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Abstract. Java(X) is a framework for type refinement. It extends Java’s
type language with annotations drawn from an algebra X and structural
subtyping in terms of the annotations. Each instantiation of X yields a
different refinement type system with guaranteed soundness. The paper
presents some applications, formalizes a core language, states a generic
type soundness result, and sketches the extensions required for the full
Java language (without generics).
The main technical innovation of Java(X) is its concept of activity an-
notations paired with the notion of droppability. An activity annotation
is a capability which can grant exclusive write permission for a field in an
object and thus facilitates a typestate change (strong update). Propaga-
tion of capabilities is either linear or affine (if they are droppable). Thus,
Java(X) can perform protocol checking as well as refinement typing.
Aliasing is addressed with a novel splitting relation on types.

1 Introduction

A programming language with a static type system eliminates common program-
ming errors right from the start. For instance, the type system may guarantee
that no operation receives an illegal argument. Each type system introduces ab-
straction to make types statically checkable. Thus, there are always programs
that would run without errors but which are nevertheless rejected by the type
system.

However, the information provided by the type system is not always sufficient
to avoid a run-time error. For example, taking the head of a list may lead to a
run-time error if the list is empty but this information is not represented in the
list type. While there are refinement type systems capturing such information
[15, 30], they are not widely used in production programming languages.

A related problem arises with non-trivial object life cycles [24]. Many objects
progress through distinct states during their lifetime with state changes caused
by method calls. In each state certain methods are disabled and calling them
causes a run-time error. A standard type system cannot avoid such run-time
errors because it is not aware of the evolving object states. Enhancing a type
system to track these state changes is not straightforward because it requires
assigning the same variable different types at different places in the program.
Such a typestate change causes problems in the presence of aliases that keep



obsolete type assumptions. The main challenge here is to keep track of aliasing
to the extent that the change of typing is possible.

A type system with additional structure can supply the information needed
for such applications. The first application is a type refinement setting that re-
stricts the semantics of programs by incorporating explicit tests for predicates
that refine the underlying types. The type soundness property for the extended
system becomes more expressive because it guarantees that these predicates
are always satisfied. The second kind requires extending refinement typing with
accurate state tracking as provided, e.g., by a linear type system [28]. Unfortu-
nately, most systems do not provide a seamless integration, let alone migration,
between standard types and linear types.

Our framework Java(X) addresses these issues with a family of annotated
type systems and an automatic promotion of standard properties to linear ones.
An annotated type system extends the type language of some existing system
with value annotations. A value annotation restricts the meaning of the type it
is attached to and thus enables the type soundness proof to express additional
properties.1 As refinements are domain specific, they are not hardwired into the
system. Java(X) is parametrized over a partially ordered set (poset) of value
annotations X, which a programmer can change and extend them easily.

An alternative approach might rely on pre-/post-conditions and invariants,
which are stated as logical formulas, but annotations place less burden on the
programmer. For our system, a refinement designer chooses a set of predicates
on objects and abstracts them to a value annotation poset X. This poset can be
tailored to the needs of a particular application domain. Thus, the annotations
correspond to domain-specific, shrink-wrapped combinations of predicates that
are lightweight and ready to use for the programmer, who has to understand the
annotations but does not have to be an expert in logics.

In addition to the value annotations, Java(X) has a built-in notion of ca-
pabilities that can promote a value annotation to a linear or affine annotation.
Capabilities are independent of the chosen annotation poset X. They are at-
tached to individual field references via the activity annotations on a type. If a
variable has an object type with an active capability for a field (and everything
reachable from it), then the program may update the field with a new value
through this variable.

Active capabilities are propagated in a linear manner, that is, at each time
and for each field of a reachable object, there exists one access path (starting
with a variable), the type of which has the active capability for this field, through
which the field can be updated. Any other access path to the same field may
only read the field but not update it. The Java(X) type system maintains the
invariant that only one access path has the update privilege for an active field.

Beyond the update privilege, an active capability carries the most accurate
value annotation for the current contents of the field. Hence, active capabilities
are well suited for typestate changes. An update only changes the field type for
the access path with the active capability. The types of the other access paths

1 Thus, Java(X) performs type-based program analysis [22] in some sense.
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(the aliases) do not have to change because they have sufficiently less accurate
information.

Thus, active capabilities enable the linear handling of resources such as ob-
jects that change their state in reaction to method invocations. However, as
described up to now, the system does not seem to allow us to discard such state
changing objects because it insists on the invariant that there is always one access
path with an active capability for the object. For this reason, Java(X) includes
the notion of droppability. The analysis designer can declare certain states (that
is, subsets of annotations) as droppable. If an object is in a droppable state, then
its reference can be discarded regardless of its capabilities. In effect, an object in
a droppable state is handled in an affine manner: its state is tracked accurately,
its active capability cannot be duplicated, but the object may be discarded at
any time. An object may switch between droppable and nondroppable states
during its life time, just think of a file handle that must not be discarded as long
as it is open (see Section 2.2).

Contributions. Java(X) is an extension of Java 1.4 with a parametrized an-
notated type system. Its annotations are drawn from a poset X of value annota-
tions. There is a parametrized type soundness proof for a fully formalized subset
MiniJava(X). Once a refinement designer supplies a new annotation poset X,
a programmer can immediately take advantage of the new invariants guaranteed
through it.

We have built a proof-of-concept implementation of a type checker for Mini-
Java(X).2 The type checker processes all examples of Section 2.

The main novelty of Java(X) is the concept of an activity annotation as
a capability for updating a field in an object. Activity annotations enable the
promotion of the properties described by X to linear and affine properties, which
can be tracked accurately and facilitate typestate change. The main technical
innovation is the handling of aliasing via a splitting relation. This relation splits
the capability for a resource between different access paths to it on a per-field
basis.

Overview. Section 2 introduces Java(X) with two examples. Section 3 defines
the essential core of the language Java(X) and its type system formally. Section 4
sketches the type soundness proof. Section 5 explains the extensions needed for
the full Java system, and Section 6 discusses related work. Finally, Section 7
concludes.

2 Examples

We introduce our framework with two examples. The first defines an affine
instance of the framework providing a refined typing discipline for an XML-
processing library. The second is a linear instance tracking operations on files.
We defer the formal definition of an instance of the framework to Section 3.2.
2 http://proglang.informatik.uni-freiburg.de/projects/access-control/
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2.1 JDOM Type Analysis

JDOM3 is a popular Java API for manipulating XML. It views an XML docu-
ment as a tree composed of nodes of types like Element and Attribute. Each
node (except the root) has a parent field p indicating the element that it is
attached to. JDOM’s Element type provides a number of operations for ma-
nipulating the tree structure. The method Element setAttribute(Attribute
attr), which attaches an attribute node to an element node, serves as a typical
example.

JDOM informally imposes a number of invariants on its XML representa-
tion. One of them is that “JDOM nodes may not be shared”. JDOM enforces
this invariant dynamically by checking a detachment property : If the attribute
node has a non-null parent field then the setAttribute method throws an
IllegalAddException. This exception occurs in the last line of the following
example because it attempts to attach the node attr a second time.

