
Recency Types for Scripting Languages –
Technical Report

Phillip Heidegger and Peter Thiemann

Universität Freiburg, Germany,
heidegger,thiemann@informatik.uni-freiburg.de

1 Extensions

Before presenting the proves we present an extended version of the core language
for RAC. Therefore we extend the syntax by an conditional and the type syntax
by a second effect. §1.1 and §1.2 presents two extensions for RAC that are for-
malized. They are part of the proves. Their main goal is to allow more programs
to pass the type checker, and to support the conditionals.

The type rules in the technical report make use of judgments defined in Fig. 1,
as you will notice in Function Call and If in Fig. 11.

1.1 Access Effects

Up to now, functions are fairly sensitive to their calling context. Consider the
following example, where the function h is called twice:

let h = λx.

(
let x1 = new`2 in
x1.b := x; x1

)
in

\`let x = new` in
x.a := 5;
\`2let = h(x) in
x.a := ”Hello”;
\`2let y = h(x) in
”Kitty”

(1)

As the type of h includes the referenced singleton environment of the call site,
only one of the calls in line 4 and line 6 can be compatible with h’s type

(Σ, int)
{`2},∅→ (Σ, int): Line 4 requires Σ = [` 7→ {a 7→ int}] whereas line 6

requires Σ = [` 7→ {a 7→ string}].
Access effects address this problem. The access effect A of a function indicates

the locations of singleton objects that the function may read or write, but which
are not allocated inside the function. It imposes a lower bound on the domain
of the singleton environment that must be passed to the function. The rule for
function application splits the singleton environment at the call site and only
matches the relevant part indicated by the access effect with the environment
in the function type. The environment returned from the function is joined with

the rest of the call-site environment to rebuild the singleton environment after
the call.

In the example, the type of h is ([], int)
{`2},∅→ ([], int) indicating that h cre-

ates objects at location `2 but does not access other singleton objects. Thus, at
both call sites in lines 4 and 6 an empty environment is passed to and returned
from the function so that the singleton environment at each call site is undis-
turbed. The formal definition of the spitting of the most recent environment is
presented in Fig. 1.

1.2 Conditionals – Joining Environments

Finally, conditionals pose a few problems in connection with singleton types.
As the branches of a conditional may create different objects, the types and
environments returned from the branches may differ in the locations mentioned
in them as well as in whether they contain singleton or summary object types.
As the typing rule for conditionals asks them to be identical, they have to be
joined to type check the continuation of the conditional. The treatment of such
objects depends on whether they are allocated with the same abstract location.
If all else fails, demotions have to be inserted. But often it is possible to remain
more precise than that.

Let’s first consider an example where the same abstract location is allocated
in both branches.

if x (let x1 = new` in x1.a := 22; x1)
(let x2 = new` in x2.a := ”xx”; x2) (2)

In this case, the type of the conditional is obj(@`) with a singleton heap type
where ` maps to a type subsuming both int and string. Hence, most recent
object types for identical locations are joined.

For a case with different locations, consider the next example.

let f = λz.
(let o = new`1 in o.b := ”Hi”; o.c := z; o) in

let g = λz.
(let o = new`2 in o.b := false; o.c := z; o) in

\`1,`2let x = if e f(31) g(32) in
x.b := 5; x.b+ x.c

(3)

The types of the functions are as follows (ignoring effects):

f :([], int)→ ([`1 7→ {a :string; c :int}], obj(@`1))
g :([], int)→ ([`2 7→ {a :bool; c :int}], obj(@`2))

The type of the variable x is now obj(@{`1, `2}), which is a departure from our
previous restriction which allowed only one location in a singleton object type.
This relaxed singleton object type is not a problem for typing a read access

2

to the object (just take the join or the referenced locations), but performing a
strong update on the object is tricky.

The type of x indicates that x holds either a recent `1-object or a recent `2-
object. As a strong update overwrites the descriptions of both locations, there
must be no further references to an `1- or `2-object because one of them would
be out of sync with the description.

Our approach is to enhance the structure of the singleton heap environment
to keep alternatives indicated by the operator ‖. As an example, the heap envi-
ronment at the write operation in (3) would look like this:

[`1 7→ {a : string; c : int}] ‖ [`2 7→ {a : bool; c : int}]

In this case, the strong update of x is possible because each heap alternative
defines only one of `1 and `2. The heap environment after the update would be

[`1 7→ {a : int; c : int}] ‖ [`2 7→ {a : int; c : int}]

However, it is vital for the example that the function calls happen in the
branches of the conditional. Suppose the programmer replaces the conditional
in (3) with this functionally equivalent code:

let x1 = f(31) in
let x2 = g(32) in
let x = if e x1 x2 in

(4)

With this modification, x receives the same type obj(@{`1, `2}) as in (3). How-
ever, in (4) the typing does not produce alternative environments so that both
objects (`1 and `2) exist at the same time. In particular, if e evaluates to true,
then x = x1 and an update to x.b would change the `1 object, but leave the
`2 object unchanged. A strong update of both `1 and `2, however, would also
change the type of `2 and hence the type of x2.b to int whereas x2.b still con-
tains false. Hence, a strong update is unsound and the type system requires
demotion beform performing the write operation.

Fig. 1 contains the rules for splitting and merging singleton environments at
function calls and for joining them in the conditional rule. The rules for splitting
are straightforward, but the rules for joining require some explanation.

The first two join rules capture the trival cases where one environment is
empty. The second rule treats non-empty singleton environments with different
domains. It first builds a common environment ΣM which contains bindings for
the locations in set L, which are defined in both environments, and then ap-
pends an alternative binding consisting of the original environments with the
L-bindings removed. This removal operation keeps the structure of the environ-
ments thus creating potentially nested alternatives.

The fourth join rule recursively deals with environments with identical do-
main. It constructs a new environment which pointwise subsumes the entries in
the original environments.

3

Σ,A `S Σ,Σ ∅, A `S ∅, ∅
l ∈ A Σ,A `S Σ1, Σ2

Σ(l : r), A `S Σ1(l : r), Σ2

l /∈ A Σ,A `S Σ1, Σ2

Σ(l : r), A `S Σ1, Σ2(l : r)

Σ1, A `S Σ′
1, Σ

′′
1 Σ2, A `S Σ′

2, Σ
′′
2

Σ1 ‖ Σ2, A `S Σ′
1 ‖ Σ′

2, Σ
′′
1 ‖ Σ′′

2

Σ,Σ `J Σ Σ, ∅ `J Σ ∅, Σ `J Σ

dom(Σ1) 6= dom(Σ2)
dom(Σ1) 6= ∅ dom(Σ2) 6= ∅ L = dom(Σ1) ∩ dom(Σ2)

Σ′
2 = Σ2 ↓ L Σ′

1 = Σ1 ↓ L Σ′′
1 = Σ1 ↑ L Σ′′

2 = Σ2 ↑ L Σ′
1, Σ

′
2 `J ΣM

Σ1, Σ2 `J ΣM (Σ′′
1 ‖ Σ′′

2)

dom(Σ1) = dom(Σ2) 6= ∅ l ∈ dom(Σ1)
Σ1 ↑ {l}, Σ2 ↑ {l} `J Σ (∀a ∈ Prop) (Σ2(l)(a) <: r(a)) ∧ (Σ1(l)(a) <: r(a))

Σ1, Σ2 `J Σ(l : r)

Fig. 1. Rules for splitting and joining the singleton heap.

