a connection between the cell-surface intersection and the convex
hull of a set of points formed by the ‘marked’ (> threshold) vertices and the
midpoints of those edges cut by the surface. Although the authors set out a
proof of correctness, the connection between the implementation and the un-
derlying mathematical model is not straightforward. More recently, Banks et.al.
[9] have applied group theory to explore the size of case tables, not just for the
boolean-valued cell/surface case, but for a range of related algorithms involving
more complex vertex markings. Their work explains how reported differences in
table size are accounted for by differences in the symmetry groups exploited in
the construction process.

Although not discussed in our specification, we expect to make similar use
of symmetries when defining case tables, and have already explored a partic-
ular branch of group theory, Coxeter groups, that provides elegant machinery
for constructing many, though not all, of the polytope structures that commonly
arise as cell topology in visualization data [10]. Putting aside issues of genericity,
a feature of our approach is the clean separation between specification and im-
plementation, and the audit trail, albeit informal, that the refinement strategy
provides. Such an approach is unusual in visualization. To date, there is little
published material exploring the correctness of visualization algorithms, with
most work on novel techniques exploring the utility of the visual representation,
and relying on visual inspection of the output and/or comparison with bench-
mark images to provide confidence in both the technique and its implementation.
However, a recent major NIH/NSF report [11] notes the growing impact of visu-
alization across a range of areas (in particular medicine), and the increasing need
for novel and powerful techniques for exploring large volumes of data. The work
reported here is an illustration of how development of a fundamental graphical
technique can benefit from high-level programming constructs and methodology,
in particular, as we ourselves have found, the use of expressive type systems to
capture subtle errors.

A more fundamental study of isosurfaces is presented in the thesis of Carr
[2]. Returning to the mathematics of fields, Carr explores the relationship be-
tween interpolation and various strategies for approximating the surface. Draw-
ing on results from topology, he develops a model of contour evolution expressed
through join/split graphs, and demonstrates how this can be used to construct
particular case tables. This is an interesting and particularly sound, however it
would be infeasible to implement for arbitrary polytopes as it relies on finding so-
lutions to interpolation functions, and for higher-level interpolants the necessary
closed form solutions do not exist.

8 Conclusions and Future Work

(Yet to be written!)

487

References

1. Haber, R., Lucas, B., Collins, N.: A data model for scientific visualization with
provision for regular and irregular grids. In: Proceedings of Visualization’91, IEEE
Computer Society Press (1991)

2. Carr, H.: Topological Manipulation of Isosurfaces. PhD thesis, University of British
Columbia (2004)

3. Lorensen, W., Cline, H.: Marching cubes: A high resolution 3d surface construction
algorithm. In: Proceedings of SIGGRAPH’87, ACM Press (1987) 163–169

4. Duke, D., Wallace, M., Borgo, R., Runciman, C.: Fine-grained visualization
pipelines and lazy functional languages. Transactions on Visualization and Com-
puter Graphics 12(5) (2006) 973–980

5. McMullen, P., Schulte, E.: Abstract Regular Polytopes. Cambridge University
Press (2002)

6. McBride, C.: Faking it — simulating dependent types in haskell. Journal of
Functional Programming 12(5) (2002) 375–392

7. Jones, M.P.: Type classes with functional dependencies. In: ESOP ’00: Proceed-
ings of the 9th European Symposium on Programming Languages and Systems,
London, UK, Springer-Verlag (2000) 230–244

8. Bhaniramka, P., Wenger, R., Crawfis, R.: Isosurfacing in higher dimensions. In
Ertl, T., Hamann, B., Varshney, A., eds.: Proceedings Visualization 2000, IEEE
Computer Society Press (2000) 267–273

9. Banks, D., Linton, S., Stockmeyer, P.: Counting cases in substitope algorithms.
Transactions on Visualization and Computer Graphics 10(4) (2004)

10. Borgo, R., Duke, D., Runciman, C., Wallace, M.: Mathematical foundations for
generic surfacing. In: Visualization 2007 Conference Compendium: Posters, IEEE
Computer Society (2007)

11. Johnson, C.R., Moorehead, R., Munzner, T., Pfister, H., Rheingans, P., Yoo, T.S.,
eds.: NIH-NSF Visualization Research Challenges Report. 1st edn. IEEE Press
(2006) http://tab.computer.org/vgtc/vrc/index.html.

488

Meta<Fun> – Towards a Functional-Style

Interface for C++ Template Metaprograms?

Ádám Sipos, Zoltán Porkoláb, Norbert Pataki, and Viktória Zsók

Eötvös Loránd University, Faculty of Informatics, Dept. of Programming Languages
Pázmány Péter sétány 1/C H-1117 Budapest, Hungary

shp@inf.elte.hu, gsd@elte.hu, patakino@elte.hu, zsv@inf.elte.hu

Abstract. Template metaprogramming is an emerging new direction in
C++ programming for executing algorithms in compilation time. De-
spite that template metaprogramming has a strong relationship with
functional programming, existing template metaprogram libraries do not
follow the requirements of the functional paradigm. In this paper we
discuss the possibility to enhance the syntactical expressivity of tem-
plate metaprograms using an embedded functional language. Clean – a
general-purpose purely functional lazy programming language was cho-
sen as embedded language. The graph-rewriting system of Clean has
been implemented as a compile-time template metaprogram library us-
ing standard C++ language features. Lazy evaluation of infinite data
structures is implemented to demonstrate the feasibility of the approach.

1 Introduction

Programming is primarily a human activity to understand a problem, make de-
sign decisions, and express our intentions to computer. In most cases the last
step is writing code in a certain programming language according to its specific
syntactical and semantical rules. Writing programs today is largely supported
by automatic tools, but still considerably influenced by personal experiences,
traditions, conventions, and customs. The syntax and semantics of a program-
ming language is a major factor. It is not easy – although possible – to write
structured programs in FORTRAN, or to write object-oriented code in PL/I.
Such attempts, however, frequently lead to obscure and unmanagable code. As
the spoken language has an important impact on human perception, the applied
programming language may drive the style of the programs to be written.

Template metaprogramming is an emerging new direction in C++ program-
ming in order to execute algorithms in compilation time. The relationship be-
tween C++ template metaprograms and functional programming is well-known:
most properties of template metaprograms are very close to those we identify
for functional programming paradigm. On the other hand, C++ has a strong
heritage of imperative programming (namely from C and Algol68) influenced by

? Supported by GVOP-3.2.2.-2004-07-0005/3.0 and Stiftung Aktion Österreich-
Ungarn, Pr.N.: 66öu2

489

object-orientation (Simula67). Furthermore the syntax of the C++ templates is
especially ugly. As a result, C++ template metaprograms are often hard to read,
and hopeless to maintain.

Ideally, the programming language interface has to match the paradigm the
program is written in. Meta<Fun> is a running project at the Department of
Programming Languages and Compilers at the Eötvös Loránd University, Bu-
dapest. The long-term goal of the project is to define and implement a clear and
maintanable, purely functional-style interface for C++ template metaprograms.
For this purpose, template metaprograms are written in a functional language
and embedded in C++ programs. This code is translated into classical template
metaprograms by a translator. The result is a native C++ program complies
with the ANSI standard [3].

The Clean language has been chosen as an ideal embedded language. Clean
is a general-purpose purely functional lazy programming language[11]. Clean’s
main features include a uniqueness typing system, higher order functions, and
a powerfull constructor-based syntax for data structure generation. Clean also
supports infinite data structures via delayed evaluation.

In this article we overview the most important properties of the functional
paradigm, and evaluate their possible translation techniques into C++ metapro-
grams. The graph-rewriting system of Clean has been implemented as a C++
template metaprogram library. With the help of the engine, embedded Clean
programs can be translated into C++ template metaprograms as clients of this
library and can be evaluated in a semantically equivalent way. Delayed evaluation
of infinite data structures are also implemented and presented by examples.

The rest of the paper is organized as follows: In section 2 we give a technical
overview of the C++ templates and the basics of C++ template metaprograms.
Relationship between C++ template metaprograms and functional program-
ming is discussed in section 3. Lazy data stuctures, evaluation, and the template
metaprogram implementation of the graph rewriting system of the Clean func-
tional language is described in section 4. In section 5 the core engine of the
Meta<Fun> system is discussed in detail. We discuss related works and future
plans in section 6.

2 C++ Template Metaprogramming

In this section we give an overview of the most important technical details we
use in the rest of the paper.

2.1 Typedef

Typedef is a C++ language tool to give a new name for an existing type. In this
sense, typedef do not creates a new type, just provides an alias for an existing
one. These alias types are compatible and interchangeable therefore parameter
overloading is not possible on typedef created typenames.

Typedef is frequently used in C++ for convenience.

490

2.2 Template

Templates are key elements of C++ programming language [21]. They enable
data structures and algorithms be parameterized by types thus capturing com-
monalities of abstractions in compile time without performance penalties in run-
time [26]. Generic programming [19], a recently emerged programming paradigm
for writing reusable components – most cases data structures algorithms – is im-
plemented in C++ with heavy use of templates.

Consider a simple example regarding the implementation of a templated list
data structure. The abstractions behind a list containing integer numbers, or
strings is essentially the same, it is only the type of the contained objects that
differs. With templates we can capture this abstraction, thus the generic language
constructs aid code reuse, and the introduction of higher abstraction levels. Let
us consider the following code:

template <class T> int main()

class list {

{ ...

public: list<int> li; // instantiation

list(); li.insert(1928);

void insert(const T& x); }

T first();

void sort();

...

};

This list template has one type parameter, called T, referring to the future type
whose objects the list will contain. In order to use a list with some specific type,
an instantiation is required. This process can be initiated either implicitly by
the compiler when a list with a new type argument is referred, or explicitly by
the programmer. During instantiation the template parameters are substituted
with the concrete arguments, and the generated new code is compiled. Therefore
a separate instance of code has to be generated for all type arguments of a
template.

C++ template mechanism enables the definition of partial and full special-
izations. Let us suppose that for some type (in our example bool) we would like
to create a more efficient type-specific implementation of the list template. We
may define the following specialization:

template<>

class list<bool>

{

// a completely different implementation may appear here

};

The specialization and the original template only share the name. A specializa-
tion does not need to provide the same functionality, interface, or implementation
as the original.

491

With a partial specialization we can record one or more argument’s types
(like the bool in the full specialization) or their properties (like being pointer
types):

template<class T, class U>

class A { ... };

template <class U>

class A<bool,U> { ... };

This partial specialization will be selected by the compiler if A is instantiated
with its first argument being bool.

Another important unique property of C++ templates is that not only types
but also integers, floating point numbers, even other templates may be template
parameters:

template <class T>

class Q { ... };

template<template <class T1> class Expr>

class A { ... };

template<template <class T1> class Expr>

class A<Q<T1> > { ... };

In this example in the general case when the template A is used, its first
version is instantiated. On the other hand when the template Q is passed to A,
the second partial specialization is used.

The C++ template mechanism of instantiation is different from the imple-
mentation of generics in Java and C# languages. Java and C# work with type
erasure; the argument of the generic is always converted to one common super-
type (Object in Java) and all the generic data structures and methods are served
by that single instance of code [4]. Thus the code blow problem is successfully
avoided, but it is impossible to write specializations.

2.3 Metaprograms

In case the compiler deduces that in a certain expression a concrete instance of
a template is needed, an implicit instantiation is carried out. Let us consider the
following codes demonstrating programs computing the factorial of some integer
number by invoking a recursion:

// compile-time recursion // runtime recursion

template <int N> int Factorial(int N)

struct Factorial {

{ if (N==1) return 1;

enum { value = N * return N*Factorial(N-1);

492

Factorial <N-1>::value }; }

};

template<>

struct Factorial<1>

{

enum { value = 1 };

};

int main() int main()

{ {

int r=Factorial<5>::value; int r=Factorial(5);

} }

As the expression Factorial<5>::valuemust be evaluated in order to initialize
r with a value, the Factorial template is instantiated with the argument 5.
Thus in the template the parameter N is substituted with 5 resulting in the
expression 4 * Factorial<4>::value. Note that Factorial<5>’s instantiation
cannot be finished until Factorial<4> is instantiated, etc. This chain is called
an instantiation chain. When Factorial<1>::value is accessed, instead of the
original template, the full specialization is chosen by the compiler so the chain
is stopped, and the instantiation of all types can be finished. This is a template
metaprogram, a program run in compile-time, calculating the factorial of 5.
A strong analogue exists between compile-time and runtime entities:

Metaprogram Runtime program

(template) class subprogram (function, procedure)

static const and data
enum class members (constant, literal)

symbolic names variable
(typenames, typedefs)

recursive templates, abstract data structures
typelist

static const initialization initialization
enum definition (but no assignment!)
type inference

Table 1. Comparison of runtime and metaprograms

Conditional statements, like the stopping of recursions, are implemented with
the help of specializations. Templates can be overloaded and the compiler has to
choose the narrowest applicable template to instantiate. Subprograms in ordi-
nary C++ programs can be used as data via function pointers or functor classes.
Metaprograms are first class citizens in template metaprograms, as they can be
passed as parameters for other metaprograms [7].

Data is expressed in runtime programs as constant values or literals. In
metaprograms we use static const and enumeration values to store quantita-

493

tive information. Results of computations during the execution of a metaprogram
are stored either in new constants or enumerations.

Complex data structures are also available for metaprograms. Recursive tem-
plates are able to store information in various forms, most frequently as tree
structures, or sequences. Tree structures are the favorite implementation forms
of expression templates [28]. The canonical examples for sequential data struc-
tures are typelist [2] and the elements of the boost::mpl library [33, 10].

2.4 Application of C++ template metaprograms

We have seen with the Factorial metaprogram that the whole operation hap-
pens in compile-time instead of runtime, thus this metaprogram may significantly
slow the compilation process. On the other hand, this operation calculating a
number’s factorial results in a O(n) complexity in runtime. By replacing the
calculation to compile-time, it will cause only a O(1) complexity in runtime. An
important application of metaprograms is transferring calculations to compile-
time, thus speeding up the execution of the program. Among other important
applications of metaprograms are the implementation of concept checking [32]
(testing for certain properties of types in compile-time), data structures contain-
ing types in compile-time (e.g. typelist [2]), active libraries [6], and others. By en-
abling the compile-time code adaptation, C++ template metaprograms (TMP)
is a style within the generative programming paradigm [7]. Template metapro-
gramming is Turing-complete [29], in theory its expressive power is equivalent
to that of a Turing machine (and thus most programming languages).

Despite all of its advantages TMP is not yet widely used in the software indus-
try due to the lack of coding standards, and software tools. A common problem
with TMP is the tedious syntax, and long code. Libraries like boost::mpl help
the programmers by hiding implementation details of certain algorithms and
containers, but still a big part of coding is left to the user. Due to the lack of
a standardized interface for TMP, naming and coding conventions vary from
programmer to programmer.

In the following we describe the similarities between functional programming
and TMP, and describe a functional interface aimed to help overcome these
problems.

3 Metaprogramming and Functional Programming

Template metaprogramming is many times regarded as a pure functional lan-
guage. The common properties include referential transparency (metaprograms
have no side-effects) and the lack of variables, loops, and assignments.

One of the most important functional property of TMP is that if a certain
entity (the aforementioned constants, enumeration values, types) has been de-
fined, it will be immutable. There is no way to change its value or meaning.
A metaprogram does not contain assignments. That is the reason why we use
recursion and specialization to implement loops: we are not able to change the

494

value of any loop variable. Immutability – as in functional languages – has a
positive effect too: unwanted side effects do not occur.

In our opinion, the similarities require a more thorough examination, as the
metaprogramming realm could benefit from the introduction and library imple-
mentation of more functional techniques.

Two methods are possible for integrating a functional interface into C++:
modifying the compiler to extend the language itself, or creating a library-level
solution and using a preprocessor or macros. The first approach is probably
quicker, easier, and more flexible, but at the same time a language extension is
undesirable in the case of a standardized, widely used language like C++.

Our approach is to re-implement the graph-rewriting engine of the Clean
language as a compile-time metaprogram library using only ANSI standard com-
pliant C++ language elements. Thus our solution has numerous advantages:

– Separating the user written embedded code from the graph-rewriting engine,
the embedded Clean code fragments can be translated into C++ template
metaprograms independently.

– Since the engine follows the graph-rewriting rules of the Clean language as
it is defined in [5], the semantic of the translated code is as close to the
programmers intension as possible.

– As our solution uses only standard C++ elements, the library is higly portable.

4 Lazy Evaluation

As lazy evaluation is one of the most characteristic features of the Clean lan-
guage, our research centers around lazy evaluation and its application in C++
template metaprograms. In order to better understand the functional program-
ing – TMP connection, and the possibilities in lazyness, we modeled the purely
functional lazy language Clean in TMP.

Clean programs are represented by an expression graph in the compiler. This
graph is rewritten automatically in several phases in runtime. The main function
expression on the right side of the Start symbol is evaluated.

One of the basic data structures in Clean is the list. The list in Clean can be
regarded as a linked list[11], but in the following we will describe lists as if they
were represented with a head element and the ”rest”, or ”tail”. The constructor
handling these two parts of the list is called Cons. For example the list [2,3,4]
can be written as Cons 2 Cons 3 Cons 4 Nil, with Nil representing the end
of the list.

A lazy evaluation strategy means that ”a redex is only evaluated when it is
needed to compute the final result”[16]. This lazyness enables us to specify rep-
resented lists that contain an infinite number of elements, e.g. the list of natural
numbers: [1..]. A classic example for the usage of lazy lists is the Eratosthenes
sieve algorithm producing the first arbitrarily many primes.

For future use we define a constructor EnumFrom for an infinite list starting at
a certain number. The list [2..] can thus be written as EnumFrom 2 (or [2..]).

