
Typing Coroutines

Konrad Anton and Peter Thiemann

Institut für Informatik, Universität Freiburg
{anton,thiemann}@informatik.uni-freiburg.de

Abstract. A coroutine is a programming construct between function
and thread. It behaves like a function that can suspend itself arbitrarily
often to yield intermediate results and to get new inputs before return-
ing a result. This facility makes coroutines suitable for implementing
generator abstractions.

Languages that support coroutines are often untyped or they use trivial
types for coroutines. This work supplies the first type system with ded-
icated support for coroutines. The type system is based on the simply-
typed lambda calculus extended with effects that describe control trans-
fers between coroutines.

1 Introduction

A coroutine is a programming construct between function and thread. It can be
invoked like a function, but before it returns a value (if ever) it may suspend
itself arbitrarily often to return intermediate results and then be resumed with
new inputs. Unlike with preemptive threading, a coroutine does not run concur-
rently with the rest of the program, but rather takes control until it voluntarily
suspends to either return control to its caller or to pass control to another corou-
tine. Coroutines are closely related to cooperative threading, but they add value
because they are capable of passing values into and out of the coroutine and
they permit explicit switching of control.

Coroutines were invented in the 1960s as a means for structuring a compiler
[4]. They have received a lot of attention in the programming community and
have been integrated into a number of programming languages, for instance in
Simula 67 [5], BETA, CLU [11], Modula-2 [19], Python [17], and Lua [15], and
Knuth finds them convenient in the description of algorithms [8]. Coroutines are
also straightforward to implement in languages that offer first-class continuations
(e.g., Scheme [7]) or direct manipulation of the execution stack (e.g., assembly
language, Smalltalk).

The main uses of coroutines are the implementation of compositions of state
machines as in Conway’s seminal paper [4] and the implementation of genera-
tors. A generator enumerates a potentially infinite set of values with successive
invocations. The latter use has led to renewed interest in coroutines and to their
inclusion in mainstream languages like C# [13], albeit in restricted form as gen-
erators.

Despite the renewed interest in the programming construct per se, the typing
aspects of coroutines have not received much attention. Indeed, the supporting
languages are either untyped (e.g., Lua, Scheme, Python), the typing for corou-
tines is trivialized, or coroutines are restricted so that a very simple typing is
sufficient. For instance, in Modula-2, coroutines are created from parameter-
less procedures so that all communication between coroutines must take place
through global variables. Also, for describing generators, a simple function type
seems sufficient.

Contribution. We propose a static type system for first-class, stackful coroutines
that may be used in both, symmetric and asymmetric ways.1 Moreover, we
permit passing arguments to a coroutine at each start and resume operation,
and we permit returning results on each suspend and on termination of the
coroutine (and we distinguish between these two events). Our type system is
based on the simply-typed lambda calculus. It includes an effect system that
describes the way the coroutine operations are used. We present a small-step
operational semantics for the language and prove type soundness.

Outline. Sec. 2 describes the language CorDuroy. It starts with some examples
(Sec. 2.1) before delving into operational semantics (Sec. 2.2) and the type system
(Sec. 2.3). Sec. 3 proves type soundness by establishing preservation and progress
properties following the syntactic approach [20]. Sec. 4 discusses related work,
and Sec. 5 concludes and outlines directions of further research.

2 CorDuroy

The language CorDuroy is a simply typed lambda calculus with recursive func-
tions and operations for handling coroutines. Fig. 1 specifies the syntax; labels `
only occur at run time. We define λ-abstraction as sugar for the fixpoint opera-
tor: λx.e := fix λ .λx.e.

Coroutines in CorDuroy are run-time entities identified by a label `. The
only way to create them is by applying the create operator to a function. Once
a coroutine has been created, it can be executed. Unlike threads in a multi-
threaded language, only one coroutine is active at any given time.

To activate a coroutine, there is a symmetric (transfer) and an asymmetric
(resume) operator. The symmetric operator transfer suspends the currently exe-
cuting coroutine and executes another2. The asymmetric operator resume builds

1 This terminology is due to De Moura and Ierusalemschy [14]. A coroutine is stackful,
if it can suspend inside nested function calls. Coroutines are asymmetric if coroutine
activity is organized in a tree-like manner: each coroutine invocation or resumption
always returns and yields to its caller. In contrast, symmetric coroutines can transfer
control among each others without restrictions.

2 We use the keywords established by De Moura and Ierusalemschy [14]. In Simula [5],
transfer corresponds to the system procedure RESUME, whereas “asymmetric”, yield
and resume correspond to “semi-symmetric”, DETACH and CALL, respectively.

2

B ::= Bool | Unit | . . .

k0 ::= true | false | unit | . . .

k1 ::= ¬ | . . .

k2 ::= ∧ | . . .
`, `′, . . . ∈ Labels

x, y, f, . . . ∈ Var

v ::= k0 | fix λf.λx.e | `
e ::= kn e1 . . . en | fix λf.λx.e

| x | e e | if e then e else e

| create x.e | yield e

| resume e e e e | transfer e e

| `
ϕ ::= ⊥ | τ ̈τ/τ | >

τ ::= B | τ ϕ−→τ | > | ⊥ | τ τ/τ
Fig. 1: Syntax.

a caller-callee relationship: if a coroutine resumes another coroutine, they become
caller and callee. The yield operator inside the callee suspends the coroutine and
returns control to the caller. Each of the three operators passes a value. In the
remaining paper, we understand “activate” to mean either transfer or resume,
but not yield.