Value 3 v ::= x | recf(y).e | udf | (q`, i)

TopExpr 3 e ::= v | letL x = s in e | \Le
Expr 3 s ::= v | v(v) | new` | v.a | v.a := v | if v e e

Qualifier 3 q ::= ˜ | @
Loc 3 ` ::= l1 | l2 | . . .
Loc ⊇ L,A

Prop 3 a

Fig. 2. Expression syntax. Phrases marked in gray are not written by the programmer.
They arise as intermediate steps in the semantics or are inserted automatically by
elaboration.

4

Z set of integers
fv(e) free term variables in expression e
e[x 7→ v] capture-avoiding substitution of value v for x in e
dom(m) domain of map m
m ↓ X restrict map m to domain dom(m) ∩X
m ↑ X restrict map m to domain dom(m) \X
A

fin−→ B set of partial finite functions from A to B
m{x 7→ y} map update: if m′ = m{x 7→ y}, then

m′(x) = y and m′(x′) = m(x′), for all x′ 6= x

m$a property access for m ∈ Prop
fin−→ Value

{}$a = udf

m{a 7→ v}$a = v
m{b 7→ v}$a = m$a a 6= b

Fig. 3. Notation.

H ∈ Heap = Loc× Z
fin−→ PropMap

h ∈ PropMap = Prop
fin−→ Value

L ::= � | letL x = s in �

S0App H, (recf(x).e)(v) →0 H, e[f, x 7→ recf(x).e, v]
S0Let H, let x = v in e →0 H, e[x 7→ v]

S0New H, new` →0 H{(`, i) 7→ {}}, (̃ `, i)
if (`, i) /∈ dom(H)

S0Rd H, (q`, i).a →0 H,H(`, i)$a
S0Wrt H, (q`, i).a := v →0 H{(`, i)(a) 7→ v}, udf
S0IfT H, if v e1 e2 →0 H, e1 if v 6= udf

S0IfF H, if udf e1 e2 →0 H, e2

S0Let′ H, s→0 H
′,L[v]

H, letL x = s in e′′ →0 H
′,L[letL x = v in e′′]

Fig. 4. Small-step operational semantics.

2 Proves

The figures 2-12 restate some relations from the paper, except Fig. 4. They are
all extended by access effects, a conditional expression and most recent heap
alternatives. Fig. 13 presents the typing for configurations.

In §2.2 a list summaries the differences between the paper and the technical
report.

2.1 Dynamic Semantics

Fig. 4 defines a straightforward dynamic semantics for RAC. It is a small-step
semantics defined on configurationsH, e whereH is a heap and e is an expression.
A heap maps a pair (`, i) of a location and an integer to some property map h,

5

H ∈ Heap = Loc× Z
fin−→ PropMap

H ∈ Heap× Heap

h ∈ PropMap = Prop
fin−→ Value

L ::= � | letL x = s in � | \L�

SDem H, \Le −→ H\L, e
SApp H, (recf(x).e)(v) −→ H, e{f Z⇒ recf(x).e}{x Z⇒ v}
SLet H, letL x = v in e −→ H, e{x Z⇒ v}
SNew H,H0, new

` −→ H,H0{(`, i) 7→ {}}, (@`, i)
if dom(H0) ∩ ({`} × Z) = ∅
and (`, i) /∈ dom(H)

SRd H, (q`, i).a −→ H,H(q`, i)$a

SWrt H, (q`, i).a := v −→ H{(q`, i)(a) 7→ v}, udf
SIfT H, if v e1 e2 −→ H, e1 if v 6= udf

SIfF H, if udf e1 e2 −→ H, e2

SLet′ H, s −→ H′,L[v]

H, letL x = s in e′′ −→ H′,L[letL x = v in e′′]

Fig. 5. Instrumented small-step operational semantics.

a finite map from property names to values. To update property a of the object
at address (l, i), we write concisely:

H{(l, i)(a) 7→ v} := H{(l, i) 7→ H(l, i){a 7→ v}}

Reduction of function application and of the let expression are standard.
The new expression selects a new, unused memory location for ` and stores an
empty record in the heap. The read expression extracts the property map for
the argument location and performs a property access on it. Thus, the result of
a read expression may be udf. The write expression updates the property map
at address (`, i).

The final context rule for let expressions forces the header of the let to be
evaluated first. If beta reduction yields a value that is wrapped in an L context,
then the rule reestablishes A-normal form by swapping the let with the context.

This semantics is close to existing semantics for object-based languages with
premethods. However, it is not suitable for proving the soundness of the recency-
aware type system, because the operational model does not distinguish between
the most recently allocated object of a creation site and the objects previously
allocated at the same site.

It is trivial that we can write down for each program, which is evaluated
with the standard small step operational semantics, a program that behaves the
same, but is evaluated with the instrumented version of the semantics. You must
only wrap bodies of let expressions which mask expressions, when the right hand
side of the let expression is a new expression.

Fig. 6 defines the non standard substitution with demotion. Consider the
paper for explanation why the modification is necessary.

6

(letL y = s in e)
{x Z⇒ v}

= letL y = s{x Z⇒ v} in
(e{x Z⇒ v\L})

y{x Z⇒ v} =

(
y if x 6= y

v if x = y

(recf(z).e){x Z⇒ v} =

(
recf(z).e if x ∈ {z, f}
recf(z).(e{x Z⇒ v\}) if x /∈ {z, f}

udf{x Z⇒ v} = udf

(q`, i){x Z⇒ v} = (q`, i)
(v1(v2)){x Z⇒ v} = v1{x Z⇒ v}(v2{x Z⇒ v})
new`{x Z⇒ v} = new`

(v1.a){x Z⇒ v} = v1{x Z⇒ v}.a
(v1.a := v2){x Z⇒ v} = v1{x Z⇒ v}.a := (v2{x Z⇒ v})
(\Le){x Z⇒ v} = \L(e{x Z⇒ v\L})

Fig. 6. Substitution with demotion.

Type 3 t ::= obj(p) | (Σ, t) L,A→ (Σ, t) | > | udf
p ::= ˜L | @L with |L| ≥ 1
r ::= {} | r{a 7→ v}

SummEnv 3 Ω ::= ∅ | Ω(` : r)
SingEnv 3 Σ ::= ∅ | (` : r)Σ | (Σ ‖ Σ)
TypeEnv 3 Γ ::= ∅ | Γ (x : t)

Fig. 7. Type syntax.

Lemma 1. Let K be a configuration and i ∈ {1, 2, 3, 4, 5}. If Pi(K) and K −→
K ′, then Pi(K ′).

1. P1(H,H0, e) ≡ fv(e) = ∅. The expression e is closed.
2. P2(H,H0, e) ≡ (∀`)|dom(H0) ∩ ({`} × Z) | ≤ 1. For each abstract location

there exists at most one object in the singleton heap.
3. P3(H,H0, e): For all expressions of the form recf(x).e0 that occur in the

configuration, the body e0 does not contain a singleton pointer (@`, i).
4. P4(H,H0, e): if (@`, i) occurs in the configuration, then (`, i) ∈ dom(H0).