495

Of course to acquire the head element of a list we need to rewrite this expression
to Cons 2 EnumFrom 3 (or [2,EnumFrom 3]), i.e. this is a list containing 2 and
[3..].

In the following we present a simple Clean program calculating the first 10
primes. (The symbols R1..R6 are line numberings)

(R1) take 0 xs = []

(R2) take n [x,xs] = [x, take n-1 xs]

(R3) sieve [prime:rest] = [prime : sieve (filter prime rest)]

(R4) filter p [h:tl] | h rem p == 0 = filter p tl

= [h : filter p tl]

(R5) filter p [] = []

(R6) Start = take 10 (sieve ([2..]))

Clean follows the left-right outermost rewriting strategy. The first examined
expression is the Start expression. Clean first tries to apply one of the rewrit-
ing rules to the examined expression by substituting the current parameters
with the rule’s parameters. If it does not succeed, every expression’s arguments
(subexpressions) are examined recursively starting from left to right. If any of
the subexpressions can be rewritten, the evaluation returns to the outermost ex-
pression. The evaluation process terminates, when none of the rules is applicable
to any of the subexpressions.

In our example the first examined expression is (F1). Since none of the rules’
left sides takes the form of (F1), Clean examines the first argument in (F1). It is
10, for which we have no rewriting rule, and this expression has no subexpressions
either. The other argument sieve (EnumFrom 2) cannot be rewritten either. On
the other hand the argument EnumFrom 2 is [2, EnumFrom 3], and this is the
substitution that takes place.

As a rewriting rule has been applied, we return to the outermost expression
which is now (F2). Again, neither this whole expression, nor its first argument
can be rewritten, thus the second argument sieve [2, EnumFrom 3] is exam-
ined. (R3) can be applied here with prime=2 and rest=EnumFrom 3.

The outermost expression now takes the form of (F4), which is the expression
we return to. Now (R2) can be directly applied with n=10, x=2, and xs=sieve

(filter 2 EnumFrom 3).

(F1) take 10 (sieve [2..])

(F2) take 10 (sieve [2, [3..]])

(F3) take 10 ([2, sieve (filter 2 [3..])])

(F4) [2, take 9 (sieve (filter 2 [3..]))]

(F5) [2, take 9 (sieve [3, filter 2 [4..])]

(F6) [2, take 9 [3, sieve (filter 3 (filter 2 [4..]))]]

(F7) [2, 3, take 8 (sieve (filter 3 (filter 2 [4..])))]

...

In order to simulate a lazy language’s inner workings, this rewriting algorithm
was implemented using TMP.

496

5 The Implementation of the Graph-rewriting Engine

In the following we present thru examples the method to transform a Clean
program into C++ templates, and also the engine that carries out the actual
rewriting and evaluation process in compile-time.

5.1 The sieve program

In Section 2.3 we have described the various language constructs available in
metaprogramming. We now use typedefs, and types created from templates to
represent the expressions. In this approach our example Start expression has the
form take<10,sieve<EnumFrom<2> > >. Here take, sieve, and EnumFrom are
all struct templates having the corresponding number and type of parameters.

We have described the C++ templates and specializations in Section 2.2. The
graph rewriting process can be modeled with the C++ compiler’s instantiation
process. When a template with certain arguments has to be instantiated, the
C++ compiler chooses the narrowest matching template of that name from the
specializations.

Therefore the rules can be implemented with template partial specializations.
Each partial specialization has an inner typedef called right which represents
the right side of a pattern matching rule. At the same time the template’s name
and parameter list represent the left side of a pattern matching rule, and the
compiler will choose the most suitable of the specializations of the same name.
Following is the example for a sieve rule.

template <int prime, class ys>

struct sieve<Cons<prime,ys> >

{

typedef Cons<prime, sieve<filter<prime, ys> > > right;

};

The sieve template has to parameters, an integer prime and a list ys. This
template describes the workings of (R3) in our Clean example. In case a subex-
pression has the form sieve<Cons<N,T> > where N is an integer, and T is an
arbitrary type, the previously defined sieve specialization will be chosen by the
compiler as a substitute for the subexpression.

In the general case, however, a rule is not applicable. For example in (F1)
during the evaluation process the previous sieve rule will be considered as ap-
plicable when rewriting the subexpression sieve [2..]. The problem is that
the argument [2..] (EnumFrom 2) does not match the sieve partial special-
ization parameter list which is expecting an expression in the form Cons<N,T>

with an integer N, and a type T. During the compilation the C++ compiler will
instantiate the type sieve<EnumFrom<2> >. However this is a pattern match-
ing failure which has to be detected. Therefore each function must implement a
partial specialization for the general case, when none of the rules with the same
name can be applied. The symbol NoMatch is introduced, which signs that even

497

though this template has been instantiated with some parameter xs, there is no
applicable rule for this argument. NoMatch is a simple empty class.

template <class xs>

struct sieve

{

typedef NoMatch right;

};

The previously introduced filter function’s case distinction is used to de-
termine in compile-time whether x is divisible by p, and depending on that
decision either of the two alternatives is chosen as the substitution. The C++
transformation of filter utilizes boost::mpl::if c for making a compile-time
decision:

template <int p, int x, class xs>

struct filter<p,Cons<x,xs> >

{

typedef typename

if_c< x%p==0,

filter<p,xs>,

Cons<x,filter<p,xs> >

>::type right;

};

The working of the transformed EnumFromis similar to the one in Clean: if a
rewriting is needed with EnumFrom, a new list is created consisting of the list’s
head number, and an EnumFrom and the next number.

template <int r>

struct EnumFrom

{

typedef Cons<r, EnumFrom<r+1> > right;

};

All other functions in Section 4 can be translated into templates using analo-
gies with the previous examples. In the following we present the metaprogram-
ming engine carrying out the evaluation process using the previous templates.

5.2 The graph-rewriting engine

Until now we have translated the Clean rewriting rules into C++ templates, by
defining their names, parameter lists (the rule’s partial specialization), and their
right sides. These templates will be used to create types representing expressions
thus storing information in compile-time. This is the first abstraction layer. In
the following we present the next abstraction level, that uses this stored infor-
mation. This is done by the library’s core, the Eval struct template’s partial
specializations which evaluate a given expression.

498

Since the specialization’s parameter is a template itself (representing an ex-
pression), its own parameter list has to defined too. Because of this constraint
separate implementations are needed for the evaluation of expressions with dif-
ferent arities. In the following we present one version of Eval that evaluates
expressions with exactly one parameter:

1 template <class T1, template <class> class Expr>

2 struct Eval<Expr<T1> >

3 {

4 typedef typename

5 if_c<is_same<typename Expr<T1>::right,

6 NoMatch>::value,

7 typename

8 if_c<!Eval<T1>::second,

9 Expr<T1>,

10 Expr<typename Eval<T1>::result>

11 >::type,

12 typename Expr<T1>::right

13 >::type result;

14

15 static const bool second =

16 !(is_same<typename Expr<T1>::right,NoMatch>::value &&

17 !Eval<T1>::second);

18 };

Eval’s working is as follows. Eval takes one argument, an expression Expr

with one parameter T1. The type variable T1 can be any type, e.g. int, a list of
ints, or a further subexpression. This way Eval handles other templates. The
return type result defined in line 13 contains the new rewritten subexpression,
or the same input expression if no rule can be applied to the expression and its
parameters.

When the template Expr has no partial specialization for the parameter
T1, the compiler chooses the general template as described in Section 5.1. The
compile-time if c in line 5 is used to determine if this is the case, and the
Expr<T1>::right is equal to NoMatch.

– If this is the case, another if c is invoked. In line 8 T1, the first (and only)
argument is evaluated, with a recursive call to Eval. The boolean second

determines whether T1 or any of its parameters could be rewritten. If no
rewriting has been done among these children, Eval’s return type will be the
original input expression. Otherwise the return type is the input expression
with its T1 argument substituted with Eval<T1>::result, which means that
either T1 itself, or one of its parameters has been rewritten. This mechanism
is similar to type inference.

– On the other hand, if a match has been found (the if c conditional statement
returned with a false value), the whole expression is rewritten, and Eval

returns with this new expression (line 12).

499

The aforementioned boolean value second is defined by each Eval special-
ization (line 15). It is the logical value signaling whether the expression itself, or
one of its subexpressions has been rewritten.

The implementation of Eval for more parameters is very similar to the pre-
vious example, the difference being that these parameters also have to be recur-
sively checked for rewriting.

As our expressions are stored as types, during the transformation process
the expression’s changes are represented by the introduction of new types. This
transformation is the very same as with the Clean example, as the following
types are created as right typedefs:

take<10,sieve<EnumFrom<2> > >

take<10,sieve<Cons<2,EnumFrom<3> > > >

take<10,Cons<2,sieve<filter<2,EnumFrom<3> > > > >

Cons<2,take<9,sieve<filter<2>,EnumFrom<3> > > >

Cons<2,take<9,sieve<3,filter<2,EnumFrom<4> > > > >

Cons<2,take<9,Cons<3,sieve<filter<3,EnumFrom<4> > > > > >

Cons<2,3,take<8,filter<3,filter<2,EnumFrom<4> > > > >

...

We have demonstrated the evaluation engine’s implementation, and its work-
ing.

6 Related Work and Future Plans

Functional language-like behavior in C++ has already been studied. Functional
C++ (FC++) [24] is a library introducing functional programming tools to
C++, including currying, higher-order functions, and lazy data types. FC++,
however, is a runtime library, and our aim was to utilize functional programming
techniques in compile-time.

The Boost::MPL library is a mature library for C++ template metapro-
gramming. Boost::MPL containes a number of compile-time data structures,
algorithms, and functional-style features, like Partial Metafunction Application
and Higher-order metafunctions. However, Boost::MPL were designed mainly to
follow the interface of the C++ Standard Template Library. There is no explicit
support for lazy infinite data structures either.

The programming presented in Section 5.1 still does not hide the implemen-
tation details from the user, and only resembles Clean syntax. One of the pos-
sible solutions to this problem is introducing macros for hiding these details. A
probably better approach is the creation of a preprocessor which could translate
the embedded Clean-code into templates, and the following compilation process
would run the metaprogram.

The speed of the compilation also needs to be improved.

500

7 Conclusion

In this paper we introduced the Meta<Fun> project which enhance the syntacti-
cal expressivity of C++ template metaprograms. The general-purpose functional
programming language Clean is used as an embedded language to write metapro-
gram code in a C++ host environment. The graph-rewriting system of the Clean
language has been implemented as a template metaprogram library. Clean code
fragments are translated into classical C++ template metaprograms as clients of
the rewriting library. Lazy evaluation of infinite data structures is implemented
to demonstrate the feasibility of the approach. Since the graph-rewriting library
uses only standard C++ language features, our solution requires no language
extension and is highly portable.

References

1. David Abrahams, Aleksey Gurtovoy: C++ template metaprogramming, Concepts,
Tools, and Techniques from Boost and Beyond. Addison-Wesley, Boston, 2004.

2. Andrei Alexandrescu: Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley (2001)

3. ANSI/ISO C++ Committee. Programming Languages – C++. ISO/IEC
14882:1998(E). American National Standards Institute, 1998.

4. Bracha, G., Odersky, M., Stoutamire, D., Wadler, P.: Making the Future Safe for
Past: Adding Genericity to the Java Programming Language.
ACM Symposium on Object Oriented Programming: Systems, Languages, and
Applications (OOPSLA), pp. 183-200. 1998. Vancouver.

5. T. H. Brus, C. J. D. van Eekelen, M. O. van Leer, M. J. Plasmeijer: CLEAN: A
language for functional graph rewriting.
Proc. of a conference on Functional programming languages and computer archi-
tecture, pp.364-384, Springer-Verlag, 1987

6. Krzysztof Czarnecki, Ulrich W. Eisenecker, Robert Glck, David Vandevoorde, Todd
L. Veldhuizen: Generative Programming and Active Libraries, Springer-Verlag,
2000

7. Krzysztof Czarnecki, Ulrich W. Eisenecker: Generative Programming: Methods,
Tools and Applications. Addison-Wesley (2000)

8. Ulrich W. Eisenecker, Frank Blinn and Krzysztof Czarnecki: A Solution to the
Constructor-Problem of Mixin-Based Programming in C++. In First C++ Tem-
plate Programming Workshop, October 2000, Erfurt.

9. Ronald Garcia, Jaakko Järvi, Andrew Lumsdaine, Jeremy Siek, Jeremiah Willcock:
A Comparative Study of Language Support for Generic Programming. Proceedings
of the 18th ACM SIGPLAN OOPSLA 2003, pp. 115-134.

10. Björn Karlsson: Beyond the C++ Standard Library, A Introduction to Boost.
Addison-Wesley, 2005.

11. P. Koopman, R. Plasmeijer, M. van Eeekelen, S. Smetsers: Functional programming
in Clean, 2002

12. David R. Musser and Alexander A. Stepanov: Algorithm-oriented Generic Li-
braries. Software-practice and experience, 27(7) July 1994, pp. 623-642.

13. David R. Musser and Alexander A. Stepanov: The Ada Generic Library: Linear
List Processing Packages. Springer Verlag, New York, 1989.

501

14. Brian McNamara, Yannis Smaragdakis: Static interfaces in C++. In First C++
Template Programming Workshop, October 2000, Erfurt.

15. Odersky, M., Wadler, P.: Pizza into Java: Translating theory into practice
In Symposium on Principles of Programming Languages, pp.146-159. ACM, 1997.

16. R. Plasmeijer, M. van Eeekelen: Clean Language Report, 2001
17. Jeremy Siek and Andrew Lumsdaine: Concept checking: Binding parametric poly-

morphism in C++. In First C++ Template Programming Workshop, October
2000, Erfurt.

18. Jeremy Siek and Andrew Lumsdaine: Essential Language Support for Generic Pro-
gramming. Proceedings of the ACM SIGPLAN 2005 conference on Programming
language design and implementation, New York, NY, USA, pp 73-84.

19. Jeremy Siek: A Language for Generic Programming. PhD thesis, Indiana Univer-
sity, August 2005.

20. Ádám Sipos: Effective Metaprogramming. M.Sc. Thesis. Budapest, 2006.
21. Bjarne Stroustrup: The C++ Programming Language Special Edition. Addison-

Wesley (2000)
22. Bjarne Stroustrup: The Design and Evolution of C++. Addison-Wesley (1994)
23. Gabriel Dos Reis, Bjarne Stroustrup: Specifying C++ concepts. Proceedings of the

33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), 2006: pp. 295-308.

24. Brian McNamara, Yannis Smaragdakis: Functional programming in C++. Pro-
ceedings of the fifth ACM SIGPLAN international conference on Functional pro-
gramming, pp.118-129, 2000

25. Erwin Unruh: Prime number computation. ANSI X3J16-94-0075/ISO WG21-462.
26. David Vandevoorde, Nicolai M. Josuttis: C++ Templates: The Complete Guide.

Addison-Wesley (2003)
27. Todd Veldhuizen: Using C++ Template Metaprograms. C++ Report vol. 7, no. 4,

1995, pp. 36-43.
28. Todd Veldhuizen: Expression Templates. C++ Report vol. 7, no. 5, 1995, pp. 26-31.
29. Todd Veldhuizen: C++ Templates are Turing Complete
30. István Zólyomi, Zoltán Porkoláb, Tamás Kozsik: An extension to the subtype re-

lationship in C++. GPCE 2003, LNCS 2830 (2003), pp. 209 - 227.
31. István Zólyomi, Zoltán Porkoláb: Towards a template introspection library. LNCS

Vol.3286 pp.266-282 2004.
32. Boost Concept checking.

http://www.boost.org/libs/

concept check/concept check.htm

33. Boost Metaprogramming library.
http://www.boost.org/libs/mpl/doc/index.html

34. Boost Preprocessor library.
http://www.boost.org/libs/

preprocessor/doc/index.html

35. Boost Static assertion.
http://www.boost.org/regression-logs/

cs-win32 metacomm/doc/html/boost staticassert.html

502

Speculative Inlining of Predefined Procedures in

an R5RS Scheme to C Compiler

Marc Feeley

Dépt. d’informatique et de r.o., Université de Montréal, Canada

Abstract. The semantics of some dynamic programming languages, in-
cluding Python, JavaScript, and R5RS Scheme, make it hard for a com-
piler to inline predefined procedures without compromising the semantics
of the language. In the case of Scheme, many existing compilers can only
achieve good execution speed by assuming that variables bound to pre-
defined procedures are never mutated. This paper presents a speculative

inlining approach which is portable and achieves good performance while
fully conforming to the semantics of Scheme. It has been implemented
in a mature Scheme to C compiler and we report on its performance on
a large benchmark suite, both in execution speed and code size.

1 Introduction

Functional abstraction is useful for designing modular programs but the proce-
dure call mechanism which implements the abstraction barrier has a run time
cost for setting up parameters, directing the control flow to and from the proce-
dure, and returning any results to the caller. The compiler can reduce the cost
by inlining the procedure at the call site in the caller. This eliminates the need
for the call/return control flow instructions, and it uncovers additional oppor-
tunities for optimization because the copy of the procedure body placed at the
call site can be specialized for the actual parameters of that call.

We distinguish two kinds of inlinable procedures: predefined procedures pro-
vided by the language (e.g. sqrt and map), and user procedures whose defini-
tion must be given explicitly in the program. This classification covers language
support operations, such as arithmetic, I/O, memory allocation and method dis-
patch, by treating them as inlinable predefined procedures. This paper addresses
the problem of inlining predefined procedures in the R5RS Scheme language [12].