Element p1 = new Element("a");
Element p2 = new Element("a");
Attribute attr = new Attribute("href", "http://www.jdom.org");
p1.setAttribute(attr); // consumes attr; now attached
p2.setAttribute(attr); // raises IllegalAddException

We now describe an instance of Java(X) which statically tracks the detachment
property and rejects uses of setAttribute(attr) unless it is clear that attr is
detached. The instance raises a type error for the example just shown.

In earlier work [27], one of the authors has proposed a type system for DOM.
While the earlier system covers properties other than detachment, the present
system obtains significantly stronger guarantees for detachment (see Section 6).

Detached Nodes. Static checking of the detachment property requires anno-
tations to the Attribute type, which abstract over the state of the parent field
p as in Attribute{p : 〈aa, Element〉}.4 The type shows that placing the anno-
tations requires expanding the types to (potentially recursive) record types. The
activity annotation aa ranges over the set {M(va),O,♦} where va is drawn from
a value annotation poset XElement = (P({N,D}),⊆) with P denoting the power
set. We abbreviate {N} to N, {D} to D, and {N,D} to ND. The elements of
the poset abstract from the possible states of an Element reference. In XElement,
N stands for “is null” and D for “defined” (is not null).

The activity annotation aa provides the access capability. If an Attribute
reference has its p field typed with an active annotation M(va), then the parent

3 http://www.jdom.org
4 In the full type, both the Attribute and the Element type carry an additional

value annotation and there is a record describing the fields of the Element, too:
〈vaA, Attribute{p : 〈aa, 〈vaE , Element{. . . }〉〉}〉. In what follows, we concentrate
on Attribute and generally omit the extra value annotations and the field types of
Element for readability.
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field may be modified through this reference and this modification changes the
value annotation va in the type of the reference. If the annotation is inactive
O, then the field is read-only through this reference and there is no extra value
annotation. The semi-active annotation ♦ allows for unrestricted assignment,
but does not provide any information through a value annotation. We ignore ♦
for a moment and come back to it on page 6.

The enclosed value annotation va approximates the status of the attribute’s
parent reference at run time. It is flow-sensitive and may be different for different
uses of the same attribute. Between uses, the system propagates the information
whether a node is detached in an affine manner: At most one reference to an
attribute may carry definitive, active information about the node’s parent field.
Any other, aliasing reference must have an inactive type for its parent field.

Writing a signature for a method such as setAttribute of class Element
requires one more ingredient. The signature must specify the effect of the method
on the state of the object. This effect change the activity annotations only, the
underlying Java type does not change:5

Element setAttribute(Attribute{p : 〈M(N D), Element〉} attr).

The N D annotation states that the p of the attr argument must be null (N)
before the method call and is not null (D) afterwards. Thus, N  D describes
the effect of a method call like the pre- and post-condition of a specification.
Effects only apply to active annotations because modifications are only allowed
through active references.

Type checking the example from the beginning of this section with the
setAttribute signature just given leads to a type error. The typing assumes
that new Attribute(...) creates an attribute node without a parent, i.e., its
p field has annotation M(N). The comments indicate the typing after execution
of the respective statement.

Element p1 = ...;
Element p2 = ...;
Attribute attr = new Attribute(...); // attr : Attribute{p : 〈M(N), Element〉}

p1.setAttribute(attr); // attr : Attribute{p : 〈M(D), Element〉}
p2.setAttribute(attr); // type error: N required, D given

Aliasing. Let us now abstract over the pattern. Suppose there is a method set2
that accepts two Attributes and attaches each to its own element.

void set2 (Element p1, Element p2,
Attribute{p : 〈M(N) M(D), Element〉} a1,
Attribute{p : 〈M(N) M(D), Element〉} a2)

{ p1.setAttribute(a1); p2.setAttribute(a2); }
5 Again, we take the liberty of abbreviating the full syntax, which defines the effect

as a change of the type. The full argument type duplicates the whole structure:
Attribute{p : 〈M(N), Element〉} Attribute{p : 〈M(D), Element〉}.
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It is not possible to invoke set2 with two aliases of the same attribute:

Attribute attr = new Attribute(...); // attr : Attribute{p : 〈M(N), Element〉}
set2(p1, p2, attr, attr); // type error!

The type error occurs because Java(X) splits the type of attr at every
point of use such that no active annotation is duplicated. Splitting is driven by
a ternary relation · � · | · on activity annotations. For the active annotation it
holds that M(va) � M(va) | O and M(va) � O | M(va) so that M can only be split
into itself and the inactive annotation O; the inactive annotation can only split
into itself. Hence, the initial type of attr is split into the two types

Attribute{p : 〈M(N), Element〉} �
Attribute{p : 〈M(N), Element〉} | Attribute{p : 〈O, Element〉}

one of which is assigned to each of the two occurrences of attr in the argument
list of set2. Thus, one occurrence has a suitable argument type for this method,
the other one has a mismatch between the required M(N) and the provided O.

JDOM also has API methods that introduce aliasing. For example, the
detach() method removes an attribute from the element it is attached to (if
any) and leaves it in a detached state. The method modifies its receiver object
and returns it, too. One possible type signature is

Attribute{p : 〈M(N), Element〉}
[Attribute{p : 〈M(ND) O, Element〉}] detach()

where the type change in the square brackets specifies the effect of a method
invocation on the receiver type. Before calling detach, the receiver object must
have an active parent field in arbitrary state, that is, the receiver may be de-
tached or attached. (We have N ⊆ ND and D ⊆ ND in our annotation poset
XElement.) After the call, the receiver’s parent field type is inactive. The method
returns a detached active reference.

This type is not the only possible choice. We could just as well leave the
receiver active and make the return type inactive. Each choice fixes a particular
usage pattern, but there is no reason to prefer one over the other. Section 5
introduces annotation polymorphism which allows to defer this choice.

In summary, there are two invariants that guarantee soundness in the pres-
ence of aliases. If there is a reference to an object carrying an active annotation
for some field, then all aliases have a type with an inactive annotation for this
field. Updates are only possible for fields with an active annotation. Such an
update also changes the active value annotation of the field.

Unrestricted Assignment. The active and inactive annotations that we have
seen so far do not allow a field to be updated through multiple references. As
realistic programs contain unrestricted assignments, we need the semi-active
annotation ♦. This annotation neither imposes nor grants access restrictions;
like O, it does not track value annotations exactly. Splitting does not affect
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semi-activity, i.e., ♦ � ♦ | ♦. If an alias for an object has a semi-active field, no
other alias can have an active annotation for this field. Semi-active fields behave
like ordinary instance variables in Java or C#. Hence, semi-active is the default
annotation for fields.

Semi-active annotations enable the incremental transition to refined types.
For example, the JDOM method Element setAttribute(Attribute attr) may
initially receive the signature

Element setAttribute(Attribute{p : 〈♦, Element〉} attr).