A singleton pointer references an object in the singleton heap.
5. P5(H,H0, e) ≡ dom(H) ∩ dom(H0) = ∅. The domains of the summary heap

and the singleton heap are disjoint.

Proof. Assume K = (H,H0, e) and K ′ = (H ′, H ′
0, e

′), K −→ K ′ and for i ∈
{1, 2, 3, 5}Pi(K). We show that Pi(K ′) holds. For P4 we need a more technical
formulation. Please consider INV-CLS and lemma 9.
Case distinction over −→.

– Case SDem: If e\ is closed, then e, too. Because dom(H ′
0) ⊆ dom(H0) P2(K ′)

is trivial. The definition of \LH,H0 yields P3(K ′). P5 is trivial, look at
definition of \L.

7

t <: t t <:>
L ⊆ L′

obj(qL)<: obj(qL′)

t1 <: t′1 t′2 <: t2 L ⊆ L′ A ⊆ A′

(Σ2, t2)
L,A→ (Σ1, t1)<: (Σ2, t

′
2)

L′,A′
→ (Σ1, t

′
1)

Fig. 8. Subtyping.

Undefined
Ω,Γ `v udf : udf

Object
Ω,Γ `v (q`, i) : obj(q`)

Variable
Γ (x) = t

Ω, Γ `v x : t

Subsumption
Ω,Γ `v v : t t <: t′

Ω,Γ `v v : t′

Function
dom(Σ) ∩ L = ∅

L′ ∪ L′′ ⊆ L Γ ′ = Γ ↓ fv(recf(x).e) L′ = Locs(Γ ′) Γ ′′ = (Γ ′)\L
′

tf = (Σ, t)
L,A→ (Σ′, t′) Ω,Σ, Γ ′′(f : tf)(x : t) `e e : t′ ⇒ L′′, A,Σ′, Γ ′′′

Ω,Γ `v recf(x).e : tf

Fig. 9. Typing rules for values.

Locs(
L,A→) = Locs(>) = Locs(udf) = Locs(∅) = ∅

Locs(obj(@L)) = L
Locs(obj(̃ L)) = L
Locs(Γ (x : t)) = Locs(Γ) ∪ Locs(t)

Fig. 10. Locations in types and environments.

8

Value
Ω,Γ `v v : t

Ω,Σ, Γ `e v : t⇒ ∅, ∅, Σ, Γ

Let
Σ,Γ `c L1 Ω,Σ, Γ `e s1 : t1 ⇒ L1, A1, Σ1, Γ1

Ω,Σ1, Γ1(x : t1) `e e2 : t2 ⇒ L2, A2, Σ2, Γ2(x : t′1)
L = L1 ∪ L2 A = A1 ∪ (A2 − L1)

Ω,Σ, Γ `e let
L1 x = s1 in e2 : t2 ⇒ L,A,Σ2, Γ2

Demote
Ω,Σ `t obj(@(L ∩ dom(Σ)))C obj(̃ L)

Σ′ = Σ\L ↑ L Ω,Σ′, Γ \L `e e : t⇒ L′, A,Σ′′, Γ ′′ L ⊆ L′ Ω = Ω\L

Ω,Σ, Γ `e \
Le : t⇒ L′, A,Σ′′, Γ ′′

Function Call
Σ,Γ `c L Σ,A `S Σ1, Σ2

Σ′, A `S Σ′
1, Σ2 Ω,Γ `v v2 : t2 Ω,Γ `v v1 : (Σ1, t2)

L,A→ (Σ′
1, t1)

Ω,Σ, Γ `e v1(v2) : t1 ⇒ L,A,Σ′, Γ

New
Σ,Γ `c {`} ` ∈ dom(Ω)

Ω,Σ, Γ `e new
` : obj(@`)⇒ {`}, ∅, Σ(` 7→ {}), Γ

Read
Ω,Γ `v v : obj(p) Ω,Σ `r p.a : t A `a p

Ω,Σ, Γ `e v.a : t⇒ ∅, A,Σ, Γ

Write
Ω,Γ `v v : obj(p) Ω,Γ `v v

′ : t′ Ω,Σ `w p.a := t′ ⇒ Σ′ A `a p
Ω,Σ, Γ `e v.a := v′ : udf⇒ ∅, A,Σ′, Γ

If
Ω,Γ `v v : tv

Σ1, Σ2 `J Σ′ ∀i(Γi <: Γ ′ ∧ ti <: t ∧Ω,Σ, Γ `e ei : ti ⇒ Li, Ai, Σi, Γi)

Ω,Σ, Γ `e if v e1 e2 : t⇒ L1 ∪ L2, A1 ∪A2, Σ
′, Γ ′

Fig. 11. Typing rules for expressions.

9

Ω,Σ ` tC t′
(∀a ∈ Prop) Ω,Σ `t r(a)C r′(a)

Ω,Σ `h r C r′

(∀` ∈ L) Ω,Σ `h Σ(`)CΩ(`)

Ω,Σ `t obj(@L)C obj(̃ L′)

t <: t′

Ω,Σ `t tC t
′

Ω,Σ `r p.a : t
Σ(`)(a) = t

Ω,Σ `r @`.a : t

∀` ∈ L(Ω,Σ `r q`.a : t′` ∧ t′` <: t)

Ω,Σ `r qL.a : t

Ω(`)(a) = t

Ω,Σ `r ˜̀ .a : t

Ω,Σ `w p.a := t⇒ Σ′ (∀` ∈ L) t <:Ω(`)(a)

Ω,Σ `w ˜L.a := t⇒ Σ

Ω,Σ `@
w L.a := t⇒ Σ′, n n = 1

Ω,Σ `w @L.a := t⇒ Σ′ Σ `@
w p.a := t⇒ Σ′, n

∅ `@
w L.a := t⇒ ∅, 0

Σ `@
w L.a := t⇒ Σ′′, n ` ∈ L

Σ(` : r) `@
w L.a := t⇒ (` : r[a 7→ t])Σ′′, n+ 1

Σ `@
w L.a := t⇒ Σ,n ` /∈ L

Σ(` : r) `@
w L.a := t⇒ Σ,n

Σ1 `@
w L.a := t⇒ Σ′

1, n1 Σ2 `@
w L.a := t⇒ Σ′

2, n2

(Σ1 ‖ Σ2) `@
w L.a := t⇒ (Σ′

1 ‖ Σ′
2),max(n1, n2)

Σ,Γ `c L
Γ = Γ \L Σ = Σ\L dom(Σ) ∩ L = ∅

Σ,Γ `c L

A `a p A ∪ L `a @L A `a ˜L

Fig. 12. Rules for flow, reading, and writing to the heap.