Some aspects of Scheme make inlining predefined procedures tricky. Accord-
ing to the semantics of Scheme the evaluation of (+ x y) decomposes into these
steps: get the values of the variables +, x, and y, respectively t1, t2, and t3, then
check that t1 is a procedure, and then call t1 with the parameters t2 and t3.
This usually adds x and y because the global variable + is initially bound to the
addition procedure. During program execution it is possible to bind the variable
+ to a non-procedure value or to a different procedure, for example (set! +

list). After this assignment, the expression (+ x y) will in fact call the pre-
defined procedure list and thus construct a two element list. This form of late

503

binding may be surprising, but it is sometimes useful as explained in Section 2.
This problem is not specific to Scheme; indeed Python [15], JavaScript [2] and
other scripting languages implement this form of late binding.

Predefined global variables may be mutated at run time in any part of the
program, at the read-eval-print loop, in modules loaded dynamically using the
predefined load procedure, and in S-expressions constructed and evaluated at
run time by the predefined eval procedure. To achieve a better static analysis of
programs, a Scheme compiler could adopt a static linking model by forbidding
dynamic loading and eval, and not offering an interactive read-eval-print loop.
This would allow a whole program analysis to prove that a given predefined
variable is never mutated. Although this simplifies procedure inlining, it reduces
the system’s flexibility and it deviates from the Scheme semantics.

A popular alternative approach is the use of command-line flags and non-
standard program annotations to force the compiler to assume the predefined
variables contain their initial bindings. For example, the (standard-bindings)

annotation of Gambit-C [3], the --prim flag of PLT Scheme’s compiler [6], and
the “benchmark mode” of Scheme48 [11]. This assumption is so common that
it is the default compilation mode of CHICKEN [16], and the only compilation
mode of Bigloo [14] which are both Scheme to C compilers.

Another aspect of Scheme which hinders the inlining of predefined procedures
is the generic nature of fundamental operations such as + and equal?. Scheme
supports a rich set of numerical types (infinite precision integers, rational, real,
and complex) and the notion of exactness. Consequently most predefined pro-
cedures for performing arithmetic operations have non-trivial definitions which
dispatch on the type and exactness of its arguments, type check the arguments,
check for overflows, raise exceptions when appropriate, perform memory alloca-
tion, and so on. For space reasons it is unreasonable to fully inline arithmetic
procedures. This is problematic because many programs need to do simple arith-
metic on small exact integers for counting or indexing vectors.

To alleviate this problem many systems extend Scheme with a fixnum numer-
ical type, which is a fixed-width exact integer type typically a few bits less than
the natural word size of the machine, and procedures to operate on fixnums,
such as fx+ to add two fixnums, fx< to compare two fixnums, etc. Fixnum op-
erations usually have a simple definition and they are fast because they do not
require boxing and unboxing, and they have few special cases (overflow checking
is typically the only special case). Some systems also provide a flonum numerical
type, which is a fixed-precision inexact real type typically represented as a boxed
machine floating point number. It is reasonable to inline fixnum and flonum op-
erations because they take roughly the same space as a general procedure call.

The handling of fixnums and flonums varies considerably between systems,
most notably in the width of fixnums and the handling of overflows (some systems
detect fixnum overflows and signal an error, while others silently wraparound).
For this reason it is difficult to write portable and fast programs even across
systems that support fixnums and flonums. Moreover, fixnums cannot be used
in applications where the computations result in bignum integers that exceed

504

the fixnum range even though most of the time the computations are within the
fixnum range (financial calculations, number theoretic algorithms, etc).

A final concern in Scheme to C compilers, as considered here, is the high cost
for implementing procedure calls. In order to correctly implement tail-calls the
C code generated cannot directly translate Scheme calls into C calls. Moreover
some compilation techniques, such as runtime code generation, cannot be used.

To address these problems we have designed a speculative inlining algorithm
which fully obeys the semantics of R5RS Scheme and does not rely on any
program annotations, although it can take advantage of annotations to further
improve performance. This algorithm has been integrated into the Gambit-C
Scheme to C compiler. With no annotations, some programs approach the speed
of hand tuned code with annotations and fixnum/flonum specific operations.

This paper describes the speculative inlining algorithm, how it integrates into
the Gambit-C Scheme compiler and its performance. Section 2 explains situa-
tions where mutation of predefined global variables is useful. Section 3 discusses
aspects of Gambit-C’s compiler which interact with the speculative inlining al-
gorithm which is described in detail in Section 4. Finally Section 5 reports on
the performance both in execution speed and code space.

2 Mutation of Predefined Global Variables

The ability to mutate predefined global variables is consistent with Scheme’s
minimalistic philosophy. Using a single namespace for procedures and values
(a “Lisp1” [8]) is conceptually simpler than using two namespaces (a “Lisp2”).
Disallowing mutation of predefined global variables would increase the language’s
complexity by adding a special class of global variables. Moreover, mutation of
predefined global variables is useful, as shown in the following examples.
Debugging – Scheme programs are often structured as a set of procedures
defined at top-level. These procedures are bound to global variables and each
call references the appropriate variable to get the procedure to call. Tracing calls
to these procedures can be done by setting the variable to a new procedure which
calls the old one and also displays the arguments and result of the call. This can
be achieved by defining and using a trace macro as shown in Figure 1 (a).
Defining new types – There are no constructs in R5RS Scheme to define new
types. Portable programs must represent new types using a predefined type, usu-
ally vectors. New types defined this way are not distinct because they cannot be
distinguished from other new types and the vector used for their representation.
A common solution is to use a unique tag at the head of the vector to identify the
type unambiguously from other new types. Moreover, the vector? type predi-
cate must be redefined to distinguish plain vectors from vectors representing the
new types. Figure 1 (b) shows how a 2D point type can be defined.
Overloading – Overloading of predefined procedures can be achieved easily
with mutation. For example, append can be extended to allow concatenation
of strings by setting the append variable to a procedure which either calls the
append or string-append procedures depending on the type of the arguments.

505

> (define-syntax trace
(syntax-rules ()

((trace var)
(set! var (wrap ’var var)))))

> (define (wrap var proc)
(lambda args

(let ((r (apply proc args)))
(write (cons var args))
(display " ==> ")
(write r)
(newline)
r)))

> (define (f n) (* (+ n 1) (+ n 2)))
> (trace f)
> (trace +)
> (f 10)
(+ 10 1) ==> 11
(+ 10 2) ==> 12
(f 10) ==> 132
132

(a) Debugging

(define old-vector? vector?)

(define (instance? obj tag)
(and (old-vector? obj)

(>= (vector-length obj) 1)
(eq? (vector-ref obj 0) tag)))

(define pt (list ’pt)) ; unique tag
(define (make-pt x y) (vector pt x y))
(define (pt? obj) (instance? obj pt))
(define (pt-x p) (vector-ref p 1))
(define (pt-y p) (vector-ref p 2))

(set! vector?
(lambda (obj)

(and (old-vector? obj)
(not (pt? obj)))))

(pt? (make-pt 11 22)) ⇒ #t
(vector? (make-pt 11 22)) ⇒ #f

(b) Defining new types

Fig. 1. Predefined global variable mutation examples

3 The Gambit-C System

3.1 System Architecture

The Gambit-C system [3] is an implementation of R5RS Scheme designed to be
very portable while achieving good execution speed when programs are compiled.

A large part of the runtime system (roughly 50 kLOC), including the inter-
preter, debugger, bignum library, and all predefined procedures, is written in
Scheme. The compiler is also written in Scheme (roughly 25 kLOC). The rest of
the system (roughly 40 kLOC), including the garbage collector, operating system
interface, and foreign function interface is written in portable C.

Many macros which abstract away from the specifics of the platform are
defined in the gambit.h header file: the use of the gcc C compiler and its exten-
sions, the machine’s natural word size and endianness, the width of each numeric
type, the definition of virtual machine instructions, the representation of objects,
etc. This header file plays a key role in the compilation process. The C files pro-
duced by the Gambit compiler are entirely composed of calls to macros defined
in gambit.h. This allows a very late binding of the behavior of the generated
code. Indeed, a C file produced by the compiler on a given machine does not
have to be changed when it is compiled on a machine with a different C compiler,
a different operating system, or different endianness and word size (for practi-
cal reasons the word size is currently limited to 32 and 64 bits). Porting to an
unconventional C compiler typically only requires small changes to gambit.h.

Gambit-C supports separate compilation. In particular the runtime system’s
Scheme code is contained in 9 modules which are separately compiled. The mod-
ules of the runtime system and of the user can be statically linked to form an

506

executable program. A running program can also load user modules dynamically
and possibly more than once (to simplify debugging). Moreover, because the in-
terpreter is written in Scheme [4], interpreted code and compiled code can freely
call each other without compromising the Scheme semantics.

To implement tail-calls and continuations, Scheme calls cannot be translated
directly into C calls. The runtime system manages a stack of Scheme continuation
frames explicitly and independently from the C stack. The C code generated by
the compiler is partitionned into a number of host C procedures. Depending on
system build options, there is either a single host C procedure per Scheme module
(single host mode) or one host C procedure per top-level Scheme procedure in
the module (multiple host mode). Each host procedure contains a number of
control points, which can either be procedure entry points or continuation return
points. Trampolines are used to allow arbitrary jumps to a destination control
point without C stack growth. Host procedures are only called from a dedicated
dispatcher procedure. To jump to control point P , the current host returns to the
dispatcher which then calls the host procedure containing P (i.e. the depth of the
C call chain is never more than two). Upon entry to the host, a switch statement
(or a computed goto if gcc is used), jumps to P in the host. There are a few
optimizations to this basic approach which exploit locality (when P is in the same
host). Regardless of the compilation mode and optimizations, calls to predefined
procedures in the runtime are expensive because they necessarily require a non-
local jump from the user program. The high cost of calling predefined procedures
makes speculative inlining particularly attractive.

3.2 Extensions to Scheme

Gambit-C supports several extensions to R5RS Scheme. Some of the notable
extensions are preemptive multithreading and a foreign function interface.

Low-Level Procedures Many low-level procedures meant primarily for the
implementation of the runtime system are provided. These procedures typically
perform a simple operation and are unsafe because they do not validate their
arguments. For this reason, they are given an easily recognized name that is
outside the standard Scheme identifier syntax (i.e. they cannot be found in an
R5RS conformant program). These low-level procedures have names that begin
with two hash signs. Here are a few examples:

– ##fx+ is the procedure which performs addition of fixnums. It does not check
that the arguments are fixnums and whether there is a fixnum overflow.

– ##fx+? is the procedure which performs addition of fixnums and checks for
fixnum overflow. False (#f) is returned on overflow, otherwise the sum (a
fixnum) is returned. It does not check that the arguments are fixnums.

– ##car is a procedure which extracts a pair’s car field. It does not check that
the argument is a pair.

– ##cons is the low-level procedure constructing pairs.

507

The duplication that occurs for ##cons (which is identical to cons) and
other low-level procedures is motivated by the need to easily distinguish internal
low-level procedures from the procedures normally accessed by the user. This is
convenient for the binding annotations explained in the next section.

User Annotations User annotations allow the programmer to force the com-
piler to assume certain properties about the code. This is useful when the pro-
grammer has knowledge that can help the compiler optimize the program. An-
notations are specified inside the declare form. It is the programmer’s respon-
sibility to ensure that these annotations are correct; the compiler does not ver-
ify them. The declare form can appear anywhere a definition can appear. A
declare at top-level has a lexical scope that extends until the end of the file. For
a local declare, the lexical scope extends to the end of the enclosing binding
form. Here is a typical use of user annotations:

(declare

(standard-bindings) (extended-bindings) (block) (fixnum) (not safe))

(define z 0)

(define (iota n) (if (= n z) ’() (##cons n (iota (- n 1)))))

The (standard-bindings) annotation asserts that a reference to a global vari-
able predefined in R5RS will result in the corresponding predefined procedure.
In other words in iota the calls to = and - will call the R5RS predefined pro-
cedures with those names. The (extended-bindings) annotation is similar but
applies to Gambit-C extended procedures, such as ##fx+, ##cons, etc.

The (block) annotation asserts that all global variables defined in this file are
only mutated in this file. Any global variable defined in a file and not mutated in
that file can thus be treated like a constant. This enables constant propagation of
global variables (e.g. replacing z in iota with 0), jump destination determination
and inlining of user procedures defined at top-level (e.g. determining that the
call to iota is a self-recursion).

The (fixnum) annotation asserts that all arguments and results of arithmetic
procedures are fixnums. The (not safe) annotation tells the compiler that it
is acceptable to generate unsafe code that could crash the program if some type
checks fail. These two annotations in conjunction with the (standard-bindings)
annotation allow the compiler to replace in iota the calls to = and - with unsafe
calls to the fixnum specific procedures ##fx= and ##fx- respectively.

With carefully chosen annotations, programs can be made to run very fast,
but at the price of safety. This is unacceptable in many situations. Moreover,
annotations are brittle and are high maintenance. A small change in the program
or in the dataset may invalidate the current set of annotations, but it is tedious
and error-prone for the programmer to determine which ones.

In designing the speculative inlining algorithm, our goal was to improve the
speed of execution without requiring that the programmer resort to annotations
that are unsafe or otherwise change the semantics of the language (which includes
all annotations described in this section).

508

3.3 Compiler Architecture

The compiler follows a conventional architecture. The source code is parsed
and macros are expanded to produce an abstract-syntax tree (AST), which is
transformed and annotated by subsequent passes. The AST is then traversed to
generate the code for the Gambit Virtual Machine [5]. Low-level optimizations
are then performed on this intermediate representation (dead code and common
code elimination, instruction reordering, jump cascade removal, etc.) and finally
it is expanded into C code in the form of calls to macros defined in gambit.h. The
AST after all transformations is optionally pretty-printed as an S-expression.

The AST can represent expressions with no source code equivalent. Specifi-
cally, there is an AST node type representing procedure constants. These nodes
are generated to refer to the procedure objects that exist at run time. Both pre-
defined procedures and user procedures (but not closures) can be denoted. For
example, the AST corresponding to this source code:

(let () (declare (standard-bindings)) (cons 11 22))

is transformed into an AST representing a call to a procedure constant denoting
the predefined procedure cons (i.e. there is no longer a reference to the global
variable cons). We use a box to denote procedure constants in the new AST:

(let () (declare (standard-bindings)) (cons 11 22)) → (’ cons 11 22)

Note that X → Y will be used to mean “AST X is transformed into AST
Y ”, where X and Y are external representations of ASTs possibly containing
procedure constants. The different passes which transform the AST are briefly
explained below. They are executed in the order of presentation.

Assignment Conversion This pass introduces cells for local variables (includ-
ing parameters) that are mutated. An assignment to a local variable is replaced
with a mutation of the corresponding cell. This simplifies the implementation of
closures and continuations which share mutated local variables. The remaining
passes can assume that local variables are never mutated.

Beta Reduction This pass performs simple beta reductions of the code. The
following transformations are done.

– Constant and copy propagation: When it is known that a variable V is
never mutated and V is bound to X which is either a constant or a variable
that is never mutated, references to V are replaced with X . For example:
(let ((x 5)) (let ((y x)) (+ y y))) → (+ 5 5)

(let () (declare (standard-bindings)) +) → ’ +

– Constant folding: When a constant predefined procedure is called, and all
the arguments are constants of the correct type, and the procedure does not
have side-effects, the call is replaced by a constant equal to the compile-time
application of the procedure to the arguments. For example:

(’ + 5 5) → 10

There are subtle semantic issues which hinder constant folding. Calls to
predefined procedures which allocate their result (e.g. list and append) are

509

not constant folded because this would not preserve the uniqueness of the
result (in the sense of eq?). Specifically, in Scheme:

(eq? (list 5) (list 5)) 6= (eq? ’(5) ’(5))

Because the target platform is not known at the time of the Scheme compila-
tion, constant folding is tricky for procedures whose meaning is dependent on
the target platform. This is specifically a problem for the fixnum operations
because the width of a fixnum depends on the target machine’s word size
(30 bit fixnums on 32 bit machines, and 62 bit fixnums on 64 bit machines).
An exact integer that does not fit in a 30 bit fixnum and that fits in a 62
bit fixnum is a bignum on 32 bit machines and a fixnum on 64 bit machines.
So the ##fixnum? procedure, which tests if its argument is a fixnum, is only
constant folded when its argument is small enough to fit in a 30 bit fixnum
or larger than fits in a 62 bit fixnum:

(’ ##fixnum? 123) → #t

(’ ##fixnum? 1000000000000) is not constant folded

(’ ##fixnum? 2305843009213693952) → #f

Constant folding is also performed on conditional expressions, that is the if,
and, and or special forms. For example:

(if (and #f (f 2)) 123 (g 3)) → (g 3)

– Inlining of user procedures: When it is known that a given variable
V is never mutated and V is bound to a lambda-expression, calls to V

are replaced by calls to a copy of the lambda-expression. As an additional
condition, the size of the new call (measured in number of nodes in the AST)
must not be larger that a certain factor F of the size of the original call in
the source code. By default F is 3, but the programmer can modify this with
the (inlining-limit F) user annotation. For example:

(let ((f (lambda (x) (+ x x)))) (f 5)) → (+ 5 5)

To improve the effectiveness of these beta reductions, processing generally
starts at the leaves of the AST and progresses towards the root. For binding
forms, the bound values are processed before the body. Finally, the top-level
procedures are processed in the reverse order of their dependencies. If procedure
f contains a call to procedure g, which contains a call to procedure h, then h is
processed first, then g, and then f.

Lambda Lifting This pass transforms local user procedures using the lambda
lifting transformation [10]. This eliminates the creation of closures for lambda-
expressions bound to local variables when these local variables are only refer-
enced in the operator position of calls. The lambda-expressions are modified
so that they take their free variables as explicit parameters. All calls to these
variables are also modified to pass the value of the free variables.