Once we decide to track detachment, we switch to the active annotation discussed
in the previous subsection.

2.2 File Access

The detachment property of the preceding section is affine because we can always
drop an attribute node. We now give an example of a linear property where only
values carrying a distinguished annotation may be dropped.

The problem statement is as follows. Opening a file creates an open file handle
on which the program can perform read operations until the file handle is closed.
No further operation can be performed on a closed file handle. Furthermore, file
handles must not be discarded while they are open.

We use the value annotation poset XFStat = P({O,C}) for the file access
example, where O stands for “open” and C stands for “closed”. As before, we
write O, C, and OC for the evident elements of XFStat. Droppability of files is
defined in terms of a droppability predicate, ρFStat ⊆ XFStat. Because an open
file must not be discarded, we define ρFStat as {∅,C}.

To be able to change the status of a file, we do not attach these value
annotations directly to the File class but to a private instance field FStat
status.There are two distinguished FStat objects, namely open : 〈O, FStat{}〉,
and closed : 〈C, FStat{}〉. The outermost value annotation of a type, which we
have ignored until now, describes a persistent property of the values inhabiting
the type. By assigning one of these two values to the status field, the implemen-
tation of the File class communicates its internal status to the outside world.
The operations provided by File are as follows:

File{status : 〈M(O), FStat〉}(String name) // constructor

int [File{status : 〈M(O), FStat〉}] read()
void [File{status : 〈M(O) M(C), FStat〉}] close()

These method types implement exactly the specification given at the begin-
ning of this subsection: read() is only possible in state O and close() changes
the state to C. An open file handle cannot be dropped because O /∈ ρFStat. A
closed file handle can be dropped because C ∈ ρFStat.

With these signatures, the following statements result in a type error.

File{status : 〈M(O), FStat〉} f = new File("/etc/passwd");
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Syntax:

P ::= defn e

defn ::= class c {c f ; meth}
meth ::= t [t t]m(t t x) { e }

v ::= x | null
e ::= v | new` c(v) | v.m(v)
| letx = v.f in e | set v.f = v in e
| letx = e in e | if e then e else e
| join v = v.f from e

s ::= 〈aa, t〉 (coinductively)
t ::= 〈va, u〉 (coinductively)

u ::= c{f : s[ς]} (coinductively)
aa ::= M(va) | ♦ | O

ς ::= r | w | b
A ::= ∅ | A, x : t

c ∈ ClassName, f ∈ FieldName,m ∈ MethodName, x ∈ VarName, va ∈ Xc , ` ∈ Label

Lookup functions:

class c {c f ; meth} ∈ P

fieldsP (c) = c f

class c {c f ; meth} ∈ P

t [t0  t′0]m(ti  t′i xi) { e } ∈ meth

mbodyP (c, m) = xi{e}

class c {c f ; meth} ∈ P t [t1  t′1]m(ti  t′i xi
i∈{2,...,n}

) { e } ∈ meth

mtypeP (〈va, c{f : s[ς]}〉,m) = ti  t′i → t

Fig. 1: Syntax and lookup functions.

f.read();
f.close(); // f now has type File{status : 〈M(C), FStat〉}
f.read(); // type error: O expected, C given

3 The Language MiniJava(X)

The language MiniJava(X) is an object-oriented language with classes and
methods but without inheritance, interfaces, casts, and abstract methods. Its
formalization is inspired by ClassicJava [13]. Section 5 discusses the exten-
sions needed for all of Java 1.4.

3.1 Syntax

Figure 1 defines the syntax of MiniJava(X) and some auxiliary functions for
accessing pieces of syntax. The notation zi stands for z1, . . . , zn, where z is a
syntactic entity. The index i can be omitted if no ambiguity arises. We write
zi

i∈M and zi
i 6=j to constrain the index set.

A program consists of a list of class definitions and a main expression. A
class definition contains definitions for fields and methods. A method definition
t [t′  t′′]m(ti  t′i x) { e } specifies the type t′ of its receiver in the square
brackets [t′  t′′]. Calling the method changes the receiver type from t′ to t′′

and the argument types from ti to t′i, respectively. The type change only refers
to a change of the annotations, the underlying class type remains unchanged.
The type syntax has three levels:
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– A simple type, u, packages a class name c with a field environment; the
field environment records for every field f its field type s and its variance
ς, which specifies if the field is only read (ς = r), only written (ς = w), or
both (ς = b).

– An annotated type, t, attaches a value annotation va to a simple type u
to describe a persistent property of the objects of type u in a summary
approximation. The annotation va is drawn from a type-specific annotation
poset (Xc , · ≤ ·) where c is the class of u. The instantiation of the framework
determines X.

– A field type, s, attaches an activity annotation aa to an annotated type
t. If a reference to an object has the field type f : s[ς] and s carries the
active annotation M(va), that is, s = 〈M(va), va ′, u〉 := 〈M(va), 〈va ′, u〉〉,
then the field f may be updated through this reference and va describes the
current field value. The annotation va is at least as precise as the summary
approximation va ′ because assignments change va but leave va ′ constant.
The well-formedness predicate on types (see Figure 3) ensures that va ≤ va ′.
The activity annotation may also be semi-active ♦, which allows updates,
or inactive O, which indicates that a field is read-only. In both cases, the
system maintains only a summary approximation for the field value.
An activity annotation acts locally on a single field. It does not affect sib-
ling fields nor descendants: their annotations are completely independent.
The activity annotation is also reference specific: each alias for the same ob-
ject may have a different (but compatible) activity annotation on its type.
For instance, compatibility enforces that only one alias may have an active
annotation for a certain field of an object.

As customary for modeling object types [6], a type may be recursive through its
field environment. The syntax does not have explicit operators to introduce or
eliminate such recursive types. Instead, the rules of the type grammar have a
coinductive interpretation.

A type environment A binds variables x to annotated types t. When writing
A, x : t we assume that A does not already bind x .

Expressions e are in a particular restricted form (which resembles A-normal
form [12]) to maximize the amount of information that typing can extract and
to simplify the soundness proof. In this form, all essential computations only
take values v as operands (that is, a variable or null) and sequencing is made
explicit using let (and field access/modification). Any expression in, say, Java
syntax can be easily transformed into this form without changing its meaning.

The expression language comprises values, object creation, method invoca-
tion, field access, field modification, let expression, a conditional which tests for
null, and an intermediate join expression join v = v.f from e which does not
occur in programs but which arises during execution.

Every new expression carries a unique label `, so that the initial value anno-
tation of an object may depend on the place of the new expression in the source
program.
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Field access let x = v.f in e is combined with variable binding to increase
the precision of the system. The idea is that the binding of x “lends” capabilities
from v.f while evaluating e. Afterwards, the lent capabilities are joined back to
v.f ’s using a join expression.

Field update set v.f = v′ in e first sets the field and then evaluates e. It does
not return a result because doing so would create an alias for v′, which would
further complicate its typing rule.