10

Ω,Σ H,H0 Ω,Σ, ∅ `e e : t⇒ L,A,Σ′, ∅
Ω,Σ e H,H0, e : t⇒ L,A,Σ′ ∅ Σ H0

∃!i (`, i) ∈ dom(H0) ∧Ω,Σ o H0(`, i) : r Σ Σ H0

(l : r)Σ Σ H0

j, k ∈ {1, 2} j 6= k Σj Σ H ∀` ∈ dom(Σk) ∀i (l, i) /∈ dom(H)

(Σ1 ‖ Σ2) Σ H

Σ Σ H0 ∀(`, i) ∈ dom(H) ` ∈ dom(Ω) ∧Ω,Σ o H(`, i) : Ω(`)

Ω,Σ H,H0

(∀a ∈ dom(h)) a ∈ dom(r) ∧Ω, ∅ `v h(a) : r(a)

Ω,Σ o h : r

Fig. 13. Typing of heaps and configurations.

– Case SApp: Since e is closed, the substitution yields a closed expression. All
other cases are trivial because the heaps do not change.

– Case SLet: Analogous to SApp.
– Case SNew: The condition of SNew ensures P2 and P5, while the closeness

is not affected.
– Case SRd,SWrt,SIfT,SIfF: trivial.
– Case SLet′: by induction

End case distinction over −→.

2.2 Static Semantics

The following list summaries the differences between the paper and the technical
report:

– Object types may have the from obj(qL), even for q = @ (§1.1).
– The grammar defining the singleton environment supports with Σ ‖ Σ heap

alternatives (§1.1).
– The function type is enriched with the access effect A. (§1.1).
– The subtyping relation allows subtyping over obj(̃ L)<: obj(̃ L).
– In Fig. 11 every rule has the form Ω,Σ, Γ `e e : t⇒ L,A,Σ, Γ .
– In Fig. 11 the rule If is added. The judgment from Fig. 1 is used to introduce

heap alternative, if that is possible.
– The rule Function Call supports splitting of the most recent environment.

Hence in this we make use of the auxiliary judgment from Fig. 1. The relation
splits the most recent heap Σ into two parts, Σ1 and Σ2, such that Σ1 is
passed to the function while Σ2 stays outside. After the function returns,
the modified most recent heap Σ′1 is joined with Σ2 and yields a modified

11

most recent heap Σ′, which is the modified most recent heap of the function
call expression.

– The rule Read and Write ensures with the additional condition A `a p,
that the access effects are computed in the sound way.

– The judgment `w is modified to support environment alternatives. It en-
sures that for each possible alternative at most one object is affected. More
explanation how it works are available in the soundness proof.

For the proves we assume that we have a universe U and a monotone function
F : P(U × U)→ P(U × U).

Definition 1. νF denotes the greatest fixed point of F .

Definition 2. For a monotone function F the set X ⊆ U is F -consistent if
X ⊆ F (X).

Lemma 2. The union of all F -consistent sets is the greatest fixed point of F .

Definition 3. For a universe U a relation R ⊆ U ×U is transitive if R is closed
under the monotone function TR(R) = {(x, y) | ∃z ∈ U : (x, z) ∈ R∧ (z, y) ∈ R}
– i.e., if TR(R) ⊆ R.

Lemma 3. The subtyping relation <: is reflexive and transitive.

Proof. Notice that types are defined coinductive. Hence an induction prove is
not valid.

Reflexivity per definition
Transitivity Let S be the monotone function presented in Fig. 8. Since νS

is a fixed point, νS = S(νS). Hence TR(νS) = TR(S(νS)). Under the
assumption

TR(S(νS)) ⊆ S(TR(νS)) , (5)

we can conclude TR(νS) ⊆ S(TR(νS)). Hence TR(νS) is S-consistent and
Lemma 2 implies TR(νS) ⊆ νS. Hence νS is transitive.
It remains to prove equation (5). We show the stronger fact that for all
R ⊆ U × U it holds TR(S(R)) ⊆ S(TR(R)).
Let (t1, t2) ∈ TR(S(R)). The definition of transitivity yields, that there
exists a type t′ such that (t1, t′) ∈ S(R) and (t′, t2) ∈ S(R).
Now we prove (t1, t2) ∈ S(TR(R)).
Case distinction over shape of t′.
– Case t′ = >: Since (t′, t2) ∈ S(R), the definition of S implies t2 =
>. Hence (t1, t2) = (t1,>) ∈ S(Q) for all Q and therefore (t1, t2) ∈
S(TR(R)).

– Case t′ = obj(p): Since (t′, t2) ∈ S(R) the definition of S implies t2 = >,
t2 = obj(p) or t2 = obj(p′).
Case distinction over shape of t2.
• Case t2 = >: This is analogous to the case t′ = >.

12

• Case t2 = t′: Then (t1, t2) ∈ S(R). The definition of TR yields
(t1, t2) ∈ TR(S(R)) by setting z = y = t2 and x = t1.

• Case t2 = obj(p′): The definition of S yields p = qL and p′ = qL′

with L ⊆ L′. Further, it holds t1 = obj(p′′) and we get p′′ = qL′′

with L′′ ⊆ L. Hence L′′ ⊆ L′. By the definition of S (t1, t2) ∈ S(Q)
for all Q, hence (t1, t2) ∈ S(TR(R)).

End case distinction over shape of t2.
– Case t′ = udf: Analog to the object case.

– Case t′ = (Σp, t′p)
L′,A′

→ (Σr, t′r): The case t2 = > is analogous to the
case t′ = >.
Otherwise (t′, t2) ∈ S(R) implies t2 = (Σp, t2p)

L2,A2→ (Σr, t2r) with (t2p, t
′
p) ∈

R, (t′r, t
2
r) ∈ R, L′ ⊆ L2 and A′ ⊆ A2.

Similarly, t1 = (Σp, t1p)
A1,L1→ (Σr, t1r) with (t′p, t

1
p) ∈ R, (t1r, t

′
r) ∈ R,

L1 ⊆ L′ and L2 ⊆ A′.
Hence L1 ⊆ L2 and A1 ⊆ A2. The definition of TR implies (t1r, t

2
r) ∈

TR(R) and (t2p, t
1
p) ∈ TR(R). The definition of S implies (t1, t2) ∈

S(TR(R)).
End case distinction over shape of t′.

Lemma 4. If t <: t′ holds, then ∀Ω,Σ : Ω,Σ `t tC t′

Proof. Trivial, look at the defintion of Ω,Σ `t tC t.

Lemma 5. If Ω,Σ, Γ `e e : t⇒ L,A,Σ′, Γ ′ then Γ ′ = Γ \L.

Proof. Induction on the typing derivation.
Case distinction over the typing judgment.

– Case Demote: Since (Γ \L)\L = Γ \L, Γ ′ = Γ \L follows by induction after
inversion of Demote.

– Case Value: immediate
– Case Let: Induction yields that Γ1 = Γ \L1 and Γ2(x : t′1) = (Γ1(x : t1))\L2 .

Hence, Γ2 = Γ \L1∪L2 .
– Case Function Call, New, Read, Write: immediate

End case distinction over the typing judgment.

Lemma 6. If Ω,Γ `v v : t and Γ ′ = Γ \L, then Ω,Γ ′ `v v
\L : t\L.

Proof. Case distinction over the typing judgment `v.

– Case Undefined, Variable: immediate
– Case Object: If q = ˜ or ` /∈ L, then the result is immediate because

(q`, i)\L = (q`, i) and obj(q`)\L = obj(q`).
If q = @ and ` ∈ L, then the result holds, too, because (@`, i)\L = (̃ `, i) and
obj(@`)\L = obj(̃ `).