4 Speculative Inlining

Speculative inlining of predefined procedures is performed as an AST transfor-
mation pass just before assignment conversion.

510

4.1 Basic Approach

Our approach capitalizes on the high likelihood that predefined global variables
contain the corresponding predefined procedure. When a predefined procedure is
speculatively inlined, the inlined code must be guarded by a run time binding test

to verify that the variable is indeed bound to the expected predefined procedure.
If the binding test fails, the inlined code is not appropriate and a normal

procedure call using the global variable must be performed. For correct handling
of tail-calls, this call must be a tail call with respect to the original call.

If the binding test succeeds, the inlined code is executed. In the ideal case
this code will perform the work required of the predefined procedure and return
the required result. It is possible however that the inlined code encounters an
exceptional case, such as an argument of the wrong type, or a complex case
that would be too space inefficient to handle inline (such as a fixnum arithmetic
operation overflowing into the bignum range). We will call these conditions the
inlining conditions of the procedure. When the inlining conditions do not hold
the execution can fall back to a normal procedure call. We require that the
inlined code only perform side-effects after verifying the inlining conditions. As
an example, here is the speculative inlining of car:

(f (car (g 5))) → (f (let ((x (g 5)))

(if (and (’ ##eq? car ’ car)

(’ ##pair? x))

(’ ##car x)

(car x))))

Falling back to a normal procedure call is not only correct, it ensures that
the behavior of a call to a predefined procedure is the same, except for execution
speed, whether the procedure is inlined or not: the same exceptions are raised,
the same continuation is used, etc. The inlining is purely a compiler optimization
that is transparent to the programmer.

4.2 Inlining Scheme’s Numeric Procedures

The inlining of Scheme’s numeric procedures is problematic because most nu-
meric operations are generic, they can accept several numeric types, and can
accept mixed types. In Gambit-C, there are five representations for numbers:
exact integers are represented with fixnums and bignums, exact rationals are
represented as pairs of exact integers, inexact reals are represented as flonums
(64 bit IEEE 754 floating point number), and complex numbers are represented
as pairs of reals. Except for fixnums, these representations are memory allocated.

If we take addition as an example, the algorithm for adding two numbers
depends on the representation of the numbers to add. It is necessary to dispatch
on the type of both arguments to determine how to proceed. In the Gambit-C
runtime all 25 cases are laid out to avoid needless representation conversions.

It is unreasonable to inline this much code routinely. Instead, the most likely
case must be handled inline, with the less likely cases handled by the fall back.

511

But what constitutes a likely case depends on the nature of the computation.
There is a large class of algorithms which process small exact integers (e.g. count-
ing and indexing vectors). On the other hand, scientific applications usually
perform the bulk of their computations with inexact reals. The other numeric
types (exact rationals and complex numbers) are less useful to handle inline in
Gambit-C because the algorithms operating on them are complex and often re-
quire procedure calls (e.g. computing the GCD for normalizing rational results).

Consequently, there are two cases that are interesting to handle inline: when
all the arguments are fixnums, and when all the arguments are flonums. A set
of 5 user annotations is provided to allow the programmer to specify which case
is most likely, and which cases to inline:

– (mostly-fixnum): The fixnum case is more likely and is inlined.
– (mostly-flonum): The flonum case is more likely and is inlined.
– (mostly-fixnum-flonum): The fixnum case is more likely than the flonum

case, but both are likely and are inlined. The fixnum case is checked first.
– (mostly-flonum-fixnum): The flonum case is more likely than the fixnum

case, but both are likely and are inlined. The flonum case is checked first.
– (mostly-generic): The numeric procedures are not inlined.

These annotations are purely advisory; they do not compromise the Scheme
semantics. Only the performance of the code is affected. The following example
shows the speculative inlining of + when the user annotation (mostly-fixnum-flonum)

is in effect:
(let () (declare (mostly-fixnum-flonum)) (f (+ (g 2) (h 3))))

→

(f (let ((x (g 2)) (y (h 3)))

(if (’ ##eq? + ’ +)

(if (and (’ ##fixnum? y) (’ ##fixnum? x))

(or (’ ##fx+? x y) (+ x y))

(if (and (’ ##flonum? y) (’ ##flonum? x))

(’ ##fl+ x y)

(+ x y)))

(+ x y))))

In the resulting AST, the ##fx+? predefined procedure is used to perform
the fixnum addition and overflow check. If the global variable + does not have
its standard binding, or a fixnum overflow is detected, or the arguments are not
both fixnum or both flonums, then a normal call to + is performed. The common
code elimination optimization of the compiler will generate compact code by
merging all three calls to +.

4.3 Inlining Recursive Procedures

The following recursive predefined procedures on lists are speculatively inlined:
assq, memq, map, and for-each. Both assq and memq are worth inlining because
many Scheme programs rely on them, their definitions are short, and they do

512

not need to call procedures that are not easily inlined (assv, assoc, memv, and
member are not inlined because they call eqv? and equal?).

To avoid too much code expansion, the higher-order procedures map and
for-each are only inlined when they are passed two arguments: the procedure
argument and list. They are worth inlining not only because many Scheme pro-
grams rely on them but because the inlined code exposes optimization opportu-
nities at the call to the procedure argument which can often avoid an expensive
general call. If the procedure argument is a user procedure in the same file then a
direct jump to the procedure can be performed (and without a parameter count
if it does not take a rest parameter). The procedure argument is also a candidate
for inlining, whether it is a user procedure or predefined procedure.

4.4 Interaction with Beta Reduction Pass

Implementing speculative inlining as an AST transformation has the advantage
that subsequent transformations can further optimize the inlined code. In par-
ticular, the beta reduction pass may simplify the inlined code through constant
propagation and constant folding. Consider a slight variation on the previous
example, where the second argument to + is the constant 1. The speculative
inlining of +, followed by constant propagation will give:

(let () (declare (mostly-fixnum-flonum)) (f (+ (g 2) 1)))

→

(f (let ((x (g 2)))

(if (’ ##eq? + ’ +)

(if (and (’ ##fixnum? 1) (’ ##fixnum? x))

(or (’ ##fx+? x 1) (+ x 1))

(if (and (’ ##flonum? 1) (’ ##flonum? x))

(’ ##fl+ x 1)

(+ x 1)))

(+ x 1))))

The calls (’ ##fixnum? 1) and (’ ##flonum? 1) will then be constant folded
to #t and #f respectively, allowing both ands and the if guarding the flonum
case to be constant folded:
(f (let ((x (g 2)))

(if (’ ##eq? + ’ +)

(if (’ ##fixnum? x)

(or (’ ##fx+? x 1) (+ x 1))

(+ x 1))

(+ x 1))))
The constant propagation transformation can also make use of user annotations
to further improve the code. If we add the annotation (standard-bindings) to
the previous example, the code at the end of the AST transformations will be:
(f (let ((x (g 2)))

(if (’ ##fixnum? x)

(or (’ ##fx+? x 1) (+ x 1))

(+ x 1))))

513

5 Experimental Results

To evaluate the effectiveness of the speculative inlining approach, we compiled
several Scheme benchmarks using the Gambit-C compiler with various user an-
notations. We are interested in measuring the impact of our approach on the
execution speed and also on the code size. We used Gambit-C version 4.0 beta
20 with gcc 4.0.2 on a 64 bit, 2.2 GHz AMD Athlon running Linux. To measure
the code size we measured the size of the machine code generated by the C com-
piler and substracted the machine code size for an empty program (note that
we did not measure the size of the program’s data because it could not easily be
isolated from the data of the Gambit-C runtime). We also ran the benchmarks
with Bigloo 2.8c to compare the execution time with a high-performance Scheme
compiler. The Bigloo compilation mode assumed that all predefined global vari-
ables were not mutated and did not check for arithmetic overflow.

The benchmarks contain the Gabriel suite [7] and other programs representa-
tive of typical Scheme applications. There are 36 benchmarks in all. The largest
are: scheme (Scheme interpreter in Scheme, 1 kLOC), slatex (Scheme to LaTeX
formatter, 2.3 kLOC), and nucleic (scientific application [9], 3.5 kLOC).

Given our goal of achieving the best execution speed without compromising
the Scheme semantics, one set of trials avoided the (standard-bindings) an-
notation, but we tried each of the numeric user annotations: (mostly-fixnum),
(mostly-flonum), etc. The (mostly-fixnum-flonum) case is used as the base-
line because it corresponds to the default when the programmer does not supply
any user annotations. Another set of trials was done with those user annotations
combined with (standard-bindings). This is useful to evaluate the cost of the
run time binding test.

We also tried the benchmarks with the set of user annotations that achieve
the best speed. That is the (not safe), (block), and (standard-bindings)

user annotations were used, in addition to benchmark specific annotations for
arithmetic (either (fixnum) or (flonum) as appropriate for the benchmark).

In addition, a trial was done with the speculative inlining transformation
disabled. This situation approximates the Gambit-C compiler before the specu-
lative inlining transformation was added. This trial and those using speculative
inlining are the only ones which do not violate the Scheme semantics.

The results are given in Table 1. For each combination of benchmark and
compilation mode, the execution time and the code size are given (the code
size is underlined). Lower values are better. To simplify comparison, all mea-
surements are relative to the baseline (i.e. with (mostly-fixnum-flonum) but
without (standard-bindings)). A value of 1 means the same time or space as
the baseline. For space reasons the columns for the baseline are omitted since
they contain 1 everywhere for time and space. Moreover we omit the columns for
(mostly-flonum-fixnum) because the time and space were within a few percent
of the columns for (mostly-fixnum-flonum).

By examining the “Inlining disabled” column we see that the benchmarks
always execute faster with speculative inlining than without. On average it is
5.18 times faster, but in several cases it is more than 10 times faster. The code

514

size is on average 2.7 times larger when speculative inlining is used, and up to
8 times larger. We have noticed that a significant part of the code expansion is
due to the user procedure inlining which is more aggressive when predefined pro-
cedures have been inlined. Overall we view these results positively since among
the compilation modes which do not violate the R5RS semantics, speculative
inlining is consistently faster while the code size is typically not unreasonably
large.

If we now compare the (mostly-fixnum) and (mostly-flonum)modes with
speculative inlining we see that the execution time is better for the (mostly-fixnum)
case in general but worse on benchmarks which are floating point intensive
(fibfp, mbrot, nucleic, pnpoly, sumfp and ray). The ratio can be up to 8
times in favor of (mostly-flonum) for sumfp and up to 23 times in favor of
(mostly-fixnum) for sum (the same computation as sumfp but performed using
small integers). In terms of code size the (mostly-flonum) case is normally bet-
ter, by about 9% on average. This is probably due to the absence of an overflow
check when operating on flonums.

Interestingly, the fft benchmark, which uses a mix of operations on fixnums
and flonums is about the same speed with (mostly-fixnum)and (mostly-flonum).
This is explained by the fact that there is an equal number of fixnum and flonum
operations, so the same number of non-local jumps result whether the fixnum
case or the flonum case is inlined. The execution speed improves by a factor of
over 4 when (mostly-fixnum-flonum) or (mostly-flonum-fixnum) are used.
Considering all benchmarks these compilation modes give the best execution
speed; 1.39 times faster than with (mostly-fixnum) on average and 2.32 times
faster than with (mostly-flonum) on average. The (mostly-fixnum-flonum)

mode gives marginally better performance which is why Gambit-C uses it as
the default compilation mode. The code size is consistently bigger than with
(mostly-fixnum) and (mostly-flonum), but by only 20-30% on average.

The cost of the run time binding tests can be evaluated by looking at the
column for the (standard-bindings)+ (mostly-fixnum-flonum) compilation
mode. This mode generally yields code that is faster than the baseline, by about
15% on average. This mode also generally yields more compact code than the
baseline, by about 50% on average. Our view is that this is an acceptable cost
for the run time binding tests which are required for conformance to the Scheme
semantics.

The “Unsafe mode” column indicates that with hand tuned user annotations
and unsafe code, programs can run considerably faster, in some cases 8 times
faster than the baseline, but closer to a factor of 2 on average. Moreover the code
is almost 5 times more compact because there remains very few procedure calls in
the code (and consequently fewer return points, continuation frame allocations
and setup, stack overflow checks, etc. which all contribute to the total code).
This shows in our view that speculative inlining does not completely eliminate
the need for unsafe user annotations when very high performance and compact
code are required. However, speculative inlining does contribute to lessen the

515

urgency to resort to user annotations and promote a more maintainable coding
style.

Finally, we can see that the performance of Gambit-C with speculative in-
lining is comparable to Bigloo’s performance; about 17% faster than Bigloo on
average and about 5% slower if we ignore the call/cc intensive benchmarks
ctak and fibc.

6 Related Work and Conclusion

Inlining has been used in other dynamically-typed programming languages to im-
prove performance. Most notable is the compiler for Self [1], an object-oriented
dynamically-typed programming language, which uses message inlining to speed
up message sends by reducing the frequency of method lookups. On the first ex-
ecution of the messsage send, a normal method lookup is performed to find the
correct method to call based on the type of the receiving object. The message
send is then backpatched to jump directly to this method and the type of the re-
ceiving object is saved. On subsequent message sends the method will be called if
the type of the new receiving object is the same, otherwise the system reverts to
a new method lookup and backpatch. Selective recompilation of the program is
used when method definitions are changed. All of this requires a complex system
architecture, the presence of the compiler in the runtime system, and runtime
code generation. More recently the Java HotSpot VM [13] has used a similar
inlining-with-recompilation approach and a complex runtime architecture.

Our approach is in comparison much simpler and can be applied in situations
where runtime code generation is not an option (such as in compilers which
generate C code, in memory constrained systems, and embedded systems where
the code must be stored in read-only memory). With an extensive experimental
evaluation using a mature Scheme system, we have shown that our approach can
be used to correctly implement the R5RS semantics while achieving execution
speeds comparable to other Scheme compilers which attain high-performance by
violating the R5RS semantics.

Acknowledgements

This work was supported in part by a grant from the Natural Sciences and
Engineering Research Council of Canada.

References

1. Craig Chambers. The Design and Implementation of the SELF Compiler, an Op-

timizing Compiler for Object-Oriented Programming Languages. PhD thesis, Stan-
ford, 1992.

2. ECMA. Ecma-262: Ecmascript language specification, 1999.
3. Marc Feeley. Gambit-C version 4. http://www.iro.umontreal.ca/~gambit.

516

4. Marc Feeley and Guy Lapalme. Using closures for code generation. Computer

Languages, 12(1):47–66, 1987.
5. Marc Feeley and James S. Miller. A Parallel Virtual Machine for Efficient Scheme

Compilation. In Proc. of the ACM Symposium on LISP and Functional Program-

ming, pages 119–130, 1990.
6. Matthew Flatt. PLT MzScheme: Language manual. Technical Report PLT-TR05-

1-v300, 2005. http://www.plt-scheme.org/techreports/.
7. Richard P. Gabriel. Performance and Evaluation of Lisp Systems. Series in Com-

puter Science. MIT Press, Cambridge, Massachusetts, 1985.
8. Richard P. Gabriel and Kent M. Pitman. Technical issues of separation in function

cells and value cells. Lisp and Symbolic Computation, 1(1):81–101, June 1988.
9. P. H. Hartel, M. Feeley, M. Alt, L. Augustsson, P. Baumann, M. Beemster, E. Chail-

loux, C. H. Flood, W. Grieskamp, J. H. G. Van Groningen, K. Hammond, B. Haus-
man, M. Y. Ivory, R. E. Jones, J. Kamperman, P. Lee, X. Leroy, R. D. Lins,
S. Loosemore, N. Röjemo, M. Serrano, J.-P. Talpin, J. Thackray, S. Thomas,
P. Walters, P. Weis, and P. Wentworth. Benchmarking implementations of func-
tional languages with “Pseudoknot”, a float-intensive benchmark. Journal of Func-

tional Programming, 6(4):621–655, 1996.
10. Thomas Johnsson. Lambda lifting: transforming programs to recursive equations.

In Proc. of the conference on Functional Programming and Computer Architecture,
pages 190–203, New York, NY, USA, 1985.

11. R. Kelsey and J. Rees. The Incomplete Scheme 48 Reference Manual, 1999.
12. Richard Kelsey, William Clinger, and Jonathan Rees (Editors). Revised5 report

on the algorithmic language Scheme. ACM SIGPLAN Notices, 33(9):26–76, 1998.
13. Michael Paleczny, Christopher A. Vick, and Cliff Click. The Java HotSpot Server

Compiler. In Java Virtual Machine Research and Technology Symposium. USENIX,
2001.

14. M. Serrano and P. Weis. Bigloo: a portable and optimizing compiler for strict
functional languages. In Proc. of the Static Analysis Symposium, pages 366–381,
1995.