3.2 Instances of MiniJava(X).

An instance of MiniJava(X) specifies, for each class c,

– a partially ordered set (Xc ,≤) with least element for the value annotations;
– a non-empty predicate ρc ⊆ Xc of droppable annotations such that b ∈ ρc

if a ∈ ρc and b ≤ a (for all a, b ∈ Xc);
– predicates Rnew

`,c , R
null
c ⊆ Xc , for each label `, such that b ∈ Rnew

`,c (b ∈ Rnull
c )

if a ∈ Rnew
`,c (a ∈ Rnull

c ) and a ≤ b (for all a, b ∈ Xc).

We assume that c 6= c′ implies Xc ∩Xc′ = ∅ and set ρ := ∪cρc .
The predicates Rnull

c and Rnew
`,c provide the persistent annotations for the null

reference and for objects created at program location `, respectively. Indeed, the
motivation for including ` in the formal presentation at all is the ability to
define predicates that depend on the creation location. Otherwise, the system
would only be able to capture the nullness property. Several instances of value
annotations may easily be combined using the Cartesian product.

Examples. The nullness analysis required for the JDOM detachment property
works on the poset XElement = (P({N,D}),⊆) with ρElement = XElement and the
two predicates Rnull

Element(va) ⇔ {N} ≤ va and Rnew
`,Element(va) ⇔ {D} ≤ va. That

is, every object is droppable regardless of whether it has a parent object. Further,
the value annotation for null must contain N, and the annotation of a newly
created object must contain D.

The file access example uses the poset XFStat = (P({O,C}),⊆) with ρFStat =
{{C}, ∅}. The two predicates are defined asRnull

FStat(va)⇔ False andRnew
`,FStat(va)⇔

(` = `o ⇒ {O} ≤ va)∧(` = `c ⇒ {C} ≤ va) where `o and `c are the program lo-
cations where the FStat object open and closed are defined, respectively. That
is, a file handle is droppable as long as its status cannot be open. The value
annotation of a file status object must contain O if it was created at location `o

and analogously for C and `c.

3.3 Dynamic Semantics.

Figure 2 defines the dynamic semantics of MiniJava(X) as a small-step opera-
tional semantics. Its judgment P ` 〈e,S〉 ↪→ 〈e′,S ′〉 describes a single evaluation
step of an expression e under store S governed by program P . The evaluation
step produces a new expression e′, and a new store S ′.
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Definitions:

Value 3 w ::= l | null
E ::= [ ] | letx = E in e | if E then e else e | joinw = l.f from E

l ∈ Loc ⊆ VarName, S ∈ Store = Loc→ ClassName× Label× FieldMap,
F ∈ FieldMap = FieldName→ Value

Reduction rules:

P ` 〈E [new` c(wi)];S〉 ↪→ 〈E [l];S, l 7→ 〈c, `, fi 7→ wi〉〉
if fieldsP (c) = ci fi

P ` 〈E [letx = l.f in e];S〉 ↪→ 〈E [joinw = l.f from [w/x]e];S〉
if S(l) = 〈c, `,F〉 and F(f ) = w

P ` 〈E [joinw = l.f fromw′];S〉 ↪→ 〈E [w′];S〉
P ` 〈E [set l.f = w in e];S, l 7→ 〈c, `,F〉〉 ↪→ 〈E [e];S, l 7→ 〈c, `,F [f 7→ w]〉〉
P ` 〈E [l.m(wi)];S〉 ↪→ 〈E [let this, xi = l, wi in e];S〉

if S(l) = 〈c, `,F〉 and mbodyP (c,m) = xi{e}
P ` 〈E [letx = w in e];S〉 ↪→ 〈E [[w/x]e];S〉
P ` 〈E [if l then e1 else e2];S〉 ↪→ 〈E [e1];S〉
P ` 〈E [if null then e1 else e2];S〉 ↪→ 〈E [e2];S〉
P ` 〈E [letx = null.f in e];S〉 ↪→ 〈error: dereferenced null;S〉
P ` 〈E [set null.f = w in e];S〉 ↪→ 〈error: dereferenced null;S〉
P ` 〈E [letx = null.m(w) in e];S〉 ↪→ 〈error: dereferenced null;S〉

Fig. 2: Dynamic semantics.

A store S is a mapping from locations l to objects 〈c, `,F〉 where c is the
class of the object, ` is the place where the object was created, and the field
map F records the values w of its instance fields. The notation S, l 7→ 〈c, `,F〉
assumes that S does not bind l, whereas F [f 7→ w] implies that F contains a
binding for f which is updated to w. The reduction rules for new, let, and if
are standard.

The reductions for letx = v.f in e and joinw = l.f fromw′ belong together.
They implement the aforementioned lending of the field’s capabilities to x. Re-
ducing the let leaves behind a join expression that remembers the lending for
the duration of e’s evaluation. Once the body of the let/join is reduced to a
value, the join reduces. Thus, the join expression has no operational significance,
it’s just there to make the type system happy.

The reduction for set is standard but it is sequenced with the evaluation of
another expression to avoid returning a value from set.

A method invocation reduces to the corresponding method body wrapped
in let expressions that bind the formal parameters to the actual ones. Opera-
tionally, this wrapping is not necessary but it simplifies the soundness proof by
separating concerns.

Beyond the explicit errors, an expression becomes stuck if it tries to access a
non-existent field of an object or invoke a non-existent method. The latter errors
are already captured by the underlying standard type system.
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3.4 Static Semantics.

This section specifies the static semantics of MiniJava(X). Figure 3 defines
various relations on types, annotations, and environments. Because types are
defined coinductively, all rules involving types have a coinductive interpretation.
Figure 4 defines the typing rules for expressions and some auxiliary judgments,
Figure 5 lists additional typing rules for intermediate expressions that only arise
during the evaluation of a program. Figure 6 contains the remaining rules for
programs. Boxed premises in the rules serve as extension points provided by an
instance of the framework.

Droppability. A program can only discard a reference if its type is droppable. This
policy ensures that the program keeps at least one reference to each “precious”
resource, which it recognizes by an active annotation with a non-droppable value
annotation. Technically, an object is droppable if all its fields have droppable
types. An active field type is droppable if its annotation is. A field which is
semi-active or inactive can always be dropped: A semi-active field can only have
droppable annotations (by well-formedness of types), and an object is never
responsible for the contents of its inactive fields.

Splitting. If a program uses the same variable multiple times, then each use
of the variable receives a different type where the activity annotations on the
original type of the variable are split among all uses. If field type s splits into s′

and s′′ (s � s′ | s′′), then s, s′, and s′′ are structurally equivalent and differ only
in their activity annotations. So it is sufficient to define splitting on the activity
annotations. Splitting of O and ♦ is trivial. An active annotation splits into one
active and one inactive annotation: both M(va) � M(va) | O and M(va) � O |
M(va) are acceptable. Splitting ensures that at most one type for a field reference
receives an active annotation.