– Case Subsumption: This case requires that t <: t′ implies t\L <: t′\L. But
the latter is an easy consequence of the definition of <:.

13

– Case Function: The typing remains the same

End case distinction over the typing judgment `v.

Lemma 7. If Ω,Γ `v λ(y, x).e : t then Locs(t) = ∅.

Proof. Trivial, look at definition of Locs.

Subsitution

Lemma 8 (Substitution). For a closed v and

Ω,Σ, Γ (x : tx) `e e : t0 ⇒ L,A,Σ′, Γ ′,

Ω, Γ `v v : tx, (6)

it holds that

Ω,Σ, Γ `e e{x Z⇒ v} : t0 ⇒ L,A,Σ′, Γ ′ .

Closeness of v is needed. Otherwise substitution may change the set of free
variables of a lambda abstraction, which in turn may enlarge the set of exact
references passed into the body of the lambda abstraction, and thus enlarge the
set L′ in the typing rule for abstraction (Function). This set L′ can change the
type by demoting references to be inexact.

Proof. by induction on expressions.
Case distinction over the structure of e.

– Case e = v0: It must be that L = ∅, A = ∅, Σ = Σ′, and Γ (x : tx) = Γ ′.
Inversion of Value yields

Ω,Γ (x : tx) `v v0 : t0 (7)

There are the following cases for values: variable, abstraction, undefined, or
a pointer combined by the Subsumption rule.1

Case distinction over the structure of values.
• Case v0 = y: Inversion of (7) using Variable yields

Γ (x : tx)(y) = t′0 with t′0 <: t0 (8)

If x = y then t′0 = tx, and tx<: t0. Value, Subsumption and (6) yields

Ω,Σ, Γ `e e{x Z⇒ v} : t0 ⇒ ∅, ∅, Σ, Γ (9)

If x 6= y then nothing happens. The type stays the same: t0.
1 Please notice that for the proves we use the notation λy.e instead of recf(x).e. It

doesn’t matter, the difference is only hat with the recf(x).e the scoping is a little bit
modified, and sometimes later on, we have to apply the substitution lemma twice
instead of once.

14

• Case v0 = λy.el: If x /∈ fv(λy.el), then the desired result is immediate
because v0 is then not affected due to the substitution.
Now assume that x ∈ fv(λy.el). Hence x ∈ fv(el). First we define two
shortcuts: Let x range over all variables, tx over all types and Γ over
all type environments. Then Γ x is a shortcut for Γ (x : tx) and Γx for
Γ ↓ {y | y ∈ dom(Γ), y 6= x}.
Then inversion of (7) using Function yields

t0 = (Σ2, ty)
L,A→ (Σ1, tr) (10)

dom(Σ2) ∩ L = ∅ (11)
L′ ∪ L′′ ⊆ L (12)

Γ ′ = Γ (x : tx) ↓ fv(λ(y, z).el)
L′ = Locs(Γ ′) (13)

Γ ′′ = (Γ ′)\L
′

Ω,Σ2, Γ
′′y `e el : tr ⇒ L′′, Σ1, Γ

′′′ . (14)

x ∈ dom(Γ ′′y) holds because x ∈ fv(el). That’s why Γ ′′ from equation
(14) contains an assignment for x, and we can write Γ ′′ = Γ ′′x (x : tx).
Rewriting judgment (14) to highlight on the important variable x yields:

Ω,Σ2, Γ
′′y
x (x : tx) `e el : tr ⇒ L′′, Σ1, Γ

′′′
x (x : t′x)

Next we show

Ω,Γ ′′yx `v v
\ : t\x . (15)

To figure out (15) we make use of (6) and Lemma 6. We are able to
change the Γ because v is closed. Notice that if v is closed, then v\ is
closed, too. So we can apply induction on el and v\, which yields

Ω,Σ2, Γ
′′y
x `e el{x Z⇒ v\} : tr ⇒ L′, A,Σ1, Γ

′′′
x

Thus preconditions for Function are fulfilled and yields,

Ω,Γ `v (λy.el){x Z⇒ v} : (Σ2, ty)
L,A→ (Σ1, tr) (16)

The rule Value yields the desired

Ω,Σ, Γ `e (λy.el){x Z⇒ v} :

(Σ2, ty)
L,A→ (Σ1, tr)⇒ ∅, ∅, Σ, Γ .

• Case v0 = (q`, i).: The expression is not affected by the substitution.
• Case v0 = udf.: It isn’t affected by the substitution.

End case distinction over the structure of values.

15

– Case e = letL1 y = e1 in e2: Suppose that

Ω,Σ, Γ (x : tx) `e let
L1 y = s in e : t0

⇒ L,A,Σ0, Γ0(x : tx0)
(17)

and Ω,Γ `v v : tx.
Inversion of (17) yields

Σ,Γ `c L
L = L1 ∪ L2

A = A1 ∪ (A2 − L1)
Ω,Σ, Γ (x : tx) `e s : t1 ⇒ L1, A1, Σ1, Γ1(x : tx1) (18)

Ω,Σ1, Γ1(x : tx1)(y : t1) `e e : t2
⇒ L2, A2, Σ2, Γ2(x : tx0)(y : t′1)

(19)

Induction is applicable to (18) and yields

Ω,Σ, Γ `e s{x Z⇒ v} : t1 ⇒ L1, A1, Σ1, Γ1 (20)

By Lemma 5 applied to (18), it holds that

Γ1(x : tx1) = (Γ (x : tx))\L1

such that tx1 = t\L1
x . By Lemma 6, it holds that

Ω,Γ1 `v v
\L1 : tx1 (21)

Induction is applicable to (19) and (21) and yields that

Ω,Σ1, Γ1(y : t1) `e e{x Z⇒ v\L1} : t2
⇒ L2, A2, Σ2, Γ2(y : t′1)

(22)

Finally, the let rule is applicable to (20) and (22) to yield the desired

Ω,Σ, Γ `e let
L1 y = s{x Z⇒ v} in e{x Z⇒ v\L1} : t2
⇒ L1 ∪ L2, A1 ∪ (A2 − L1), Σ2, Γ2

that is

Ω,Σ, Γ `e (letL1 y = s in e){x Z⇒ v} : t2
⇒ L,A,Σ2, Γ2

– Case e = v1(v2): Immediate by induction.
– Case e = new`: Immediate.
– Case e = v0.a: Immediate by induction.
– Case e = v01.a := v02: Immediate by induction.
– Case e = \Lel: Immediate by induction.
– Case if v e1 e2 : Immediate by induction.

End case distinction over the structure of e.

16

Invariants The invariant INV-CLS states closedness of a configuration with
respect to the heap: Any reference contained in one of the heaps or in the ex-
pression is defined in one of the heaps. An auxiliary definition simplifies the
statement of the invariant. Define (q`, i) ∈ H,H0 by

– (̃ `, i) ∈ H,H0 iff (`, i) ∈ dom(H) ∪ dom(H0) and
– (@`, i) ∈ H,H0 iff (`, i) ∈ dom(H0).