15. Guido Van Rossum. The Python Language Reference Manual. Network Theory
Ltd., September 2003.

16. Felix L. Winkelmann. CHICKEN - A practical and portable Scheme system, 2005.

517

Table 1. Relative execution time and relative code size (underlined) for various com-
pilation modes (baseline is speculative inlining and (mostly-fixnum-flonum))

Speculative inl. + (standard-bindings) + Inlining Unsafe Big-
Program fix flo fix flo fix-flo disabled mode loo

boyer 1.00 1.00 1.01 .99 .72 .55 .70 .54 .74 .56 8.57 .44 .37 .32 .30

browse 1.01 .91 1.03 .87 .84 .51 .83 .46 .86 .59 4.31 .32 .70 .17 .49

cpstak 1.01 .94 4.53 .83 .96 .77 4.43 .68 .95 .76 4.35 .58 .85 .42 2.77

ctak 1.01 .98 1.57 .94 .95 .81 1.53 .78 .95 .84 1.51 .74 .90 .95 60.72

dderiv 1.02 1.00 1.10 1.00 .91 .58 1.01 .58 .91 .58 2.99 .42 .74 .29 1.19

deriv 1.01 1.04 1.13 1.04 .88 .61 .96 .60 .87 .60 2.02 .38 .78 .28 1.41

destruc 1.03 .82 6.60 .59 .86 .47 6.38 .28 .84 .48 9.61 .21 .68 .09 .74

diviter 1.02 1.00 1.07 .87 .92 .61 .95 .50 .92 .61 4.99 .39 .80 .17 1.44

divrec 1.00 1.01 1.04 .81 .86 .62 .94 .45 .98 .63 3.75 .46 .62 .26 .99

puzzle .96 .73 8.43 .63 .81 .52 8.20 .45 .84 .63 12.20 .27 .35 .10 1.76

takl 1.00 1.01 .99 .94 .55 .71 .58 .67 .65 .73 3.80 .60 .23 .33 .18

triangl 1.02 .87 7.28 .73 .87 .57 6.64 .46 .88 .54 10.50 .27 .53 .14 .75

fft 4.65 .65 4.30 .45 4.26 .48 4.18 .32 .92 .61 10.53 .13 .29 .06 1.42

fib .98 .90 9.60 .68 .89 .73 9.39 .55 .93 .81 9.24 .43 .35 .28 .98

fibfp 6.02 .60 .98 .94 5.94 .56 .90 .87 .93 .92 5.93 .50 .66 .80 1.33

mbrot 6.29 .56 2.01 .50 5.97 .40 1.94 .34 .96 .60 7.05 .20 .56 .13 1.64

nucleic 2.57 .83 .92 .81 2.45 .65 .77 .66 .88 .76 3.29 .47 .16 .22 .69

pnpoly 6.86 .73 3.68 .55 6.62 .51 3.59 .42 .93 .63 12.44 .28 .22 .09 3.77

sum .88 .85 20.61 .64 .68 .68 19.91 .51 .80 .86 19.97 .36 .12 .11 1.91

sumfp 8.29 .47 1.00 .95 8.12 .38 .96 .88 .96 .95 8.11 .35 .83 .19 1.79

tak 1.03 .96 7.19 .90 .85 .73 6.61 .65 .88 .75 6.55 .55 .43 .40 .74

conform 1.00 1.00 1.01 1.00 .86 .68 .87 .68 .87 .68 2.13 .54 .50 .42 .32

earley .99 .84 2.98 .63 .89 .55 2.80 .38 .92 .57 4.94 .22 .74 .11 1.05

fibc .99 .96 2.60 .96 .94 .83 2.52 .83 .94 .87 2.52 .70 .77 .63 21.91

graphs .99 .92 2.32 .75 .88 .60 2.17 .56 .87 .64 4.71 .38 .52 .25 1.36

lattice 1.00 1.00 1.00 1.00 .81 .66 .80 .67 .81 .67 4.62 .51 .66 .49 1.19

matrix 1.02 .82 2.54 .71 .90 .54 2.38 .48 .89 .63 4.70 .33 .70 .25 .96

maze .98 .82 3.02 .68 .93 .60 2.96 .51 .93 .66 4.25 .37 .25 .18 .41

mazefun 1.02 .97 5.76 .91 .85 .67 5.44 .66 .87 .71 8.05 .49 .48 .34 1.06

nqueens .92 .76 6.91 .57 .65 .34 5.79 .35 .67 .38 8.68 .22 .44 .10 .92

paraffins 1.00 .51 1.03 .40 .91 .55 .93 .32 .91 .64 2.10 .12 .92 .06 1.28

peval 1.00 .94 1.06 .96 .74 .54 .77 .54 .74 .54 3.40 .38 .60 .26 .44

primes 1.00 .99 3.05 1.21 .92 .93 2.92 .75 .92 .90 4.96 .50 .75 .27 1.11

ray 3.35 .69 1.00 .73 3.38 .52 .93 .59 .94 .73 4.07 .37 .23 .23 .99

scheme 1.01 1.00 1.30 .97 .89 .73 1.18 .69 .89 .73 2.96 .60 .80 .39 .61

simplex 2.03 .70 3.56 .52 1.84 .48 3.43 .37 .84 .55 6.59 .24 .27 .09 .75

geom. mean 1.39 .84 2.32 .77 1.21 .59 2.09 .53 .87 .66 5.18 .37 .49 .22 1.17

518

Circuit Parallelism in Haskell Programs
(Extended Abstract)

Andreas Koltes and John O’Donnell

University of Glasgow

Abstract. Digital circuit design offers several opportunities for speed-
ing up programs. In some cases the results can be significantly faster
than task parallelism. FPGA technology provides a cost effective way to
incorporate parallel circuits into Haskell programs. We describe a flex-
ible interface allowing straightforward FPGA programming for Haskell
programs. Two different kinds of application are described: the use of
functional units to provide fast function applications, and the use of
data parallelism to provide active data structures.

1 Introduction

Task parallelism is a common programming model, where a computation is par-
titioned into smaller tasks that can be computed simultaneously, so that the
overall execution time is reduced. Task parallelism in Haskell corresponds to
the parallel evaluation of expressions, and is supported by a variety of mech-
anisms such as par and seq, strategies [7], and transactional memory [2]. Task
parallelism is widely used because it fits well with multiprocessor architectures,
including multicore processors with shared memory.

Data parallelism is an alternative programming model, where the main com-
putation may be a single sequential thread, but parallelism is used to provide fast
operations on data structures. Data parallelism has often been used with SIMD
architectures, which have the ability to perform the same arithmetic operation
on each element of a vector.

Most applications of data parallelism, especially on SIMD architectures, have
been limited to simple iterations across dense arrays. It is often assumed that
this is all that the model offers. However, it was shown as long ago as 1981
[3] that SIMD data parallelism can perform computations on irregular data
structures, by representing nested structures in a flat sequence of cells. The
essential techniques to make this work include flexible tree sweeps (alternatively,
parallel scans). It is unfortunate that commercial SIMD architectures supported
only the simplest kind of data parallel operations, for example by providing
only first order operations like (scanl((+) :: Int → Int → Int)), (scanl((+) ::
Float → Float → Float), (scanl((||) :: Bool → Bool → Bool)), and so on, instead
of providing the higher order scanl. The interesting data parallel algorithms
require general polymorphic scans and sweeps—indeed, they fit perfectly with
Haskell but not with Fortran.

519

Although task and data parallelism seem quite different, it is possible to
implement either model using the other. Data parallelism is straightforward to
implement on top of a system with parallel tasks, by spawning threads to operate
on independent parts of an aggregate data structure. This is the approach taken
in Data Parallel Haskell [1]. It is also possible to embed something like parallel
tasks within data parallelism; this was already demonstrated in 1988 by a data
parallel quicksort [4], and parallel combinator reduction, and the technique can
be generalised [5].

Even more flexible than data parallelism is circuit parallelism, which makes
use of the extraordinary degree of parallelism among logic gates. In some cases
it is just as easy to design a circuit to solve a problem as to program a general
purpose machine. For example, some applications require repeated rapid evalu-
ation of large Boolean expressions. The specification of such an expression can
be translated automatically into a circuit that will evaluate it much faster even
than a data parallel machine.

Ideally, the Haskell programmer would have all of these forms of parallelism
to choose from, and furthermore could decide whether to embed data parallelism
within tasks (as in Data Parallel Haskell) or to run it directly on hardware (as
in SIMD machines). Although SIMD architectures are no longer popular, one
can now do even better: in many interesting cases it is possible to transform
a data parallel algorithm into a digital circuit, and then to realise this by pro-
gramming it onto an FPGA. The FPGA program can be obtained through a
Haskell circuit specification [6]. In effect, we bypass the general programmable
SIMD architectures, and go from the data parallel algorithm directly to circuit
parallelism.

This paper describes a system that makes circuit parallelism available to
Haskell programmers. In Section 2 we describe the software and hardware tech-
niques needed to provide a flexible connection between a Haskell program and
a digital circuit programmed into an FPGA. There are several ways to use this
system for practical applications; Section 4 describes a simple set of functional
units that provide fast implementations of pure functions that are made avail-
able to a Haskell program, while 5 shows how a simple data parallel algorithm
can be implemented. The concluding section describes the status of the project.

2 Architecture of FPGA Interface

Figure 1 shows the overall architecture of the system. There are two main sub-
systems: a conventional processor running a Haskell program, and an FPGA
that runs intensive computations using circuit parallelism.

In our prototype implementation, the FPGA is a small Altera chip on a board
that has serial interface connector. In order to use this, we need software drivers
for the serial interface. In the processor subsystem, this consists of a small C
program that is called directly by a Haskell program through the foreign function
interface; the C program controls the serial interface through the Windows API.

520

running on CPU
Haskell program C interface Interface

Circuit
Application

Circuit

Register

Machine
Transfer

FFI

Main Processor FPGA

Wire

Fig. 1. Architecture of the system. A Haskell program running on a conventional CPU
communicates with a parallel application circuit running on the FPGA. Interface soft-
ware on the CPU and programmed into the FPGA complete the interaction.

In the FPGA subsystem, a UART circuit converts signals on the serial interface
into data. This UART is programmed into the FPGA.

Beyond just a UART, the FPGA needs to provide a usable interface to the
application circuit. Many issues need to be addressed in order to get a user-
designed digital circuit to work with a processor. Our approach to this is to
provide a programmable RISC-style register transfer machine which handles the
gathering and transmission of data. This is a pure load/store architecture. It
provides the idiom required by a processor—sending and receiving messages—as
well as the idiom required by a digital circuit—a register file, with combinational
inputs and outputs.

The register transfer machine consists of an interface, a main pipeline, and
a register file, and it connects with the application circuit, viewing this as a
set of functional units. Figure 2 shows an outline of the on-chip organisation of
components.

The register transfer machine is designed to be flexible: the number and size
of registers and their interaction with the circuit can all be configured. All core
components of the platform are independent of the specific data types used in
the application, as well as from the hardware platform. Although the prototype
has a slow UART interface, the architecture is designed to work efficiently with
a high-speed interconnection fabric, such as a HyperTransport channel.

The register transfer machine offers a general interface to an arbitrary ap-
plication circuits. It can dispatch one operation to the application circuit in
each clock cycle, and it can end one off-loaded operation at least every second
clock cycle. During a clock cycle, the register transfer machine can supply to the
application circuit up to three input values and one input flag vector.

The register file is configurable; it can have between 8 and 256 registers, with
a data record size consisting of 1 to 256 32-bit words. In addition to the general
register file, there is a configurable flag register file allowing for multiple streams
of flag sensitive operations to be carried out in parallel.

The application circuit can have any architecture; its design is entirely up to
the programmer. For example, it could be organised as a set of functional units,
as a data parallel processor, or as a specialised dedicated circuit.

521

Interface
circuitry

Message
Buffer

In
pu

t

Execution

Message
Encoder

Decoder

Dispatcher

Message
Serializer

Functional
Unit #1

Functional
Unit #2

Functional
Unit #3

Functional
Unit #4

All connections are point-to-point connections

Write Arbiter

Register File Flag Register FileLock Manager

Functional
Unit Table

Register
Usage Table

O
ut

pu
t

Lock ReadRead

Off-load

Data signals
Acknowledgement/Idleness signals

Unlock WriteWrite

High Priority Write

Main Pipeline

Fig. 2. Architecture of interface circuit programmed onto the FPGA

522

A common situation is an architecture consisting of a set of independent func-
tional units. These could perform unrelated operations, as in a superscalar ar-
chitecture, or they could be distinct portions of a data parallel architecture. The
register transfer machine supports out-of-order execution within the functional
units, along with reordering of received commands. It has a highly pipelined
design allowing the FPGA hardware to run at high clock frequencies.

The framework is designed to operate together with high-performance inter-
connection fabrics like HyperTransport channels. For testing purposes, the use of
slower interface options is possible, too. However, using these will limit the reach-
able performance of the system. A reference testbench using a serial interface
based on an UART will be available. For test cases not requiring host interac-
tion, it is also feasible to cache coprocessor commands in on-chip or on-board
memory to simulate a high-speed data channel between FPGA and main CPU.
Currently, the input and output modules of the framework process one byte each
clock cycle. For operation with high-performance communication channels, these
should be adjusted accordingly.

The core of the coprocessor consists of a six stage pipeline split into mes-
sage buffer, decoder, dispatcher, execution stage, message encoder and message
serializer. The decoder transforms the received command and data words into a
signal vector and an input data record providing information for the dispatcher.
The dispatcher performs all register file reads, enforces register locking and off-
loads user operations to functional units. The decoder stage uses the functional
unit table and the register usage table to discover suitable functional units and
required register slots.

‘The only parts of the architecture that are actually aware of the data types
held by the register file and the semantics of the flags in the flag register file
are the functional units. This fact makes it easy to plug in specialised functional
units handling application specific data types and operations.

Since the framework only handles locking and dependency checking of the
register file a wide variety of data types ranging from integral values over vec-
tors to complex types are possible. The flag register can be used to indicate
and handle application specific conditions which are the result of an executed
operation.

The interface provides a generic way to access registers as well as flags and
also has limited support for primitive conditional operations to increase the op-
eration throughput. However, since there is no support for branching operations,
complex conditional behaviour still has to be controlled by the connected general
purpose processor.

2.1 Portability

All components of the framework are designed to run across a wide variety of
FPGA platforms. The only special feature required by the architecture is the
availability of on-chip true dual port SRAM blocks which are accessible within
one clock cycle. The pipelining of the architecture is aimed at allowing high

523

clock frequencies, in many cases up to the maximum frequency possible for the
on-chip memory blocks.

Despite not being required for the core framework, implementations of the ar-
chitecture benefit from available dedicated multiplexors included into the FPGA
cells like they are available in many high-performance FPGA platforms.

2.2 Instruction Set

All commands sent from the main program to the coprocessor (FPGA) consist
of a single 64-bit command word which is optionally followed by one or more
32-bit data words, depending on the requested operation. Command words are
always expected to be sent to the coprocessor in big endian byte order (MSB
first). The byte order of data words depends on the requested operation.

The highest bit of a command word specifies whether the requested operation
is an I/O or core operation provided by the framework itself or whether it is a
user operation being dispatched to a functional unit.

Communication between the FPGA and main processor is performed by load
and store operations. The register transfer machine provides a variety of instruc-
tions that give general access to the register file, including to parts of registers.
The design has provisions to make it easier to cope with compatibility issues,
particularly with big-endian vs. little-endian data representations.

The partial register I/O instructions are useful to extract partial values from
a register or to send small data amounts to the coprocessor. This is useful if
the registers hold vectors or complex data types requiring only updates of single
components. These instructions might also be useful to initialise registers with
small values. Endianess is handled analogous to the full register I/O instructions.
This means that the data word embedded within the command word can be
sent in arbitrary byte order as long as its endianess is flagged correctly. There
are instructions to operate on the flag registers, which can be copied, modified
according to bit masks, as well as RISC style instructions that move register
values.

2.3 User operations

The architecture allows up to 256 different types of functional units to be incor-
porated. It is possible to include multiple functional units of the same type to
reach a higher degree of parallelism.

Each functional unit can support up to three input values, up to two output
values as well as an input and an output flag vector allowing for a maximum
degree of flexibility and parallelism. Further details about the implementation
of functional units is given in the next chapter.

There are four different modes available for encoding commands to the func-
tional units. Besides the register indexes, the commands contain the function
code of the requested functional unit as well as a variety code. The function
code is handled by the dispatcher whereas the variety code is sent to the func-
tional unit as is. Please note that the maximum number of encodable functional

524

unit types having three input parameters is 8 and that there are restrictions
regarding the number of supported variety codes. All variety codes whose en-
coding is shorter than 8 bits get zero-extended to a length of 8 bits before they
are sent to the functional unit for processing.

Destination
Flag Register

1

0

1

63 031324056575859606162 39 1516

Source
Flag Register

Destination
Register #1

Source
Register #1

Destination
Register #2

Source
Register #3

Source
Register #2

48 47 24 23 8 755

Destination
Flag Register

1

1

1
Source

Flag Register
Destination
Register #1

Source
Register #1

Destination
Register #2

Source
Register #2

Destination
Flag Register

0 01
Source

Flag Register
Destination
Register #1

Source
Register #1

Destination
Register #2

Source
Register #2

Destination
Flag Register

0 11
Source

Flag Register
Destination
Register #1

Source
Register #1

Destination
Register #2

Source
Register #3

Source
Register #2

FUNC VAR

FUNC VAR

VARFUNC

FN VAR

Mode A

Mode D

Mode C

Mode B

53 52

Fig. 3. Encoding of user instructions

3 Programming

From the perspective of the application, the circuit running in the FPGA is a
coprocessor, analogous to a dedicated floating point or vector processing unit.
Operations running on the coprocessor may in parallel with operations on the
general purpose CPU, but data dependencies may force the main CPU wait for
results from the coprocessor.

Despite its out-of-order execution capabilities, the coprocessor is guaranteed
to behave as if all commands sent to it were executed strictly in the order they
were sent to the unit without any parallelism. This is a standard correctness
condition for superscalar architectures. As long as the outward sizes of the data
types used are similar, it is possible to include functional units handling different
or even polymorphic data types within the same application circuit.

A possible extension to the coprocessor, which may give significant perfor-
mance improvements for some applications, is support for multiple separated
command input and data output streams. This would be especially beneficial
for multi-threaded or otherwise parallel applications in which multiple execution
streams are operating based on the same data types. Using multiple command
streams, the register files of the coprocessor could implicitly be partitioned into
disjunctive register groups and each of the command streams could operate on
one of the register groups. This way operations belonging to different execution
flows on the main CPU could be spread over the available functional units and
being processed in parallel. It would also be possible to further increase par-
allelism by including a write arbiter capable of writing multiple output data
records to the register file within a single clock cycle.