Well-formedness. The well-formedness relation ensures that the value part of an
active annotation of a field type is not weaker then the summary approximation
for that field; that a semi-active field type is droppable; that a value annotation
is taken from the appropriate annotation poset; and that a field environment is
correct with respect to the field declarations of the corresponding class.

Subtyping. Subtyping is structural and derived from the annotation orderings.
Moreover, an active field type can be treated as semi-active or inactive if it is
droppable. The subtyping of field environments takes the variance ς into account:
if a field is only read (ς = r), then it can be treated covariantly; if it is only
written (ς = w), then contravariantly; if it is read and written (ς = b), then it
must be treated invariantly (Pierce [23, Chapter 15.5] attributes this technique
to Reynolds).

Effect application. The effect application relation À A := A′ ↓ vi : ti  t′i is
used in the rules for method application and for a restricted version of the
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Droppability:

va ∈ ρ t̀ ρ(t)

s̀ ρ(〈M(va), t〉) s̀ ρ(〈♦, t〉) t̀ ρ(t)

s̀ ρ(〈O, t〉)
(∀i) s̀ ρ(si)

t̀ ρ(〈va, c{fi : si[ςi]}〉)

Splitting:

àa aa � aa ′ | aa ′′ ù u � u′ | u′′

s̀ 〈aa, va, u〉 � 〈aa ′, va, u′〉 | 〈aa ′′, va, u′′〉
(∀i) s̀ si � s′i | s′′i

ù c{fi : si[ςi]} � c{fi : s′i[ςi]} | c{fi : s′′i [ςi]}

àa M(va) � M(va) | O àa M(va) � O | M(va) àa ♦ � ♦ | ♦ àa O � O | O

Well-formedness:

va ≤ va ′ P t̀ wf (〈va ′, u〉)
P s̀ wf (〈M(va), va ′, u〉)

t̀ ρ(t) P t̀ wf (t)

P s̀ wf (〈♦, t〉)
P t̀ wf (t)

P s̀ wf (〈O, t〉)

va ∈ Xc fieldsP (c) = ci fi (∀i) si = 〈aai, vai, ci{fij : sij [ςij ]}〉 P s̀ wf (si)

P t̀ wf (〈va, c{fi : si[ςi]}〉)

Subtyping:

t̀ t ≤ t′ va ≤ va ′

s̀ 〈M(va), t〉 ≤ 〈M(va ′), t′〉

t̀ t ≤ t′

aa ∈ {♦,O} t̀ ρ(t)

s̀ 〈M(va), t〉 ≤ 〈aa, t′〉

t̀ t ≤ t′

aa ∈ {♦,O}
s̀ 〈♦, t〉 ≤ 〈aa, t′〉

t̀ t ≤ t′

s̀ 〈O, t〉 ≤ 〈O, t′〉
va ≤ va ′ (∀i) ς ′i s̀ si ≤ s′i ς̀ ςi ≤ ς ′i

t̀ 〈va, c{fi : si[ςi]}〉 ≤ 〈va ′, c{fi : s′i[ς
′
i]}〉

s̀ s ≤ s′ s̀ s′ ≤ s

b s̀ s ≤ s′
s̀ s ≤ s′

r s̀ s ≤ s′
s̀ s′ ≤ s

w s̀ s ≤ s′
ς̀ ς ≤ ς ς̀ b ≤ r

ς̀ b ≤ w À ∅ ≤ ∅
À A ≤ A′

t̀ t ≤ t′

À A, x : t ≤ A′, x : t′

Effect application:

À A := A ↓ null : ti  t′i

vj = x

t̀ t := t′ ↓ tj  t′j À A := A′, x : t ↓ vi : ti  t′i
i6=j

À A := A′, x : t′ ↓ vi : ti  t′i

va ′′′ ≤ va (∀i) ς̀ ς ′′′i ≤ ςi s̀ si := s′i ↓ s′′i  s′′′i

t̀ 〈va, c{fi : si[ςi]}〉 := 〈va ′, c{fi : s′i[ς
′
i]}〉 ↓ 〈va

′′, c{fi : s′′i [ς ′′i ]}〉 〈va ′′′, c{fi : s′′′i [ς ′′′i ]}〉

àa aa := aa ′ ↓ aa ′′  aa ′′′ t̀ t := t′ ↓ t′′  t′′′

s̀ 〈aa, t〉 := 〈aa ′, t′〉 ↓ 〈aa ′′, t′′〉 〈aa ′′′, t′′′〉

àa aa := aa ′ ↓ M(va) aa
aa ′ ∈ {♦,O}

àa aa := aa ↓ aa ′  aa ′′

Fig. 3: Relations on types, annotations, and environments. (The rules for types
have a coinductive interpretation.)
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let expression. Its purpose is to transfer the type state changes from one alias
that goes out of scope to another. For example, the expression letx = y in e
introduces a new alias x for y. Inside e, the same object may be updated through
both x and y which also changes their types. When leaving the scope of x, the
type changes to x are lost with the standard let rule, but the effect application
in the restricted rule merges the final type of x back into y’s type.

Technically, the relation defines how type changes ti  t′i for values vi affect
an environment A′. If vj is null then nothing happens. If vj is a variable x , then
the new type for x is t defined as t̀ t := A′(x ) ↓ tj  t′j . The effect application
relation on types, t̀ t := t′ ↓ t′′  t′′′, changes at most the annotations of
t′ for which the corresponding annotation of t′′ is active but leaves the other
annotations of t′ intact.

Expressions. The judgment for expressions, P ;A è e : t B A′, assigns a type
t and an updated environment A′ (after e’s evaluation) to expression e in the
context of program P and environment A (see Figures 4 and 5).

– In the variable rule, each use of a variable splits of the properties needed
and passes the remaining properties on to subsequent uses.

– The rule for null relies on an auxiliary judgment P ǹull t which ensures
that t is well-formed and carries a suitable annotation.

– The rule for new determines an annotation for the newly created object with
Rnew. The judgment P ;A è v : t B A′ types the constructor arguments.

– The rule for accessing field f performs the already mentioned lending of
capabilities. The type of the the dereferenced object lends its capabilities at
field f through the type access judgment ty = t′y |f tx to the extracted value.
After typing the body expression e with the resulting types it merges the
final types back into the type of the reference.
This rule has a number of related rules in Figure 5. They treat the case that
the dereferenced object is null and the join expression that arises from
reducing the field access. There is a special rule for a join expression where
the extracted value is null.

– Field assignment set x .f = v in e changes the type of field f in x ’s type
using the type update judgment P ;u ` f ← t B u′ which states that field f
of an object with type u can be assigned a value of type t while modifying
the object’s type to u′. Two rules define this judgment:
• The first rule allows a strong update of f which may change its type.

It requires the old type of f to be entirely active (judgment M s̀ s). If
there was a semi-active or inactive field, then the field might be updated
through an alias thus invalidating the change in the type.