While leading to a provable invariant, this relation does not yield sufficiently
precise information about imprecise references: A statement is needed that states
when an imprecise reference can definitely be found in the summary heap! Such
a statement can be formulated using the following notion of unblocked contexts.
The Invariant only holds for type correct expressions. Additional annotations
on the lambda expressions simplifies the definition of unblocked contexts. We
annotate a lambda expression in the same way as it is already done by let
expressions.

An unblocked context U` for an imprecise reference (̃ `, i) is defined for all L
such that ` /∈ L and arbitrary L′ as

U` ::= �.a | �.a := v

| \LU` | letL′
x = U` in e | letL x = e in U`

Please notice that for the invariant we are only interested in programs that was
correctly preprocessed. This implies that each let expression with a new on the
right hand side and each function call is surrounded by a demotation.

INV-CLS is fulfilled by a configuration H,H0, e if:
1. e is closed and preprocessed
2. If (q`, i) occurs in e, then (q`, i) ∈ H,H0.
3. If e = U`[(̃ `, i)], then (`, i) ∈ dom(H).
4. For all (`, i) ∈ dom(H) ∪ dom(H0), if h = (H ∪ H0)(`, i) then, for all
a ∈ dom(h),
(a) if (q`′, i′) occurs in h(a), then (q`′, i′) ∈ H,H0 and
(b) if h(a) = (̃ `′, i′), then (`′, i′) ∈ dom(H).

Lemma 9. If H,H0, e fulfills INV-CLS and

H,H0, e −→1,2 H ′, H ′
0, e

′

Ω,Σ e H,H0, e : t⇒ L,A,Σ′

then H ′, H ′
0, e

′ fulfills INV-CLS.

The relation −→1,2 is similar to −→ but evaluates the body of a mask ex-
pression together with the mask expression itself in one step and do not execute
a let or a function call without a demotation expression around it. The relation
is defined in figure 14.

Proof. Case distinction over the reduction −→1,2.

17

H,H0, \
L(λx.e)(v) −→ H ′, H ′

0, (λx.e)(v
′) H ′, H ′

0, (λx.e)(v
′) −→ H ′′, H ′′

0 , e
′′

H,H0, \
L(λx.e)(v) −→1,2 H ′′, H ′′

0 , e
′′

H,H0, \
L(letL x = s in e) −→ H ′, H ′

0, let
L x = s′

in e′

H ′, H ′
0, let

L x = s′
in e′ −→ H ′′, H ′′

0 , e
′′

H,H0, \
L(let x = s in e) −→1,2 H ′′, H ′′

0 , e
′′

H,H0, e −→ H ′, H ′
0, e

′ e 6= (λ(x).e0)(v) e 6= let x = s in e0

H,H0, e −→1,2 H ′, H ′
0, e

′

Fig. 14. Modified Semantics

– Case SDem::
H,H0, \

Le −→ (H,H0)\L, e

Thus with HL = H\L
0 ↓ {(`, i) | ` ∈ L, i ∈ Z}, H ′ = H\L ∪ HL and H ′

0 =
H\L

0 \HL.
Item 2 holds because e has not changed and dom(H ′)∪dom(H ′

0) = dom(H)∪
dom(H0).
Item 3 holds as follows. Suppose that e = U`[(̃ `, i)]. If ` /∈ L, then let
U`1 = \LU` is an unblocking context that works for \Le. If ` ∈ L, then item 2
yields that (`, i) ∈ dom(H ′) ∪ dom(H ′

0) and because HL has transferred all
L-references from H0 to H ′ it must be that (`, i) ∈ dom(H ′).
For item 4, take some (`, i) ∈ dom(H) ∪ dom(H0) = dom(H ′) ∪ dom(H ′

0),
let h = (H ∪H0)(`, i) and h′ = (H ′ ∪H ′

0)(`, i). As dom(h) = dom(h′), pick
some a ∈ dom(h).
If (@`′, i′) occurs in h′(a), then `′ /∈ L and (`′, i′) ∈ dom(H0) ∩ dom(H ′

0)
proving one part of the claim. If (̃ `′, i′) occurs in h′(a), then (`′, i′) ∈
dom(H ′) ∪ dom(H ′

0) = dom(H) ∪ dom(H0). Thus, item 4a holds.
If h′(a) = (̃ `′, i′), then there are two cases. Either `′ /∈ L, in which case
(`′, i′) ∈ dom(H) ⊆ dom(H ′). Or `′ ∈ L in which case (`′, i′) ∈ dom(HL) ⊆
dom(H0) so that (`′, i′) ∈ dom(HL) ⊆ dom(H ′). Thus, item 4b also holds.
Now the relation −→1,2 executes the body of the demotation expression.
There are two cases:
• Case SApp::

H,H0, (λx.e)(v) −→ H,H0, e{x Z⇒ v}

Item 2 holds because substitution only changes precise to imprecise ref-
erences, which is covered by the definition of (q`, i) ∈ H,H0.
To prove item 3 we make use of our assumption and the information
that a mask expression was executed. Since that we find a contradiction
for the case that (l, i) ∈ dom(H0) and conclude from (l, i) ∈ H,H0 the
desired (l, i) ∈ H0.
Item 4 holds trivially because H,H0 does not change.

18

• Case SLet::

H,H0, let
L x = v in e −→ H,H0, e{x Z⇒ v}

Item 2 holds because substitution only changes precise references to im-
precise ones.
To prove item 3 , assume (̃ l, i) is one reference that is not protected
after reduction and that was protected before. The definition of protected
references gives us two cases.
If ` /∈ L, then U`1 = letL x = v in U` so that (`, i) ∈ dom(H).
The other case is l ∈ L. Inversion of the typing judgment yields that the
expression v is typeable. Because values does not have effects, the set L
is empty. So l ∈ L is a contradiction.
Item 4 holds trivially.

• Case SLet′: This case is easy by induction.
– Case SNew:: trivial
– Case SRd: Item 2 and item 3 holds because of item 4. The other ones holds,

because nothing happens with the heap.
– Case SWrt: The change in the heap and the expression udf fulfills INV-

CLS.
– Case SIfT,SIfF: Nothing happens

End case distinction over the reduction −→1,2.

Please notice that for all programs the programmer can write down there is
no important difference between −→ and −→1,2, since the programmer is not
allowed to write down references directly into the program.

Progress

Lemma 10 (Progress). For a configuration H,H0, e with a closed e that fulfills
INV-CLS together with

Ω,Σ e H,H0, e : t⇒ L,A,Σ′ (23)

either e is a value or there exists H ′, H ′
0, e

′ such that

H,H0, e −→ H ′, H ′
0, e

′

Proof. Inversion of (23) yields:

Ω,Σ, ∅ `e e : t⇒ L,A,Σ′, ∅ (24)
Ω,Σ H,H0

By induction over the structure of e:
Case distinction over structure of e.

19

– Case e = v1(v2): Inversion of (24) yields amongst others

Ω,Γ `v v1 : (Σ, t0 × t2)
L,A→ (Σ1, t1)

Ω,Γ `v v2 : t2
Γ = ∅

The first line implies that v1 is a lambda expression (notice that e is closed).
That’s why SApp is applicable.