4 Accelerating Pure Functions with Functional Units

In hardware, a functional unit is a circuit that calculates a function of one or
more inputs, producing a result. An ALU does this as well, but ALUs normally

525

compute simple functions (e.g. binary addition) that can be performed within
one clock cycle. Functional units are sequential circuits that take several clock
cycles to produce a result.

A standard application of FPGAs is to provide functional units that perform
calculations that would be slow in software. Most computers have hardware
functional units for floating point, but some other operations (e.g. arithmetic for
graphics) can be performed faster by hardware than software.

As an illustration of the technique, we have implemented a set of functional
units that perform calculations on integers of a fixed but large number of bits.
This is intended mainly intended as a reference implementation for demon-
stration and research purposes. It provides functional units acting as wrappers
around library components provided by Altera. The functional units support
generic integer lengths. However, since this package is developed to be used
on comparatively small devices not having dedicated hardware multipliers, the
performance of these functional units compared to a high-performance imple-
mentation is comparatively poor.

The package contains functional units to perform additions, subtractions,
and comparisons, using either binary or two’s complement representations, as
well as a variety of basic bitwise logic operations. It allows operations on long
integers through an externally provided carry bit read from the input carry flag.

The operations provided by this package require state to be retained over
multiple clock cycles. In general, however, the state can be discarded at the end
of an operation, so the functional units are calculating pure functions of their
inputs. This can be used, in turn, to provide pure functions that are callable by
the main Haskell program. However, it may be better to retain some state, such
as carry flags, across multiple operations.

Functions implemented by FPGA programming will have significant overhead
in the prototype implementation, mainly because of the extremely slow serial
interface. However, our architecture is designed to work with high speed systems,
where the FPGA would be able to communicate with the main processor at
speeds comparable to memory accesses. Furthermore, the flexibility of FPGA
programming would allow us to compute full arithmetic expressions that arise
in a program, not just individual arithmetic operations. In such an environment,
this system could provide a very useful and cost-effective benefit to performance.

5 Data Parallelism

A data parallel circuit has a state that holds an aggregate data structure, and it
provides a set of operations that take inputs, update the state, and return results.
(This differs from ordinary functional units, which may have internal state but
which implement pure functions.) The development of a program using a data
parallel circuit embedded in an FPGA proceeds as follows:

– The programmer begins by defining the data parallel state and a suitable
set of operations.

526

– A digital circuit that implements the operations. is designed, with the spec-
ification written in the functional hardware description language Hydra [6].
Most programmers never think about designing circuits, but it is surpris-
ingly easy, given suitable language tools. This step requires some knowledge
of hardware and some thought, but it is essentially similar to ordinary func-
tional programming.

– A netlist is extracted from the Hydra specification. A netlist is a precise
description of the components in the circuit and how they are connected
by wires. This step is automatic, and Hydra accomplishes it using an auto-
mated program transformation that maintains referential transparency. As
a result, the netlist is guaranteed to correspond to the circuit specified by
the programmer.

– The netlist is converted into the input language required by the FPGA. In
our prototype, this is VHDL. Also, the parameters for the interface circuit
are used to generate the VHDL for the interface. (These steps are currently
manual, but work is in progress to automate them.)

Several nontrivial data parallel algorithms are described in the references.
To illustrate how the implementation works, consider a minimal data parallel
algorithm. The state is a vector of four registers, a, b, c, and d, each holding a
binary number n bits wide. These are organised as a shift register, so that a shift
right causes a data input x to be loaded into a, a to be loaded into b, and so on
(these are parallel loads, so the data is shifted, and x is not replicated). There
are four operations, selected by an operation code op: shift right, shift left, read
d, and no operation. A circuit is easily defined:

shifter n op x = y
where
a = latch n (mux2 op x b a a)
b = latch n (mux2 op a c b b)
c = latch n (mux2 op b d c c)
d = latch n (mux2 op c x d d)

This Hydra specification is now translated into VHDL, and the handshaking
with the interface circuit is incorporated. Although VHDL is said to be a very
high level language, the specification becomes much lengthier. Here is a small
extract:

-- Registers
process (clock, reset, newa, newb, newc, newd, newstate)
begin
if rising_edge (clock) then
if reset=’1’ then

-- handle reset, initialise registers
else
regidle <= newidle;
CurrentState <= newstate;

527

-- update the registers with their combinational inputs
rega <= newa;
regb <= newb;
...

end if;
end if;

end process;

-- Combinational logic
...

begin
case CurrentState is
when Operating =>
if dispatch=’1’ then -- the inputs are valid
case variety_code is
when "00000010" => -- Shift right
newstate <= Sending;
newa <= data_input_1; -- x
newb <= rega;
newc <= regb;
newd <= regc;
newidle <= ’0’;
...

when "00000100" => -- Shift left
newstate <= Sending;
newa <= regb;
...

when "00001000" => -- Send regd value
newstate <= Sending;
newa <= rega;
...

newdataoutreg <= regd;
...

when others => -- includes No Operation, 00000001
...

end case;
else -- inputs not ready
newstate <= Operating;
newa <= rega;

...
end if;

when Sending =>
if data_acknowledge=’1’ then ...

528

else ...
end if;

end case;
end process;

The full paper will give more information about the interfacing, and if space
permits a more substantive data parallel algorithm will be used.

6 Conclusion

We have implemented a prototype system along the lines described in Section
1. It consists of an interface between the Haskell program and the FPGA, a
methodology for programming the FPGA, and a small set of examples. At the
time of writing (August 2007) the pieces of the system have been developed, but
some of the steps must be performed manually rather than automatically.

The FPGA hardware we are using is small and slow, so absolute performance
is poor. The Altera chip has a limited number of logic blocks, and the interface
circuit uses about 25% of them. The clock speed is less than 50MHz. However,
the main limitation in the prototype is in the serial interface, which causes each
transaction between the control processor and the FPGA to require on the order
of a millisecond.

The approach we have demonstrated, however, should give excellent perfor-
mance on modern production quality hardware. There are two suitable methods
for connecting a processor to FPGA. The more flexible method uses separate
chips that communicate at approximately the same speed as main memory ac-
cesses; this would also allow for various combinations of processor chips, memory
chips, and FPGA chips. The faster method uses a processor and FPGA fabri-
cated together on one chip, allowing for communication at cache speeds. These
high performance FPGAs also offer very large arrays of logic elements, and high
clock speeds.

However, the results do provide a proof of concept: data parallel program-
ming via circuit design on an FPGA is a promising new technique for Haskell
programmers seeking good performance on applications with intensive compu-
tational requirements.

References

1. Manuel Chakravarty, Roman Leschinskiy, Simon Peyton Jones, Gabrielle Keller,
and Simon Marlow. Data parallel haskell: A status report.

2. Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Composable
memory transactions.

3. John O’Donnell. A Systolic Associative LISP Computer Architecture with Incre-
mental Parallel Storage Management. PhD thesis, University of Iowa, Iowa City,
1981. Technical Report 81-5.

529

4. John O’Donnell. Functional microprogramming for a data parallel architecture.
In Proceedings of the 1988 Glasgow Workshop on Functional Programming, pages
124–145. Computing Science Department, University of Glasgow, 1988.

5. John T. O’Donnell. Supporting tasks with adaptive groups in data parallel program-
ming. International Journal of Computational Science and Engineering (IJCSE),
1(2/3/4):86–98, 2005. Inderscience Publishers.

6. John T. O’Donnell. Overview of hydra: A concurrent language for synchronous
digital circuit design. International Journal of Information, 9(2):249–264, March
2006.

7. Philip W. Trinder, Kevin Hammond, Hans-Wolfgang Loidl, and Simon L. Peyton
Jones. Algorithm + Strategy = Parallelism. Journal of Functional Programming,
8(1):23–60, January 1998.

530

On Implementing S-Net

A Typed Stream Processing Language

— Draft —

Clemens Grelck1,2 and Frank Penczek1

1 University of Hertfordshire
Department of Computer Science

Hatfield, Herts, AL10 9AB, United Kingdom
{c.grelck,f.penczek}@herts.ac.uk

2 University of Lübeck
Institute of Software Technology and Programming Languages

Ratzeburger Allee 160, 23538 Lübeck, Germany
grelck@isp.uni-luebeck.de

Abstract. S-Net is a declarative coordination language; it allows us
to assemble asynchronous stream processing components into a stream
processing network at a high level of abstraction. We sketch out the major
design decisions in implementing S-Net on top of Pthreads for truly
concurrent execution on contemporary shared memory multiprocessor
and multicore architectures.

1 Introduction

The recent advent of multicore technology in processor designs [1] has introduced
parallel computing power to the desktop. Unlike the increase in clock frequency
characteristic for previous generations of processors, application programs do
not automatically benefit from multiple cores, but require explicit parallelisa-
tion. This need brings parallel and distributed programming techniques from
the niche of traditional supercomputing application areas into the main stream
of computer science. However, the shift in application characteristics also de-
mands new programming concepts, tools and infrastructure.

S-Net [2, 3] is a novel approach of a declarative coordination language based
on the idea of stream processing. Asynchronously executing stream processing
components constitute the basic building blocks of an S-Net. They are imple-
mented in a separate compute language, which in principle can be any language
suitable for the computational aspects of the problem to be solved that adheres
to certain interfacing contracts. S-Net assembles these stream processing com-
ponents into a stream processing network described by algebraic formulae and
a type system that makes heavy use of structural subtyping of records.

531

2 S-Net

S-Net3 describes the coordination behaviour of networks of asynchronous com-
ponents and their orderly interconnection via typed streams. We deliberately
restrict S-Net to coordination aspects and leave the specification of the con-
crete operational behaviour of basic components, named boxes in S-Net termi-
nology, to a box implementation language. For the time being we focus on the
functional array programming language SaC [4] as our primary box language as
far as implementation issues are concerned. However, coordination and compu-
tation layer are sufficiently orthogonalised in our approach to support a range
of box implementation languages, and the same S-Net may well contain boxes
implemented in different box languages. This strict separation between comput-
ing and coordination layer facilitates the reuse of existing software and opens an
avenue towards mixed language programming.

An S-Net box is connected to the outside world by two typed streams, a
single input stream and a single output stream. Data on these streams is organ-
ised as non-recursive records, i.e. collections of label-value pairs. The operational
behaviour of a box is characterised by a stream transformer function that maps
a single record from the input stream to a (possibly empty) stream of records on
the output stream. In order to facilitate dynamic reconfiguration of networks,
a box has no internal state and any access to external state (e.g. file system,
environment variables, etc.) is confined to using the streaming network. Boxes
execute fully asynchronously: as soon as a record is available on the input stream,
a box starts computing and, potentially, producing records on the output stream.
The restriction to a single input stream avoids any confusion as whether to im-
plicitly synchronise or how to respond to partial availability of data.

S-Net features two built-in components: Filter boxes take care of various
kinds of housekeeping tasks that do not require the full power of a box language,
e.g. deletion, duplication or renaming of record fields. Synchronisation boxes
recombine multiple records on the input stream into a single record on the output
stream based on structural pattern matching.

The construction of streaming networks based on instances of defined and
built-in asynchronous components is a distinctive feature of S-Net: Thanks to
the restriction to a single-input/single-output stream component interface we
can describe entire networks through algebraic formulae. S-Net features four
network combinators that take either one or two operand components and con-
struct a network that again has a single input stream and a single output stream.
As such a network again is a component, construction of streaming networks
becomes an inductive process. We have identified a total of four network combi-
nators that prove sufficient to construct a large number of network prototypes:
static serial and parallel composition of heterogeneous components as well as
dynamic serial and parallel replication of homogeneous components.

Structural subtyping on records greatly facilitates adaptation of individual
components to varying contexts. More precisely, components only need to be

3 http://snet.feis.herts.ac.uk/

532

specific about record fields that are actually needed for the associated compu-
tation or that are (at least potentially) created by that computation. In excess
to these required fields, however, an input record to some component may have
an arbitrary number of further fields. These additional fields bypass the com-
ponent and are added to any outgoing record through an automatic coercion
mechanism, named flow inheritance.

Acknowledgements

The development of S-Net is funded by the European Union through the Frame-
work VI Integrated Project Æther4, Self-adaptive Embedded Technologies for

Pervasive Computing Architectures.

References

1. Sutter, H.: The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s Journal 30 (2005)

2. Grelck, C., Scholz, S., Shafarenko, A.: S-Net: A Typed Stream Processing Language.
In Horváth, Z., Zsók, V., eds.: Proceedings of the 18th International Symposium on
Implementation and Application of Functional Languages (IFL’06), Budapest, Hun-
gary. Technical Report 2006-S01, Eötvös Loránd University, Faculty of Informatics,
Budapest, Hungary (2006) 81–97

3. Grelck, C., Shafarenko, A.: Report on S-Net: A Typed Stream Processing Language,
Part I: Foundations, Record Types and Networks. Technical report, University of
Hertfordshire, Department of Computer Science, Compiler Technology and Com-
puter Architecture Group, Hatfield, England, United Kingdom (2006)

4. Grelck, C., Scholz, S.B.: SAC: A functional array language for efficient multi-
threaded execution. International Journal of Parallel Programming 34 (2006) 383–
427

4 http://www.aether-ist.org/

533

From Contracts Towards Dependent Types:
Proofs by Partial Evaluation

— Draft —

Stephan Herhut1, Sven-Bodo Scholz1, Robert Bernecky2, Clemens Grelck1,3,
and Kai Trojahner3

1 University of Hertfordshire, U.K.
{s.a.herhut,s.scholz,c.grelck}@herts.ac.uk

2 University of Toronto, Canada
bernecky@acm.org

3 University of Lübeck, Germany
{grelck,trojahner}@isp.uni-luebeck.de

Abstract. The specification and resolution of non-trivial domain con-
straints has become a well-recognised measure for improving the stability
of large software systems. In this paper we propose an approach based
on partial evaluation which tries to prove such constraints statically as
far as possible and inserts efficient dynamic checks otherwise.

1 Introduction

Resolving domain constraints for operations on arrays is known to be a challeng-
ing task. The central challenge is that one of the most frequently used operations,
array selection, has value constraints which are undecidable in general. In the
context of array languages such as APL [1] or SaC [2] which aim at generic op-
erations on n-dimensional arrays the challenge becomes even harder as in these
languages the rank and shape of arrays, at least conceptually, are part of the
value as well.

In APL, all these consistency checks are purely dynamic. This design decision
has a considerable runtime impact as noted in [3]. In that article, Bernecky
supposes to introduce further array information named ”array predicates“ which,
despite the overhead for housekeeping this information, at least to some extent
ameliorates the runtime cost for dynamic checking.

In order to avoid the overhead due to dynamic checks, several other ap-
proaches have been developed that try to resolve these requirements statically.
However, the undecidable nature of the problem forces these approaches to re-
strict the expressiveness of the language in one way or the other. Some ap-
proaches are based on restricted forms of dependent types such as the indexed
types proposed by Zenger in [4] or the type system of DML [5]. Other approaches
rely on a strict separation of arrays and indices and force all indices to be defined
in a rather restricted manner only. This enables languages such as Zpl [6] or
Chapel [7] to avoid runtime checks.

534

In this paper, we propose a hybrid approach. Rather than restricting either
the language or the compiler to programs whose constraints can be statically
resolved, we try to infer as many constraints as possible and check the unresolved
ones at runtime. For many straight-forward programs this yields the same static
safety as strongly typed systems would. Only for programs that rely on more
complex index computations dynamic checks remain.

The central idea is to use partial evaluation as constraint resolution mecha-
nism. In a first step, all domain constraints are inserted into the program explic-
itly. At that stage programs are very similar to programs that contain contracts
as first proposed in the context of Eiffel [8]. In fact, the proposed approach
caters for a seamless integration of arbitrary contracts as found in several modern
languages from the object-oriented domain.

Subsequently, partial evaluation is applied, which is geared towards elimi-
nating the dynamic checks. A detailed analysis of remaining checks allows the
programmer to decide whether the level of static guarantees is sufficient for the
application given. In case not, further partial evaluation can be applied or the
program can be re-written in a way so that static resolution becomes feasible. As
a nice side-effect, those checks that remain until runtime have been minimised
wrt. the actual checks being performed.

We demonstrate this approach in the context of the functional array language
SaC. Since the existing compiler for SaC already supports powerful mechanisms
for partial evaluation as part of its type system and as part of its optimisation
cycle, an implementation of the proposed approach comes for a moderate imple-
mentation effort.

The paper is structured as follows. Section 2 gives a brief introduction in
SaCλ, a strip-down version of core SaC better suited for formal reasoning. A
formal definition of several of the built-in operations of SaCλ builds the basis
for Section 3 which explains how the inherent constraints of these operations
translate into explicit contracts. Section 4 discusses implementation issues that
result from the intention to reuse the existing mechanisms for partial evaluation
without any alteration. A detailed discussion of how the partial evaluation is be-
ing targeted towards resolving the contracts is given in Section 5 before Section 6
concludes.

2 SaCλ

SaCλ is a stripped-down version of SaC, comprising only the bare essentials of
the language: its syntax has been modified to a λ-calculus style, in order to ease
comprehension by a functional-programming audience.