• The second rule deals with “ordinary” updates. It requires that the old
type of f is semi-active (judgment ♦ s̀ s) because overwriting an inac-
tive field would result in an invalid typing assumption about a reference
carrying an active annotation for this field.

– The rule for method calls uses the effect application relation to propagate
the type changes of the method signature to the resulting type environment.
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Expression typing:

t̀ t � t1 | t2
P ;A, x : t è x : t1 B A, x : t2

P ǹull t

P ;A è null : t B A

P ;A è vi : ti B A′ Rnew
`,c (va) t = 〈va, c{fi : 〈aai, ti〉[ςi]}〉 P t̀ wf (t)

P ;A è new
` c(vi) : t B A′

ty = t′y |f tx P ;A, y : t′y, x : tx è e : t B A′, y : t′′y , x : t′x t′′′y = t′′y |f t′x

P ;A, y : ty è letx = y.f in e : t B A′, y : t′′′y

P ;A è v : t B A′, x : 〈va, u〉 u ` f ← t B u′ P ;A′, x : 〈va, u′〉 è e : t′ B A′′

P ;A è setx.f = v in e : t′ B A′′

P ;A è vi : ti B A′ mtypeP (t1,m) = ti  t′i → t À A′′ := A ↓ vi : ti  t′i

P ;A è v1.m(vi
i∈{2,...n}) : t B A′′

P ;A è e1 : t1 B A1 P ;A1, x : t1 è e2 : t2 B A2, x : t′1 t̀ ρ(t′1)

P ;A è letx = e1 in e2 : t2 B A2

P ;A è v : t1 B A1 P ;A1, x : t1 è e : t B A2, x : t2 À A3 := A2 ↓ v : t1  t2

P ;A è letx = v in e : t B A3

P ;A è e1 : t B A′

P ;A′
è e2 : t′ B A′′ P ;A′

è e3 : t′ B A′′

P ;A è if e1 then e2 else e3 : t′ B A′′

P ;A è e : t1 B A1

t̀ t1 ≤ t2 À A1 ≤ A2

P ;A è e : t2 B A2

Type access:

ς̀ ςj ≤ r sj = 〈aa, t〉 t̀ t � t1 | t2 s′j = 〈aa, t1〉
〈va, c{fi : si[ςi]}〉 = 〈va, c{fj : s′j [ςj ]; fi : si[ςi]}〉 |fj t2

Type update:

M s̀ sj t̀ ρ(〈vaj , uj〉)
ς̀ ςj ≤ w sj = 〈aaj , vaj , uj〉 s′j = 〈M(va), vaj , u〉 s̀ wf (s′j)

c{fi : si[ςi]} ` fj ← 〈va, u〉 B c{fj : s′j [ςj ]; fi : si[ςi]
i6=j
}

♦ s̀ sj sj = 〈aa, t′〉 t̀ t ≤ t′

c{fi : si[ςi]} ` fj ← t B c{fi : si[ςi]}

Fully active types:

(∀i) M s̀ si

M s̀ 〈M(va), va ′, c{fi : si[ςi]}〉
(∀i) ♦ s̀ si

♦ s̀ 〈♦, va, c{fi : si[ςi]}〉

Auxiliaries:

t = 〈va, c{. . . }〉 Rnull
c (va) P t̀ wf (t)

P ǹull t

(∀i) P ;Ai−1 è vi : ti B Ai

P ;A0 è vi : ti B An

Fig. 4: Typing rules for expressions.
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P ;A, x : tx è e : t B A′, x : t′x P t̀ wf (tx)

P ;A è letx = null.f in e : t B A′

ty = t′y |f tx t′′′y = t′′y |f t′x P ;A, y : t′y, l : tx è e : t B A′, y : t′′y , l : t′x

P ;A, y : ty è join l = y.f from e : t B A′, y : t′′′y

ty = t′y |f tx t′′′y = t′′y |f t′x P ;A, y : t′y è e : t B A′, y : t′′y

P ;A, y : ty è join null = y.f from e : t B A′, y : t′′′y

P ;A è v : t′ B A′ P ;A′
è e : t B A′′

P ;A è set null.f = v in e : t B A′′

Fig. 5: Typing rules for intermediate expressions.

P = defni e (∀i) P ` defni class names in defni disjoint P , ∅ è e : t B ∅
` P

(∀i) class ci {c′ f ′; meth ′} ∈ P (∀j) P ; c ` methj

field names fi disjoint method names in methj disjoint

P ` class c {ci fi; methj}

t0 = 〈va, c{f : s[ς]}〉
(∀i ∈ {0, . . . , n}) P t̀ wf (ti) P ; this : t0, xi : ti è e : t B this : t′0, xi : t′i

P ; c ` t [t0  t′0]m(ti  t′i xi) { e }

Fig. 6: Typing rules for programs.
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– There are two rules for let expressions. The standard one ensures that the
type of the let-bound variable is droppable after evaluating the body of the
let expression. The restricted one requires a value in its header, so that a
restricted let creates an alias of a variable. In this case, the rule implements
lending of capabilities just like described for the field access rule. It uses
effect application to merge the changes of the alias back into the type of the
original reference.

4 Soundness

We prove type soundness using the standard syntactic technique [29]. To apply
it, we first have to extend typing to configurations 〈e;S〉. To this end, we have
to introduce an Urtype assumption A. This assumption assigns to each loca-
tion/object its activity annotated type before it is used in the program. Every
activity annotated type of a use of a particular location in the program must
be split off the Urtype for the location. The Urtype assumption changes during
evaluation to reflect changes of the field values of an object with active fields.
The most important point about the Urtype assumption is that it guarantees
consistent use and distribution of the activity annotations throughout the uses
of the locations in the program.

We start by introducing a function RL,S ∈ P(Loc) → P(Loc) so that its
smallest fixed point µRL,S is the set of locations reachable from L ⊆ Loc through
S. The predicate drop-ok(e,A,S) indicates whether all locations with a non-
droppable type are reachable from e.

RL,S(M) = (L ∪
⋃
{ran(F) | l′ ∈M,S(l′) = 〈c, `,F〉}) ∩ dom(S)

drop-ok(e,A,S) = ∀l ∈ dom(S). t̀ ρ(A(l)) ∨ l ∈ µRfv(e),S

Let Path range over finite access paths f of field names. The notation f ⊕ f ′
attaches f to the front of path f ′. The predicate

aliases-ok(l,A, A,S)⇔ A(l),S(l) - {|A(li).fi | S(li).fi|}

relates all type assumptions about a single location l with an Urtype assump-
tion A. Every active annotation in the typing must be sanctioned by an active
annotation in the Urtype assumption. The Urtype assumption for a location is
responsible (1) for the local activity annotation of fields that refer to defined
locations and (2) for the full type of fields that contain null. The definition col-
lects relevant types in a multiset (indicated by {| . . . |}) because each occurrence
of a type contributes to the activity. Thus, the aliases-ok predicate ensures that
there is at most one active annotation in all type assumptions about l.