– Case e = newl: trivial
– Case \Le: trivial
– Case v.a: Inversion of (24) yields

Ω,Γ `v v : obj(ql)
Ω,Σ `r ql.a : t (25)

A `a p

with v = (l, i).
Case distinction over q.
• Case q = :̃ Because of INV-CLS it follows (l, i) ∈ H,H0. Because the

pointer is unblocked (l, i) ∈ dom(H) holds. Yet SRd is applicable.
• Case q = @: (25) implies l ∈ dom(Σ). Heap consistency implies ∃!j :

(l, j) ∈ dom(H0). Since INV-CLS holds for e, (ql, i) ∈ H,H0. This
implies (l, i) ∈ dom(H0), such that j = i. Hence SRd is applicable.

End case distinction over q.
– Case v1.a := v2: As in the read rule we get from INV-CLS that v1 is a

pointer to an object present in the corresponding heap. That’s why we can
apply SWrt.

– Case let x = e1 in e2: Depending on the structure of e1 we can apply SLet
or SLet′. The first is applicable if e1 is a value, the second if e1 is not a
value we can use induction.

– Case if v e1 e2 : Either SIfT or SIfF is applicable.

End case distinction over structure of e.

Most Recent Environment We present here a way to look at local environ-
ments as trees. The mapping is easy.

as text ∅ (` : r)Σ Σ1 ‖ Σ2

as tree � (` : r)

ΣT

ΣT
1 ΣT

2

Now we can identify one tree as a set of mappings by starting at the root,
go down the tree and end at a leaf, collecting all labels on the way down. In the
tree

(`1 : r1)

(`2 : r2) (`3 : r3)

20

one map is (`1 : r1)(`2 : r2) and an other one is (`1 : r1)(`3 : r3). We write
M∈ Σ for one mapping from Σ. The heap consistency relation Σ Σ H states,
that there exists exactly one mappingM in Σ, such that for each ` ∈ dom(M) :
∃!i :M(`) o H(`, i).

Lemma 11. It holds for all Σ,Σ′, t, L, a, n:(
Σ `@

w L.a := t⇒ Σ′, n
)

−→
(
∀M ∈ Σ,M′ ∈ Σ′ : |{` | M(`) 6=M′(`)}| ≤ n

)
The interesting case is here when n = 1 holds. This ensure that for eachM∈ Σ
at most one type change happens.

Heap consistency ensures, that for each most recent environment Σ there
exists exactly one M ∈ Σ, such that for each ` ∈ dom(M) there exists i,
such that (`, i) ∈ dom(H). Additionally, we know for all other ` ∈ dom(Σ),
`× Z ∩ dom(H) = ∅.

Hence the write operation can change for all ` /∈ dom(M) the most recent
heap description Σ without any effect for the heap consistency judgment.

Because if n = 1, only for exactly one ` ∈ dom(M) an change of the heap
description is allowed, a strong update for the write operation even on union
types of precise pointers is sound.

Proof. by induction over the structure of Σ.
Case distinction over Σ.

– Case Σ = ∅: In this we can conclude Σ′ = ∅ and n = 0 by inversion of
the definition of `@

w . Hence M and M′ are the empty maps. This yields
|{` | M(`) 6=M′(`)}| = |∅| = 0 ≤ n.

– Case Σ = (` : r)Σ1: Let n be an arbitrary natural number. There are two
cases, either ` ∈ L or ` /∈ L.
Case distinction over ` ∈ L, ` /∈ L.
• Case ` ∈ L: Inversion of `@

w yields

Σ1 `@
w L.a := t⇒ Σ′1, n− 1

Σ′ = (` : r[a 7→ t])Σ′1 (26)

Using the induction hypothesis, we get

∀M ∈ Σ1,M′ ∈ Σ′1 :
|{` | M(`) 6=M′(`)}| ≤ n− 1 .

This together with (26) told us that ∀M ∈ Σ and ∀M′ ∈ Σ′ we know

|{` | M(`) 6=M′(`)}| ≤ n− 1 + 1
≤ n

• Case ` /∈ L: This case is easy by induction.
End case distinction over ` ∈ L, ` /∈ L.

– Case Σ = Σ1 ‖ Σ2: Induction hypothesis for Σ1 and Σ2 yields to the desired
result.

End case distinction over Σ.

21

Subsumption

Lemma 12 (Subsumption). Suppose that

Ω,Γ `v v : t .

Then there exists a derivation with at most one application of the Subsumption
at the end of the derivation.

Proof. As usual by induction over `v.

Preservation

Lemma 13 (Preservation). Suppose that

H,H0, e −→ H ′, H ′
0, e

′

and Ω,Σ e H,H0, e : t⇒ L,A,Σ′ .

Then there exists some Σn, An and Ln with

Ω,Σn e H
′, H ′

0, e
′ : t⇒ Ln, An, Σ

′

and Ln ⊆ L and An ⊆ A.

Proof. Case distinction over definition of −→.

– Case SDem:

H,H0, \
Lde −→ (H,H0)\Ld , e

Ω,Σ e \
Lde : t⇒ L,A,Σ′

Inversion of the typing consistency judgments yields

Ω,Σ H,H0

Ω,Σ, ∅ `e \
Lde : t⇒ L,A,Σ′, ∅ (27)

Now inversion of (27) using Demote yields

Ld ⊆ L
Ω = Ω\Ld

(∀l ∈ Ld) Ω,Σ `t obj(@l)C obj(̃ l) (28)

Σn = Σ\Ld ↑ Ld (29)
Ω,Σn, ∅ `e e : t⇒ L,A,Σ′, ∅

For H ′, H ′
0 = (H,H0)\Ld is holds (make use of (28) and (29))

Ω,Σn H
′, H ′

0

Notice that A = An and L = Ln.

22

– Case SApp:

H,H0, (λx.e)(v) −→ H,H0, e{x Z⇒ v}
Ω,Σ e H,H0, (λx.e)(v) : t⇒ L,A,Σ′

Inversion yields

Ω,Σ H,H0 (30)

Ω,Σ, ∅ `e (λx.e)(v) : t⇒ L,Σ′, ∅ (31)

Further inversion of (31) with the Function Call rule yields

Σ = Σ\L

Γ = Γ \L

dom(Σ) ∩ L = ∅
Σ,A `S Σ1, Σ2 (32)
Σ′, A `S Σ′1, Σ2 (33)
Ω, ∅ `v v : t2 (34)

Ω, ∅ `v λx.e : (Σ1, t2)
L,A→ (Σ′1, t) (35)

Inversion of (35) with the Function rule yields

dom(Σ1) ∩ L = ∅
L′ ∪ L′′ ⊆ L (36)

Γ ′ = ∅ = (Γ ↓ fv(λ(y, x).e))
L′ = ∅ = Locs(Γ ′)

Γ ′′ = ∅ = Γ ′\L
′

Ω,Σ1, ∅(x : t2) `e e : t⇒ L′′, A′′, Σ′1, ∅(x : t′2) (37)

Because of (34) v is closed. We apply Lemma 8 (substitution) on (37), and
(34) and get

Ω,Σ1, ∅ `e e{x Z⇒ v} : t⇒ L′′, A′′, Σ′1, ∅ (38)
A′′ ⊆ A

The claim follows by (30), (38) and (36) and the use of (32), (33) to change
from Σ1, Σ

′
1 to Σ,Σ′.