Figure 1 shows the syntax of SaCλ. A program consists of a set of mutu-
ally recursive function definitions and a designated main expression. Essentially,
expressions are either constants, variables or function applications. Since SaC
does not, at present, support higher-order functions nor nameless functions, all
abstractions (function definitions) are explicitly user-defined. Function applica-
tions are written in C-style, i.e., with parentheses around arguments, rather than

535

Program ⇒ [FunId = λ Id[, Id]* .Expr ;]*
main = Expr ;

Expr ⇒ V al

| FunId (V al [, V al]*)

| Prf (V al [, V al]*)

| if V al then Expr else Expr

| let Id [, Id] = Expr in Expr

V al ⇒ Const

| [[V al [, V al]*]]

| Id

Prf ⇒ shape

| dim

| sel

| modarray

| add SxS | add SxA | add AxS | add AxA

| eq SxS | eq SxA | eq AxS | eq AxA

| ...

Fig. 1. The syntax of SaCλ

around entire applications of functions. Constants are either scalars or vectors
of expressions enclosed by square brackets.

SaCλ provides a few built-in array operators, referred to as primitive func-
tions (Prf). Among these are shape and dim for computing an array’s shape and
dimensionality (rank), respectively. A selection operation, sel, is also provided;
it takes two arguments: an index vector, specifying the element to be selected,
and an array from which to select. As its dual, SaCλ provides a modarray op-
eration which computes a new array from an existing one by altering a single
element only; it takes three arguments: a template array, the index position at
which the result array is supposed to be different from the template array and
the value to which the referenced element of the array is to be set to. These basic
array operations are complemented by element-wise extensions of arithmetic and
relational operations, such as addition (add) and equality (eq), respectively. We
distinguish between four different versions of these binary operations:

SxS suffixes operations on two scalar values. The result is the application of the
operation to both values.

SxA denotes operations that expect a scalar value as first argument and an
array as second argument. Here the result is an array of the same shape
as the second argument, computed by applying the operation to the first
argument and the corresponding element of the second argument.

536

AxS is used for operations that expect an array as first argument and a scalar
value as second argument. They are computed analogous to the SxA opera-
tions.

AxA represents operations on array arguments. These, given that the shape of
both arguments is identical, compute a result array by applying the operation
element-wise to the corresponding elements of their two arguments.

We can formalize the semantics of SaCλ by a standard big-step operational
semantics for λ-calculus-based applicative languages as defined in several text-
books, e.g., [9]. The core relations, i.e., those for conditionals, abstractions, and
function applications can be used in their standard form. Hence, only those re-
lations pertaining to the array specific features of SaCλ are shown in Figure 2.

As a unified representation for n-dimensional arrays we use pairs of vectors
< [s1, . . . , sn], [d1, . . . , dm] > where the vector [s1, . . . , sn] denotes the
shape of the array, i.e., its extent with respect to the n individual axes, and the
vector [d1, . . . , dm] contains all elements of the array in a linearized form. Since
the number of elements within an array equals the product of the number of

elements per individual axis, we have m =
n∏

i=1

si. The linearization we choose is

row-major, i.e., elements that correspond to variations in the rightmost index
only are consecutive in the vector of elements.

The first two evaluation rules of Figure 2 show how scalars as well as vectors
are transformed into the internal representation. The rule vect requires that all
elements need to be of the same shape, thereby ensuring shape consistency in
the overall result.

The next three rules formalize the semantics of the main primitive operations
on arrays: dim, shape, sel and modarray. There are two aspects of the sel rule
to be observed: Firstly, we require the selection index to be of the same length
as the shape of the array to be selected from. This ensures scalar values as
results. Secondly, the selection index needs to be within the bounds of the array
argument, i.e., each element ij of the index vector needs to be non-negative and
less than the corresponding element sj of the shape vector of the array argument.
Finally, the selection requires a transformation of the index vector into a scalar
offset l into the linearized form of the array. The sum of products used here
reflects the row-major linearization we have chosen.

Element-wise extensions of standard operations such as the arithmetic and
relational operations are demonstrated by the example of the rules for addition
(add SxS, add AxS and add AxV). We have left out the rules for the SxA variants,
as they a symmetrical to their AxS counterparts.

Whereas add SxS and add AxS can be applied to any pair of scalar values
or an array of arbitrary shape as first argument und any scalar value as second
argument, respectively, we require the arguments of add AxA to be of the same
shape.

537

const :
n → < [], [n] >

vect :
∀i ∈ {1, . . . , n} : ei → < [s1, . . . , sm], [di

1, . . . , di
p] >

[e1, . . . , en] → < [n, s1, . . . , sm], [d1
1, . . . , d1

p, . . . , dn
1 , . . . , dn

p] >

dim :
e → < [s1, . . . , sn], [d1, . . . , dm] >

dim(e) → < [], [n] >

shape :
e → < [s1, . . . , sn], [d1, . . . , dm] >

shape(e) → < [n], [s1, . . . , sn] >

sel :

iv → < [n], [i1, . . . , in] >
e → < [s1, . . . , sn], [d1, . . . , dm] >

sel(iv, e) → < [], [dl+1] >

where l =
nP

j=1

(ij ∗
nQ

k=j+1

sk)

⇐⇒ ∀k ∈ {1, . . . , n} : 0 ≤ ik < sk

modarray :

iv → < [n], [i1, . . . , in] >
ed → < [s1, . . . , sn], [d1, . . . , dm] >

ev → < [], v >

modarray(iv, ed, ev) → < [s1, . . . , sn], [d′
1, . . . , d′

m] >

where d′
i =

8<:v if i =
nP

j=1

(ij ∗
nQ

k=j+1

sk) + 1,

di otherwise.

⇐⇒ ∀k ∈ {1, . . . , n} : 0 ≤ ik < sk

add SxS :

e1 → < [], d1 >
e2 → < [], d2 >

add SxS(e1, e2) → < [], [d1 + d2] >

add AxS :

e1 → < [s1, . . . , sn], [d1
1, . . . , d1

m] >
e2 → < [], d >

add AxS(e1, e2) → < [s1, . . . , sn], [d1
1 + d, . . . , d1

m + d] >

add AxA :

e1 → < [s1, . . . , sn], [d1
1, . . . , d1

m] >
e2 → < [s1, . . . , sn], [d2

1, . . . , d2
m] >

add AxA(e1, e2) → < [s1, . . . , sn], [d1
1 + d2

1, . . . , d1
m + d2

m] >

Fig. 2. An operational semantics for SaCλ.

3 Contracts for Built-In Functions

Given the semantic rules presented in the previous section, we can now extract
contracts, i.e., pre- and post-conditions, for the built-in functions of SaCλ. As

538

a first step, we have to find suitable SaCλ-representations for the preconditions
of each built-in function. As an example, consider the built-in function add SxS.
The rule add SxS in Figure 2 gives two preconditions; it requires each argument
to evaluate to a scalar value. Thus, a contract for add SxS needs to contain code
that ensures that both arguments at runtime are scalar values. Furthermore, we
need a way to express a runtime error explicitly. We do this by introducing an
explicit termination symbol ⊥. Given an application of add SxS of the following
form

let

R = add SxS(A, B)

in . . .

the required contracts can be made explicit by the following code:

let

R = if eq SxS(dim(A), 0) then

if eq SxS(dim(B), 0) then

add SxS(A, B)

else

⊥
else

⊥
in . . .

The outer conditional checks whether argument A has dimensionality 0, i.e.,
whether it is a scalar value. The same condition is checked by the inner con-
ditional for argument B. In case any of the pre-conditions does not hold we
return ⊥. Thus, within the above code, we do not need to check the implicit
preconditions when applying add SxS, as the application is only evaluated if
both pre-conditions are known to hold. Furthermore, we have made the implicit
pre-conditions of add SxS explicit in the code and thereby accessible to standard
partial evaluation techniques.

Nonetheless, the above code still requires implicit checks: the newly intro-
duced applications of dim and eq come with their own set of pre-conditions.
Thus, in order to make all pre-conditions within a program explicit, we have to
introduce explicit checks for these, as well, which, ultimately, leads to a non-
terminating code transformation.

To circumvent this, we introduce special built-in functions designed to be
used as predicates in contracts. They all go without constraining the arguments
in the pre-conditions, as can be seen in Figure 3. This ensures termination of the
code transformation. Additionally, they cater for a concise representation and
allow us to easily differentiate between user-specified conditions and automat-
ically inserted contracts. For the built-in function add SxS, we add a built-in
function is scalar as follows:

is scalar evaluates to true if its first argument is a scalar value. Otherwise it
evaluates to false.

Using this built-in function, we can rewrite the contracts for add SxS:

539

is scalar :
e → < [s1, . . . , si], [d1, . . . , dk] >

is scalar(e) → v

where v =

(
< [], true > if i = 0,

< [], false > otherwise.

same shape :

e1 → < [s1
1, . . . , s1

i], [d1
1, . . . , d1

k] >
e2 → < [s2

1, . . . , s2
j], [d2

1, . . . , d2
l] >

same shape(e1, e2) → v

where v =

8><>:
< [], true > if i = j

∧∀m ∈ {1, . . . , i} : s1
m = s2

m,

< [], false > otherwise.

index matches dim :

iv → < [siv
1 , . . . , siv

i], [div
1 , . . . , div

k] >
e → < [se

1, . . . , se
j], [de

1, . . . , de
l] >

index matches dim(iv, e) → v

where v =

(
< [], true > if i = 1 ∧ siv

1 = j,

< [], false > otherwise.

non neg val :
e → < [s1, . . . , si], [d1, . . . , dj] >

non neg val(e) → v

where v =

(
< [], true > if ∀l ∈ {1, . . . , j} : dl ≥ 0,

< [], false > otherwise.

val lt shape :

iv → < [siv
1 , . . . , siv

i], [div
1 , . . . , div

k] >
e → < [se

1, . . . , se
j], [de

1, . . . , de
l] >

val lt shape(iv, e) → v

where v =

8><>:
< [], true > if i = 1 ∧ siv

1 = j

∧∀m ∈ {1, . . . , j} : div
m < se

m,

< [], false > otherwise.

Fig. 3. Semantic rules for additional contract predicate built-in functions.

let

R = if is scalar(A) then

if is scalar(B) then

add SxS(A, B)

else

⊥
else

⊥
in . . .

Using is scalar, evaluating the above code does not involve checking any im-
plicit pre-conditions.

540

The constraints generated by applications of add SxS, as shown above, only
assert a certain fixed dimensionality. This kind of constraint, i.e., asserting a
statically known dimensionality or shape, can be handled by existing type sys-
tems, e.g., the type-system for SaC presented in [2]. More sophisticated pre-
conditions, i.e., equality constraints and value dependent constraints, are more
difficult to handle by static type-systems. As an example for equality constraints
as pre-condition, consider the following application of add AxA:

let

R = add AxA(A, B)

in . . .

Here, the semantic rule add AxA given in Figure 2 requires the shapes of both
arguments to be identical. As in the previous example, we can directly express
this in SaCλ:

let

R = if eq AxA(shape(A), shape(B)) then

add AxA(A, B)

else

⊥
in . . .

Again, we have wrapped the call to the built-in function into a conditional.
The predicate asserts that both arguments of add AxA are of the same shape; it
is expressed by means of the existing built-in functions dim and eq. As in our
first example, using existing built-in functions to express automatically inserted
contracts leads to a non-terminating code transformation. We therefore introduce
the following new built-in function:

same shape is used to express the equality of argument shapes. It expects two
arrays as arguments and evaluates to true if both have the same shape.
Otherwise it evaluates to false.

Using same shape, we can rewrite the above example as follows:

let

R = if same shape(A, B) then

add AxA(A, B)

else

⊥
in . . .

This code is free of implicit pre-conditions: The application of same shape does
not involve any pre-conditions and the application of add AxA is only evaluated
if all of its pre-conditions hold.

Finally, as an example for value dependent constraints, consider the built-in
function sel. Rule sel in Figure 2 declares the following pre-conditions:

1. the length of the index vector needs to match the dimensionality of the array
2. the index vector needs to be non-negative for each of its elements

541

3. each element of the index vector needs to be less than the corresponding
component of the array’s shape

The first condition ensures that the result of the selection is a scalar value.
Conditions 2 and 3 assert that the index vector is within the set of legal indices
of the argument array. These conditions can directly be expressed in SaCλ.
However, as for the previous examples, we add a special built-in function for
each constraint:

shape matches dim is used to express the first condition. It expects an index
vector as first argument and an array as second argument and evaluates to
true if the length of the index vector matches the number of dimensions of
the array argument. Otherwise it evaluates to false.

non neg val checks whether its first argument does not contain negative values
and evaluates to true if this condition holds and to false otherwise. It is
used to express the second condition.

val lt shape evaluates to true if each element of the index vector given as its
first argument is smaller than the corresponding component of the shape of
the second argument. Otherwise it evaluates to false. We use this built-in
operation to model the third condition.

Given these three additional primitives, we can now make the pre-conditions of
sel explicit in the code. As an example consider the code fragment

let

v = sel(iv, A)

in . . .

which can now be transformed into

let

v = if shape matches dim(iv, A) then

if non neg val(iv) then

if val lt shape(iv, A) then

sel(iv, A)

else

⊥
else

⊥
else

⊥
in . . .

Again, the resulting code is free of implicit pre-conditions. All pre-conditions
are explicitly expressed by contracts. We use three specific built-in functions for
each pre-condition instead of one built-in function for all pre-conditions. Firstly,
this makes the built-in functions more generally applicable. Secondly, it eases
partial evaluation: In contexts where only one or two of the pre-conditions can be
statically decided, our fine-grained approach allows us to evaluate corresponding
contracts statically. In a coarse-grained approach with only one built-in function
for all pre-conditions, this can not be easily done.

542

Apart from the transformations sketched out in the above examples, we need
to define the contracts for the built-in function modarray. We omit an exam-
ple here. In short, modarray demands the same pre-conditions as the built-in
function sel and additionally requires its third argument to be a scalar. This is
handled by emitting an additional contract to that effect.

4 Implementation Issues

The explicit contracts produced by the transformation scheme presented in the
previous section, although viable in theory, are difficult to compile into efficient
runtime code. As an example, consider the following code fragment:

let

C = add AxA(A, B)

in let

a = sel(iv, A)

in let

b = sel(iv, B)

in ...

Applying the transformations described in the previous section yields the fol-
lowing code:

543

let

C = if same shape(A, B) then

add AxA(A, B)

else

⊥
in let

a = if shape matches dim(iv, A) then

if non neg val(iv) then

if val lt shape(iv, A) then

sel(iv, A)

else

⊥
else

⊥
else

⊥
in let

b = if shape matches dim(iv, B) then

if non neg val(iv) then

if val lt shape(iv, B) then

sel(iv, B)

else

⊥
else

⊥
else

⊥
in ...

It contains the following contracts:

1. A and B are required to have the same shape (same shape)
2. iv is required to be a valid index into A (shape matches dim, non neg val,

val lt shape)
3. iv is required to be a valid index into B (shape matches dim, non neg val,

val lt shape)

When looking at all three contracts in conjunction, the second and third contract
are identical: given that A and B have the same shape, any valid index into A is
a valid index into B, as well. For an efficient runtime implementation, it would
therefore be desirable to exploit the outcome of previously evaluated contracts
for eliminating redundant contracts in parts of the code that are executed later
on. However, formally the information that A and B have the same shape is only
valid within the then-branch of the conditional of the corresponding contract.
Thus, to exploit that information, we would have to move the consecutive selec-
tions from after the conditional into its then-branch. Although possible in the
above example, a generally applicable transformation scheme is complicated. We
therefore chose a different route.

To more easily allow us to incorporate optimisations as the one sketched out
above, we change the representation of contracts. Instead of using conditionals,

544

we weave the predicates of contracts into the dataflow: we modify each of the
built-in functions defined in Figure 3 to either return those of their arguments, for
which the asserted condition holds, or ⊥ otherwise. Thereby, we introduce new
identifiers that reference the same values, but give us a handle to the additional
knowledge previously evaluated contracts have asserted. As an example, consider
the transformation of the example given above. Using our new representation,
we get the following code:

let

A’, B’ = same shape(A, B)

in let

C = add AxA(A’, B’)

in let

iv’ = shape matches dim(iv, A’)

in let

iv’’ = non neg val(iv’)

in let

iv’’’ = val lt shape(iv’’, A’)

in let

a = sel(iv’’’, A’)

in let

iv4 = shape matches dim(iv’’’, A’)

in let

iv5 = non neg val(iv4)

in let

iv6 = val lt shape(iv5, B’)

in let

a = sel(iv6, B’)

in ...

The result of the application of same shape is bound to two new identifiers A’
and B’. If A and B have the same shape, same shape is the identity function on
its arguments, i.e., A’ and B’ are just aliases of A and B, respectively. Otherwise,
same shape evaluates to ⊥ for both result values. The consecutive application
of add AxA therefore either computes the element-wise sum of A’ and B’, alias A
and B, or evaluates to ⊥. Thus, the above encoding is semantically equivalent to
the encoding using conditionals introduced in Section 3. However, by introducing
new identifiers for A and B, we can now exploit the additional knowledge that they
have the same shape in the consecutive applications of shape matches dim. The
first application of shape matches dim ensures that iv’ matches the shape of A’
(or is ⊥), therefore iv’ matches the shape of B’, as well. As all built-in predicate
functions are either the identity or return ⊥, it follows that iv’’’ matches the
shape of B’ (or is ⊥) and that the second application of shape matches dim
always is the identity. Thus, we can statically evaluate iv4 to iv’’’. Similarly, we
can statically evaluate the second application of non neg val and val lt shape.

Using our second approach, we can transform all implicit pre-conditions into
explicit contracts and, furthermore, optimise the resulting code. However, our

545

optimisations still need to be aware of the original implicit pre-conditions. As
an example, consider the following code fragment:

let

B = modarray(A, iv, b)

in let

c = sel(B, iv)

in ...

Given an array A, the above code creates a new array B by replacing the value at
index iv with b. In a consecutive selection, the value at position iv in B is selected
as c. On first sight, one is tempted to conclude that c equals b, as the element
at index iv in B clearly is b. However, this is only true if all pre-conditions for
modarray and sel hold. Otherwise B equals ⊥, as does c.