17



Some auxiliary notation is needed to define the action of access paths on
types and stores:

t.ε = t
t = 〈va, c{fi : si[ςi]}〉 sj = 〈aa, tj〉

t.(fj ⊕ fji) = tj .fji

S(w).ε = w
S(l) = 〈c, `, fi 7→ wi〉

S(l).(fj ⊕ fji) = S(lj).fji

It remains to define the “sanctions” relation between an entry in an Urtype
assumption (an annotated type), an entry in a store, and a multiset of annotated
types. Its first stage projects out, for each field, the corresponding field type, the
stored value, and the multiset of field types.

(∀i) si, wi - {|sι
i | ι ∈ J |}

〈va, c{fi : si[ςi]}〉, 〈c, `, fi 7→ wi〉 - {|〈vaι, c{fi : sι
i[ς

ι
i ]}〉 | ι ∈ J |}

Its second stage states that the annotation from the Urtype assumption splits
into the multiset of the activity annotations. For each null value, the multiset
of types is also split from the type in the Urtype assumption.

aa � {|aaι | ι ∈ J |} w = null⇒ t � {|tι | ι ∈ J |}
〈aa, t〉, w - {|〈aaι, tι〉 | ι ∈ J |}

The typing judgment P ;A;A c̀ 〈e;L;S〉 : t B A′ for configurations 〈e;S〉 in
context L (a multiset of locations) formalizes the main invariant of the preser-
vation lemma. It holds if the store is consistently typed, the expression is well
typed, the program is well-formed, the locations occurring in the expression are
all defined in the store, every location which is not reachable from L and the
locations in the expression must have a droppable type, the locations in L are
all typed and use up enough capabilities of the final assumptions A′ so that all
types in the remaining assumption A′′ are droppable.

P ;A S̀ S : A P ;A è e : t B A′ ` P fv(e) ⊆ dom(S)
drop-ok(fv(e) + L,A,S) L ⊆ dom(A′) P ;A′

è L : t B A′′ ρ(A′′)
P ;A;A c̀ 〈e;L;S〉 : t B A′

dom(S) ⊆ dom(A)
dom(A) = dom(A) (∀l ∈ dom(S)) P ;A;A;S l̀ l : A(l)

P ;A S̀ S : A

S(l) = 〈c, `,F〉 Rnew
`,c (va) ran(F) ⊆ dom(S) ∪ {null}

(∀i) F(fi) = null⇒ P ǹull si (∀i) P s̀ wf (si) aliases-ok(l,A, A,S)

P ;A;A;S l̀ l : 〈va, c{fi : si[ςi]}〉

The judgment S̀ , which states the consistency of the assumptions about the
store, has a standard inductive reading despite the presence of cyclic structures
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in the store. All potentially cyclic references are broken by the explicit use of
the type environment A.

The preservation lemma uses an extension relation w between Urtype as-
sumptions, which holds between successive configurations. It basically states
that active capabilities cannot be created from nothing.

domA1 ⊆ domA2 (∀l ∈ domA1) A1(l) w A2(l)
A1 w A2

(∀i) si w s′i

〈va, c{fi : si[ςi]}〉 w 〈va ′, c{fi : s′i[ςi]}〉
(aa = M(va) ∨ aa = aa ′) t w t′

〈aa, t〉 w 〈aa ′, t′〉

The type preservation lemma states that reducing an expression does not change
its type. The notation A�M denotes the environment obtained by restricting A
to the variables in M .

Lemma 1 (Preservation). Suppose P ;A1;A1 c̀ 〈e1;L;S1〉 : t B A′
1 and P `

〈e1;S1〉 ↪→ 〈e2;S2〉. Then there exist A2, A2, and A′
2 with A1 w A2, dom(A′

1) ⊆
dom(A′

2), and À A′
2�dom(A′

1)
≤ A′

1 such that P ;A2;A2 c̀ 〈e2;L;S2〉 : t B A′
2.

Proof. By induction on the definition of ↪→.

The progress lemma ensures that a well-typed expression is not stuck.

Lemma 2 (Progress). Suppose P ;A;A c̀ 〈e;L;S〉 : t B A′. Then either e is
a value, or there exists 〈e′;S ′〉 such that P ` 〈e;S〉 ↪→ 〈e′;S ′〉, or P ` 〈e;S〉 ↪→
〈error: dereferenced null,S〉.

Proof. By structural induction on e.

5 From MiniJava(X) to Java(X)

The formalization of MiniJava(X) covers the core expression language of Java
1.4 and imperative field update. This section discusses the extensions necessary
for the full system Java(X) with inheritance, subtyping, and with constrained
parametric polymorphism over annotations in the style of HM(X) [21].

We have refrained from formally specifying the extensions in this paper be-
cause they add technical complication and obscure the simplicity of the approach
by cluttering the presentation.

5.1 Polymorphism

The extension to polymorphism essentially adds annotation variables to the type
language and allows constrained abstraction over them. The splitting, droppabil-
ity, and subtyping relations become constraints, which can be abstracted over. In
fact, the addition of polymorphism to a monomorphic type-based program anal-
ysis is a schematic, but tedious effort. Our extension is modeled after the HM(X)
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P ;A è e : 〈va, c′{f : s[ς]}〉 B A′

P ;A è (c)e : 〈va, c{f : s[ς]}〉 B A′

Fig. 7: Type cast rule for Java(X).

framework [21] which provides a parameterized extension of Hindley-Milner typ-
ing (including type inference) by suitable constraint theories and subtyping.

The resulting constrained polymorphism adds technical complication, but it
greatly increases the expressiveness. As an example, we revisit the typing of the
detach() method of the JDOM API. In Section 2.1, we had to decide on one
particular usage pattern for detach(). Either the typing made the method return
the active reference or it modified the active receiver object. With annotation
polymorphism, the system can postpone the decision by abstracting over the
annotations and making the required splitting into a constraint. Here is the
resulting type abstracting over the activity annotation variables ψ′ and ψ′′:

∀ψ′ψ′′. M(N) � ψ′ | ψ′′ ⇒
Attribute{p : 〈ψ′′, Element〉}

[Attribute{p : 〈M(ND) ψ′, Element〉}] detach()

The splitting constraint M(N) � ψ′ | ψ′′ fixes the relationship between ψ′ and
ψ′′. The two type signatures for detach() suggested in Section 2.1 are the only
instances of the above parameterized type.

5.2 Inheritance

Inheritance and interfaces can be treated with a minor—but important—extension
as in RAJA [16]. In MiniJava(X), the type of an object includes only the de-
scriptions of the fields belonging to the object’s class. In Java(X), with subtyp-
ing and a cast operation, the type of an object includes descriptions of all fields
of all classes and a cast changes the class type but leaves the field environment
untouched. Figure 7 contains the rule for a cast; the subsumption rule changes
so that it can also raise the class type (as well as the annotations as shown in
Figure 4). Interface types can be treated in the same way. Their addition just
affects Java’s subtyping relation.