– Case SLet:

H,H0, let
L1 x = v in e −→ H,H0, e{x Z⇒ v}

Inversion of the heap typing rule for the left-hand side yields

Ω,Σ H,H0 (39)

Ω,Σ, ∅ `e let
L1 x = v in e : t⇒ L,A,Σ′, ∅ (40)

23

Inverting (40) with the Let rule and the Value rule yields

Ω,Σ, ∅ `e v : t1 ⇒ ∅, ∅, Σ, ∅
Ω, ∅ `v v : t1 (41)

Ω,Σ, ∅(x : t1) `e e : t⇒ L2, A2, Σ2, ∅(x : t′1) (42)
L = ∅ ∪ L2

A = A2 − L1 = A2

Applying Lemma 8 to (41) and (42) yields the desired

Ω,Σ, ∅ `e e{x Z⇒ v} : t⇒ L2, A2, Σ2, ∅
L2 ⊆ L
A2 ⊆ A

Because heaps doesn’t change, heap consistency is trivial.
– Case SNew: We know that

H,H0, new
l −→ H,H0[(`, i) 7→ {}], (@l, i) (43)

dom(H0) ∩ ({`} × Z) = ∅
(`, i) /∈ dom(H)

Ω,Σ e H,H0, new
l : obj(@l)⇒ {l}, Σ′′ (44)

where Σ′′ = Σ(l : {}). Now we have to show that there exists Σ′ so that

Ω,Σ′ e H,H
′
0, (@l, i) : obj(@l)⇒ ∅, Σ′′ (45)

First inverting (44) yields

Ω,Σ H,H0 (46)

Ω,Σ, ∅ `e new
l : obj(@l)⇒ {l}, ∅, Σ(` 7→ {}), ∅ (47)
Σ′′ = Σ(` 7→ {})

From the defintion of `e and `v we get

Ω,Σ′′, ∅ `e (@l, i) : obj(@l)⇒ ∅, ∅, Σ′′, ∅

For Σ′ we choose Σ′′. Now it remains to show Ω,Σ′′ H ′, H ′
0 to fullfill

(45). The first holds by inverting (47) and using definition of Σ′′. Inversion
of (47) also gives us l /∈ dom(Σ). This tells us that ∀i : (l, i) /∈ dom(H0).
From this we get the information that only one object suitable to l is in H ′

0.
That’s why the second judgment holds. Because H and Ω does not change
the last judgment is trivial.

24

– Case SRd: Given is for q = @ or q = ˜

H,H0, (ql, i).a −→ H,H0, (H ∪H0)(l, i)$a
Ω,Σ e H,H0, (ql, i).a : t⇒ ∅, A,Σ (48)

We have to show that

Ω,Σ e H,H0, (H ∪H0)(l, i)$a : t⇒ Ln, An, Σ (49)
Ln ⊆ L An ⊆ A

Inverting (48) gives us consistancy of heaps and their typings and the typing
of the expression

Ω,Σ H,H0 (50)
Ω,Σ, ∅ `e (ql, i).a : t⇒ ∅, A,Σ, ∅

and after another inversion of the second part

Ω, ∅ `v (ql, i) : obj(qLr)
Ω,Σ `r ql.a : t (51)
A `a qLr
l ∈ Lr

Case distinction over the precision of the pointer.
• Case ql = @l, ⇒ (l, i) ∈ dom(H0):

Since (51) l ∈ dom(Σ). Because of (50) we know

Ω,Σ o H0(l, i) : Σ(l)

Cause of (51) we get Σ(l)(a) = t′, t′ <: t. Inverting the line above yields
(make use of Subsumption)

Ω, ∅ `v H0(l, i)$a : t

• Case ql = l̃, ⇒ (l, i) ∈ dom(H):
The inversion of (51) yields Ω(l)(a) = t′, t′<:t. From (50) we get Ω,Σ o
H(l, i) : Ω(l), hence

Ω, ∅ `v H(l, i)$a : t .

As in the other case we fullfill (49).
End case distinction over the precision of the pointer. In both cases Ln =
∅ ⊆ L and An = ∅ ⊆ A.

– Case SWrt: Hence e = (q`, i).a := v. Inversion of the configuration typing
yields:

L = ∅
Ω,Σ, ∅ `e (q`, i).a := v : udf⇒ ∅, A,Σ′, ∅ (52)

Ω,Σ H,H0

25

Further inversion of (52) yields

Ω, ∅ `v (q`, i) : obj(qL′) (53)
Ω, ∅ `v v : t
Ω,Σ `w qL′.a := t⇒ Σ′ (54)

(53) yields : ` ∈ L′.
Case distinction over q.

• Case q = @: Inversion of (54) yields

Σ `@
w L′.a := t⇒ Σ′, 1 (55)

From Lemma 11 we can conclude that the update yields in a new local
environment description where a strong update happens and in a change
to the most recent heap. The new heap is consistent to the new local
environment description. The expression udf is typed.

• Case q = :̃ SWrt change the property of the object in the summary
heap. The inversion of the judgment `w ensures that the value that is
written to the property has a type that is a subtype of Ω(`)(a). Hence
heap consistency is ensured after the update. Typing the expression udf
trivial.

End case distinction over q.

– Case SLet′: Easy be induction.

End case distinction over definition of −→.

3 The Date Example

A challenging example for object initialization is the Date example presented
by Anderson, Giannini and Drossopoulou in their work over type inference for
JavaScript [1]. We show that our type system can handle this example as well.
First we transform the example into our core calculus. Since the calculus does
not support a constructor call of the form newf(v), we make minor adjustments.

First have a look at the function Date. It creates a new object at abstract
location `, sets the two properties mSec and add and returns the new object.
The effect of the Date function is {`}. Hence the two last let assignments, where
two Date objects are created, are covered by demotions.

26

let addFn = λ(this, x).
let = this.mSec := this.mSec+ x.mSec in
this

in
let Date = λx.
let this = new` in
let = this.mSec := x in
let = this.add := addFn in
this

in
let x = Date(1000) in
let y = Date(10000) in
x.add(y)

In the last line the type of x is obj(̃ `). Define o as a shortcut:

o := [mSec 7→ int;
add 7→ (∅, obj(̃ `)× obj(̃ `))→ (∅, obj(̃ `))] .

Because the method parameter is not a precise object, we need a demotion
to type the method call. If a demotion moves y into the summary heap in front
of the method call, the type of y is obj(̃ `) in the last line. Thus the global
environment and the type environment are there

Ω = [` 7→ o]
Γ = [x 7→ obj(̃ `); y 7→ obj(̃ `)] .

With such types the method call is valid and the complete example works.
Please notice that our implementation supports methods, even if our formal

system do. The extension is trivial, add it will add an analogous case to all
proofs.

References

1. C. Anderson, P. Giannini, and S. Drossopoulou. Towards type inference for
JavaScript. In 19th ECOOP, number 3586 in LNCS, Glasgow, Scotland, July 2005.
Springer.

27