Unfortunately, transforming the pre-conditions into explicit contracts does
not help, either, as the following example shows:

let

b’ = is scalar(b)

in let

iv’ = shape matches dim(iv, A)

in let

iv’’ = non neg val(iv’)

in let

iv’’’ = val lt shape(iv’’, A)

in let

B = modarray(A, iv’’’, b’)

in let

iv4 = shape matches dim(iv’’’, A)

in let

iv5 = non neg val(iv4)

in let

iv6 = val lt shape(iv5, A)

in let

c = sel(B, iv6)

in ...

In the above code, the selection uses a different index vector than the preceding
modarray. Thus, our näıve optimisation is not applicable. This situation changes,
if we remove redundant contracts, i.e., the contracts of sel that assert the same
properties as those of the preceding modarray operation:

546

let

b’ = is scalar(b)

in let

iv’ = shape matches dim(iv, A)

in let

iv’’ = non neg val(iv’)

in let

iv’’’ = val lt shape(iv’’, A)

in let

B = modarray(A, iv’’’, b’)

in let

c = sel(B, iv’’’)

in ...

Now, our näıve optimisation can be applied, as both operations use the same
index vector, yielding the following code:

let

b’ = is scalar(b)

in let

iv’ = shape matches dim(iv, A)

in let

iv’’ = non neg val(iv’)

in let

iv’’’ = val lt shape(iv’’, A)

in let

c = b’

in ...

By removing the sel and modarray operations, we have decoupled the contracts
from the dataflow as iv is not referenced anymore. Therefore, a standard op-
timisation like dead-code removal might strip these out, resulting in an illegal
program transformation.

A straight forward solution would be to make all optimisations aware of the
implicit pre-conditions of built-in functions, or to ensure that dead-code removal
and similar optimisations do not touch contracts. This, however, increases the
complexity of the specification and implementation of most optimisations. In-
stead, we alter our representation of contracts once more.

Conceptually, we introduce contracts to assert certain pre-conditions of ap-
plications of built-in functions prior to their evaluation. Therefore, we insert con-
tracts before function applications and weave them into the dataflow to ensure
that they are evaluated prior to the corresponding built-in function. In partic-
ular, we weave the contracts into the dataflow of the arguments of a function
application. However, in the above example, function applications are evaluated
from below by combining two operations into a single operation. As this poten-
tially removes all references to some of the arguments of the original function
applications, the introduced contracts might be stripped out. To prevent this,
we additionally add a dependency between the contracts and the results of a

547

function application. The additional built-in function after guard serves this
purpose.

after guard is the identity on its first argument, if all other arguments evaluate
to true. Otherwise it evaluates to ⊥.

Furthermore, we add an additional boolean return value to the previously intro-
duced built-in operations used in the predicates of contracts. This allows us to
encode a dataflow dependency between the return value of a function application
and the contracts. This leads to the following code:

let

b’, p1 = is scalar(b)

in let

iv’, p2 = shape matches dim(iv, A)

in let

iv’’, p3 = non neg val(iv’)

in let

iv’’’, p4 = val lt shape(iv’’, A)

in let

B = modarray(A, iv’’’, b’)

in let

B’ = after guard(B, p1, p2, p3, p4)

in let

c = sel(B’, iv’’’)

in ...

Note here, that although the modarray and sel operations use the same index
vector iv’’’, our näıve optimisation does not apply as the second argument
of the selection differs from the result of the array modification: The inserted
after guard inhibits optimisation, unless it can be statically evaluated, i.e.,
unless all contacts are statically known to be true.

Using this representation, we have replaced all implicit pre-conditions of
built-in functions by explicit contracts and have made checking pre-conditions
redundant both during program evaluation and program optimisation.

5 Constraint Resolution by Partial Evaluation

Using the explicit encoding of pre-conditions as contracts presented in the pre-
vious sections, we can now use existing partial evaluation techniques developed
for SaC to (partially) prove contracts at compile-time. We can identify three
different classes of contracts:

1. contracts that assert a certain dimensionality or shape of an argument, e.g.,
is scalar

2. contracts ensuring equality constraints on shapes, i.e., same shape
3. contracts that are used to enforce value-dependent constraints, i.e.,

shape matches dim and val matches shape

548

The first class of contracts is handled by the type-system of SaC as described
in [2]. A type in SaC consists of the type of the elements of an array and infor-
mation about its shape. We use subtyping to represent different levels of static
shape-knowledge: unknown dimensionality (no static knowledge), known dimen-
sionality (partial static knowledge) and known shape (full static knowledge).
Type inference allows us, given at least partial static knowledge of the argument
shapes, to statically resolve applications of constraints like is scalar.

To enable optimisations in cases where only limited static shape-knowledge
is available, we have developed a mechanism to infer static knowledge of shape
equalities [10]. This technique can be used to statically evaluate and thus prove
contracts of the second kind. We are currently undertaking further research to
extend this approach to value-dependent constraints, thereby tackling the third
class of contracts.

6 Conclusions

This paper demonstrates how domain constraints can be resolved semi-statically
by means of partial evaluation and other optimisation techniques. The appealing
aspect of this approach lies in its versatility and its lean implementation. Not
only implicit domain constraints can be resolved that way but also user specified
contracts. This allows, in principle, to specify restrictions similar to those found
in languages based on dependent types. The resolution itself comes almost for
free by simply applying the existing optimisation techniques. The key techniques
here seem to be the type inference system of SaC [2] as well as the static array
attributes [10] which provide shape equalities throughout programs. However,
since the constraint resolution has been reduced to standard optimisations there
is a mutual benefit: whenever a new optimisation technique is being introduced,
the static contract resolution may benefit from it as well as any other part of
any given program.

We made similar observations in the context of several other optimisations:
expressing certain aspects of any given program explicitly and then applying
the existing optimisations often turned out to be a very powerful and relatively
easy to implement technique. Examples are the static array attributes which
utilise optimisations such as CSE (common subexpression elimination) in order
to propagate equality constraints, or IVE (index vector elimination) [11] which
utilises LIR (loop invariant removal) as well as CSE in order to avoid superfluous
index computations.

By applying it to the resolution of constraints as they arise from built-in op-
erations as well as user-specified contracts, we achieve a behaviour which comes
close to that of more strongly typed systems based on various forms of dependent
types: For many programs we can give static soundness guarantees wrt. certain
domain requirements. In those cases where we cannot give these guarantees,
we can clearly identify the program parts where unresolved constraints remain.
Then it is up to the user to decide whether further program optimisation should
be applied or the dynamic contract checks should remain.

549

It remains as future research to investigate whether such a general purpose
optimisation mechanism is capable to resolve more complex constraints in an
effective way. In particular, it would be interesting to compare its effectiveness
with that obtained by dedicated resolution systems such as Epigram [12].

References

1. International Standards Organization: Programming Language APL, Extended.
ISO N93.03, ISO (1993)

2. Scholz, S.B.: Single Assignment C — efficient support for high-level array oper-
ations in a functional setting. Journal of Functional Programming 13(6) (2003)
1005–1059

3. Bernecky, R.: Reducing computational complexity with array predicates. In: APL
’98: Proceedings of the APL98 conference on Array processing language, New York,
NY, USA, ACM Press (1998) 39–43

4. Zenger, C.: Indexed types. Theor. Comput. Sci. 187(1-2) (1997) 147–165
5. Xi, H., Pfenning, F.: Dependent Types in Practical Programming. In: POPL ’99,

ACM Press (1999) 214–227
6. Chamberlain, B., Choi, S.E., Lewis, E., Lin, C., Snyder, L., Weathersby, W.: ZPL:

A Machine Independent Programming Language for Parallel Computers. IEEE
Transactions on Software Engineering 26(3) (2000) 197–211

7. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel programmability and the
chapel language. In: International Journal of High Performance Computing Ap-
plications. (2007) 291–312

8. Meyer, B.: Eiffel: The Language. Prentice Hall (1990)
9. Pierce, B.C.: Types and programming languages. MIT Press, Cambridge, MA,

USA (2002)
10. Trojahner, K., Grelck, C., Scholz, S.: On Optimising Shape-Generic Array Pro-

grams using Symbolic Structural Information. In Horváth, Z., Zsók, V., eds.:
Proceedings of the 18th International Symposium on Implementation and Appli-
cation of Functional Languages (IFL’06), Budapest, Hungary. Technical Report
2006-S01, Eötvös Loránd University, Faculty of Informatics, Budapest, Hungary
(2006) 13–27

11. Bernecky, R., Herhut, S., Scholz, S., Trojahner, K., Grelck, C., Shafarenko, A.:
Index Vector Elimination: Making Index Vectors Affordable. In Horváth, Z., Zsók,
V., eds.: Proceedings of the 18th International Symposium on Implementation
and Application of Functional Languages (IFL’06), Budapest, Hungary. Techni-
cal Report 2006-S01, Eötvös Loránd University, Faculty of Informatics, Budapest,
Hungary (2006) 28–43

12. McBride, C., McKinna, J.: The view from the left. J. Funct. Program. 14(1)
(2004) 69–111

550

A Rational Simplifier for GHC

Laszlo Nemeth

Istanbul Bilgi University, Turkey

Abstract. We describe an attempt to replace the Glasgow Haskell Com-
piler’s simplifier with one written in a multi-agent system (Jason) based
on AgentSpeak and argue that the framework allows many aspects of op-
timisation to be expressed in a concise manner. This is very much work
in progress and it remains to be seen whether the techniques developed
so far scale to a complete and better replacement.

551

Submitted to IFL 2007.

Title:

Amortizing the cost of commuting conversions

when beta-reducing monadic normal forms and A-normal forms

Author:

Olivier Danvy

University of Aarhus

<danvy@brics.dk>

Abstract:

In "Compiling with Continuations, Continued" (ICFP 2007), Andrew

Kennedy points out that commuting conversions increase the complexity

of simplifying intermediate-language terms, and states that "it is

far from clear how to amortize the cost of commuting conversions to

obtain a linear number of reductions for A-normal forms", in contrast

to CPS. We show how to achieve this amortization, as a corollary of

a syntactic bijection between CPS terms and terms in A-normal form.

1. Background and introduction

1.1. Grammar of terms in direct style

Programs:

p ::= e

Expressions:

e ::= x | \x.e | e e | if e e e

x in Ide -- source identifiers

1.1. Grammar of terms in CPS

The output grammar of the CBV CPS transformation:

Programs:

p ::= \k.s

Serious terms:

s ::= c t -- return

| t t c -- call

| if t s s -- tail conditional expression

| let k = \j.s in if t s s -- non-tail conditional expression

Trivial terms:

t ::= x | i | j | \x.\k.s

Continuations:

c ::= k | \i.s

x in Ide -- identifiers from the source term

k in Cide -- continuation identifiers

i in Vide -- parameters of continuations for non-tail calls

j in Jide -- parameters of continuations for non-tail conditional expressions

1

552

1.2. Grammar of terms in CPS, after administrative reductions

The c production disappears:

Programs:

p ::= \k.s

Serious terms:

s ::= k t -- return

| t t k -- tail call

| t t \i.s -- non-tail call

| if t s s -- tail conditional expression

| let k = \j.s in if t s s -- non-tail conditional expression

Trivial terms:

t ::= x | i | j | \x.\k.s

A CPS term is in administrative normal form if all its continuations are

beta-reduced.

1.3. Grammar of terms in A-normal form

Programs:

p ::= s

Serious terms:

s ::= return t -- return point

| t t -- tail call

| let i = t t in s -- non-tail call

| if t s s -- tail conditional expression

| let k = \j.s in if t s s -- non-tail conditional expression

| join t k -- join point

Trivial terms:

t ::= x | i | j | \x.s

1.4. Bijective correspondence between CPS terms in administrative normal

form and A-normal forms

Reference: Olivier Danvy, "Back to Direct Style", ESOP 1992 and Science

of Computer Programming 1994.

The following relation is defined by structural induction over the two

grammars above. Each judgment is indexed by a non-terminal, and we use a

diacritical convention: accent grave (‘) for terms in CPS, and accent

aigu (’) for terms in ANF:

|-P p_cps <-> p_anf

k |-S s_cps <-> s_anf

|-T t_cps <-> t_anf

The inference rules:

k |-S s‘ <-> s’

|-P \k.s‘ <-> s’

2

553

|-T t‘ <-> t’

k |-S k t‘ <-> t’

|-T t0‘ <-> t0’ |-T t1‘ <-> t1’

k |-S t0‘ t1‘ k <-> t0’ t1’

|-T t0‘ <-> t0’ |-T t1‘ <-> t1’ k |-S s‘ <-> s’

k |-S t0‘ t1‘ \i.s‘ <-> let i = t0’ t1’ in s’

|-T t‘ <-> t’ k |-T s1‘ <-> s1’ k |-T s2‘ <-> s2’

k |-S if t‘ s1‘ s2‘ <-> if t’ s1’ s2’

k |-S s‘ <-> s’ |-T t‘ <-> t’ k1 |-S s1‘ <-> s1’ k1 |-S s2‘ <-> s2’

k |-S let k1 = \j.s‘ in if t‘ s1‘ s2‘ <-> let k1 = \j.s’ in if t’ s1’ s2’

|-T x <-> x

|-T i <-> i

|-T j <-> j

k |-S s‘ <-> s’

|-T \x.\k.s‘ <-> \x.s’

(The whole thing is of course much nicer once latexed; the author

apologizes about this hasty presentation.)

The function that, given a CPS term, yields a term in A-normal form based

on the judgments above computes what is called "un-CPS" in Flanagan et

al.’s article at PLDI 1993.

2. Issues

2.1. ANFs are not closed under beta-reduction

For example,

let i2 = (\x.let i1 = t2 t3 in s1) t1 in s2

->beta

let i2 = let i1 = t2[t1/x] t3[t1/x] in s1[t1/x] in s2

->let.assoc

let i1 = t2[t1/x] t3[t1/x] in let i2 = s1[t1/x] in s2

3

554

2.2. CPS is (almost) closed under beta-reduction

For (the corresponding) example,

(\x.\k.t2 t3 \i1.s1) t1 \i2.s2

->beta

t2[t1/x] t3[t1/x] \i.s1[t1/x, \i2.s2/k]

As one can note, the contractum is not in administrative normal form if k

is applied in s1 since the substitution of k yields a term where the

continuation \i2.s2 occurs in a beta-redex.

2.3. The problem

In "Compiling with Continuations, Continued", Andrew Kennedy states that

in contrast to CPS, "it is far from clear how to amortize the cost of

commuting conversions to obtain a linear number of reductions for

A-normal forms".

2.4. Our solution

Instead of throwing in the towel, one can instead exploit the syntactic

structure of A-normal forms and compose beta-reduction with a

renormalization phase:

let i2 = (\x.let i1 = t2 t3 in s1) t1 in s2

->beta _

let i1 = t2[t1/x] t3[t1/x] in s1{\t.s2[t/i2]}[t1/x]

_

The definition of s1{\t.s2[t/i2]} is the topic of the next section.

3. Sub-linear renormalization

Here and just above, overlined "\" and "@" indicate static

lambda-abstraction and static application, as usual in the one-pass

CPS transformation (Danvy & Filinski, MSCS 1992).

The renormalization s{K} is defined by structural induction over s:

_

(return t){K} = K @ t

_

(t0 t1){K} = let i = t0 t1 in K @ i

(let i = t0 t1 in s){K} = let i in t0 t1 in s{K}

_

(if t s1 s2){K} = let k = \j.K @ j in if t s1 s2

(let k = \j.s in if t s1 s2){K} = let k = \j.s{K} in if t s1 s2

NB. The case "join t k" cannot happen since such a join term occurs in

conditional branches, which are not traversed by the renormalization.

4

555

Intuitively, the renormalization ‘hooks’ the (flat) body of the

lambda-abstraction just beta-reduced with its (flat) context,

and it does so in time proportional to the ‘length’ of this flat body.

For example,

let i3 = (\x.let i1 = t1 t1’ in let i2 = t2 t2’ in t3 t3’) t’ in s4

->beta

let i1 = (t1 t1’)[t’/x] in _

let i2 = (t2 t2’)[t’/x] in (t3 t3’)[t’/x]{\t.s4[t/i3]}[t’/x]

->renormalization

let i1 = (t1 t1’)[t’/x] in

let i2 = (t2 t2’)[t’/x] in

let i4 = (t3 t3’)[t’/x] in s4[i4/i3][t’/x]

4. Conclusion

Because A-normal forms and CPS terms in administrative normal form are in

bijective correspondence, much of what can be done to terms in one style

can easily be done to terms in the other style. We believe that this is

the case too for renormalization after beta-reduction, which as shown

here can be achieved at sub-linear cost for terms in A-normal form.

That said, the renormalization is yet another ad-hoc bitty bit to emulate

a virtue of CPS in a non-CPS world. No wonder Olin Shivers prefaced his

PhD dissertation with Archilocus’s quote:

The fox knows many things,

but the hedgehog knows one great thing.

References:

Olivier Danvy:

"Back to direct style"

Proceedings of ESOP, 1992 and Science of Computer Programming, 1994

Olivier Danvy and Andrzej Filinski:

"Representing control, a study of the CPS transformation"

Mathematical Structures in Computer Science, 1992

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen:

"The essence of compiling with continuations"

Proceedings of PLDI, 1993

Andrew Kennedy:

"Compiling with continuations, continued"

Proceedings of ICFP, 2007

Carl Nielsen:

"The fog is lifting"

Concerto for flute & harp, 1920

Olin Shivers:

"Control-flow analysis of higher-order languages"

PhD dissertation, Carnegie Mellon University, 1991

5

556