The expanded class type is required for type checking cast operations in a
meaningful way. Suppose that class A is a subclass of class B:

class B {}
class A extends B {
Object mystate;
public A (Object state) {...}

}

and the following use of an A object:
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B b = new A (init);
A a = (A) b;

Suppose the newly created A object has type A{mystate : 〈M(init), . . . 〉}. If each
class type only had the fields of its own class, then the subsumption to B would
strip away the information about the mystate field. This information would be
lost forever and the subsequent upcast back to A would have to invent some
information about mystate.

With our choice, a cast or subsumption never changes the field map but only
changes the static class name associated with it. Thus, information is neither
lost nor reinvented.

Another issue is method consistency. If a subclass overrides a method of a
superclass, then the annotated type in the superclass must subsume the one in
the subclass as in method specialization [19].

6 Related Work

There are two closely related lines of work in type systems: refinement and
ownership. Refinement types add extra information to an existing type system
to check additional properties at compile time. Ownership types enforce access
restrictions by providing extra structure on reference types.

Freeman and Pfenning [15] have proposed refinement types as an extension to
ML with union and intersection types. Their approach attaches a property lattice
to each type as we do, but they do not distinguish linear and non-linear resources.
Their ideas have been further refined in various directions. For example, indexed
types can express invariants of data types [30]. Type state checking [26, 25] is a
precursor of refinement typing using similar techniques but for a more restricted
first-order imperative language.

Another direction is the development of a logical system to model properties
on top of the type system, as in the work of Mandelbaum et al. [18]. They graft a
fragment of intuitionistic linear logic on top of the ML type system adapted for
use with the monadic metalanguage. While this approach is highly expressive, it
requires a lot of program modifications. Our work encodes the logical properties
in annotations and has a built-in mechanism (activity annotations) to transform
standard properties to linear properties.

Type qualifications are similar to type annotations. A typical work on type
qualifications is the paper by Foster et al. [14] which enables the flow-sensitive
checking of atomic properties that refine standard types. They present an effi-
cient inference algorithm for their system. The goal of their work is similar to
ours, however, our work combines flow-sensitive and flow-insensitive aspects.

Semantic type qualifiers [7] share some concerns with our work. They al-
low the specification of a type qualifier together with a logical formula defining
its meaning in terms of the program state. They automatically discharge the
resulting proof obligation and thus obtain a correct system automatically. How-
ever, their properties only correspond to our value annotations and they do not
support the notion of strong update.
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A number of works solve specific problems with ad-hoc constructed type
systems and may be viewed as specializations of one of the above frameworks, in
particular exploiting flow-sensitivity. Examples are the work on atomicity and
race detection [10, 11], the work on Vault [8], and many others.

JavaCOP [1] is a tool for implementing certain annotated type systems for
Java. It provides a language for defining predicates on typed abstract syntax
trees for Java. JavaCOP is integrated with a Java compiler that checks the
defined predicates before generating code. While JavaCOP provides a flexible
and convenient framework for implementing such systems, it is a purely syntactic
tool: it neither provides any soundness guarantees nor does it have a notion of
flow dependency which would be necessary to track linear resource use. Java(X)
provides both. Both JavaCOP and Java(X) make the important distinction
between analysis designers (who define predicate/design annotation posets) and
programmer (who work in terms of annotations).

The Fugue system [9] implements typestate assertions and checking for C]. It
structures the state of an object in different frames corresponding to the nesting
of subclasses. For each frame, the programmer can state formulae in first-order
predicate logic. In comparison to Java(X), Fugue has a different approach of
handling aliases, it introduces extra program constructs to expose typestate, it
requires the programmer to writer formulae instead of predefined abstract values,
and there is no soundness proof.

Another related system is the Hob system [17]. It basically allows the specifi-
cation of pre- and postconditions using an abstract specification language based
on sets. However, the underlying interpretation of this language is configurable
to different logical systems and there is an aspect-oriented mechanism to simplify
authoring of specifications. Java(X) manages abstraction the other way round.
An analysis designer carves out domain-specific abstract values from predicates,
thus hiding some complexity from the programmer.

The goal of an ownership type system is to improve modularity by parti-
tioning the state of a system in a hierarchical manner. Such a system restricts
inter-object accesses to those that are compatible with the hierarchy. Although
Java(X) was not conceived with ownership in mind, it turns out that notions
like unique and borrowed references are closely related to our notion of active
and inactive references.

There is a lot of work on ownership types and related notions [2, 31, 20] but
we focus only on the most closely related work by Boyland and others. In a
series of articles culminating in 2005 [5], Boyland and others have established a
notion of permissions which are attached to an object type along with an effect
system to abstract the state dependencies of a method call. The permissions
govern whether a reference is readable or writable. In earlier work, Boyland [3]
has proposed splitting of permissions in fractions where only the full permission
“1” allows full read/write access and proper fractions only allow read access.
This kind of permission seems to be related to our notions of active, inactive,
and semi-active. Effects are also present in our system, albeit in the form of
explicit state transitions on the argument and receiver types of a method.
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It is also instructive to compare the notions of active, semi-active, and in-
active with similar notions in the realm of ownership type systems as catego-
rized by Boyland and others [4]. Their categorization includes the permissions
R (read), W (write), R̄ (exclusive read), and W̄ (exclusive write: no other alias
may write)6. Active corresponds to RWW̄ (read, write, and exclusive write per-
mission), semi-active to RW , and inactive to R (transposed to a per-field setting;
their original work categorizes variables).

In previous work [27], we have proposed an annotated type system for a Java
subset without inheritance that provides improved types for the DOM interface.
The previous work has inspired the example in Section 2.1 but it is limited
in several respects: It is tied to one particular amalgamation of annotation and
activity, it can only keep track of one affine state of a resource (either the resource
is in this state or nothing is known about it; there is no notion of droppability),
it does not support type state change, and it does not treat inheritance. The
present work overcomes all these weaknesses.

Hofmann and Jost [16] have defined a type-based analysis to predict the
consumption of heap space by Java methods. Their system RAJA is inspired
by amortized complexity analysis. The underlying design ideas of their type
system are similar to ours, however, the details are different and our work has
been developed independently. For example, splitting works very differently and
Java(X)’s annotations of arguments may change through method calls whereas
RAJA’s annotations are simply used up because they denote a potential passed
to a method invocation through the parameters.

7 Conclusion

Java(X) extends the type system of Java 1.4 with an annotation framework for
tracking value-based properties as well as affine and linear properties. A transient
property of an object is always tied to the value of a particular field of the object.
The system only requires the specification of posets for the properties of field
values and adds the tracking of linear and affine uses of references in a generic
way. Linear and affine uses of references improve the accuracy of the properties
because they are subject to type state change.

Our first experiences with the type checker are encouraging. Future work
includes extending the type checker to full Java(X) and implementing some
form of type inference. We also would like to connect some notion of semantics
to our purely syntactic annotations and to investigate further variations of the
activity annotations.
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