The caller-callee relationship is also used when a coroutine finally returns a
value, as the value is then passed to the caller. Activating a coroutine after it
has returned causes a run-time error; hence, the caller needs to know whether
the callee coroutine has terminated. resume requires therefore as its third and
fourth parameter two result functions, one to call with yielded values and one
to call with the returned value3.

The language includes a countable set of primitive functions kn, having each
an arity n ≥ 0. Partial application of primitive functions is not allowed.

2.1 Examples

This section contains short examples of CorDuroy programs. We assume that
integers and strings are among the basic types B and that there are constants
kn for arithmetic operations, comparison, and printing. We also use the common
let · = · in · sugar for readability.

Divisors. Generators can be used to compute sequences one element at a time.
Fig. 2a shows a coroutine which generates the divisors of a number, and a con-
sumer which iterates over the divisors until the generator returns (and the second
result function of resume is called).

Mutable references. Coroutines are the only stateful construct in CorDuroy. In
Fig. 2b, a mutable reference is simulated by a coroutine which keeps an integer
value in a local variable. Whenever it is resumed with a function Int→ Int, it

3 Alternatively, the λ-calculus could be extended with variant types in order to tag
the result of resume with how it was obtained. We chose the two-continuation resume
for simplicity.

3

1 let divisors of = λn.
2 create .λ .
3 ((fix λloop.λk.
4 if (> k n) then unit
5 else let rem = (mod n k) in
6 let = (if (= rem 0)
7 then yield k else unit)
8 in loop (+ k 1)) 1)
9 in let g = divisors of 24 in

10 ((fix λf. λ .
11 resume g unit
12 (λn. let = (print int n)
13 in (f unit))
14 (λ . (print str ”finito”)))
15 unit)
16 // output: 1 2 3 4 6 8 12 24 finito

(a) Compute all divisors.

1 let makeref = λx0.
2 let main = fix λloop.λx.λupd.
3 let x’ = upd x in
4 let upd’ = yield x’ in
5 loop x’ upd’
6 in create . main x0
7 in let undef = fix λf.λx.(f x)
8 in let write = λr.λv.
9 resume r (λ .v)

10 (λ .unit) (λ .unit)
11 in let read = λ r.
12 resume r (λx.x) (λx.x) undef
13 in
14 let r = makeref 1 in
15 let = print int (read r) in
16 let = write r 2 in
17 print int (read r)
18 // output: 1 2

(b) Mutable references.
Fig. 2: Code examples.

create

��

waiting (for callee)

callee yields or returns

��
suspended

resume, transfer//
running

resume callee

OO

yield, transfer
oo

return // returned

Fig. 3: Life cycle of coroutines.

lets the function update the value and returns the new value. The example also
shows how fix can be used to create a diverging function with any desired return
type in the read function4.

2.2 Operational Semantics

This section presents a small-step operational semantics for CorDuroy, starting
with a life-cycle based view on coroutines to motivate the stack-based represen-
tation used in the reduction rules in Fig. 5.

The life cycle of a coroutine consists of the states suspended, running, waiting
and returned, as shown in Fig. 3. At any moment, there is only one running
coroutine.

The running coroutine can apply create to a function, creating a new corou-
tine which starts life in the suspended state (E-Create). It can also resume a
4 The language could alternatively be extended with a special variant of the resume

operator for coroutines which never return.

4

C ::= � | kn v1 . . . vi−1 C ei+1 . . . en (1 ≤ i ≤ n)

| e C | C v | if C then e else e

| resume C e e e | resume v C e e | resume v v C e | resume v v v C

| yield C | transfer C e | transfer v C

S ::= `@e; S?

S? ::= ε | S
labels(`@e; S?) = {`} ∪ labels(S?)

labels(ε) = ∅

Fig. 4: Evaluation contexts and stacks.

n > 0D
`@C[kn v1 . . . vn] ; S? | µ

E
→

D
`@C[JknK (v1, . . . , vn)] ; S? | µ

E E-Const

D
`@C[(fix λf.λx.e) v] ; S? | µ

E
→

D
`@C[e[f 7→ fix λf.λx.e] [x 7→ v]] ; S? | µ

E E-Fix

D
`@C[if true then et else ef] ; S? | µ

E
→

D
`@C[et] ; S

? | µ
E E-IfT

D
`@C[if false then et else ef] ; S? | µ

E
→

D
`@C[ef] ; S? | µ

E E-IfF

x∗ 6∈ free(e) ∪ {x} `∗ 6∈ dom (µ) ∪ labels(S?) ∪ {`}
v∗ = λx∗.((λx.e x∗) `∗) µ′ = µ ∪ {(`∗, v∗)}D
`@C[create x.e] ; S? | µ

E
→

D
`@C[`∗] ; S? | µ′

E E-Create

`′ ∈ dom (µ) e = resume `′ va vs vnD
`@C [e] ; S? | µ

E
→

D
`′@

`
µ

`
`′

´
va

´
; `@C [e] ; S? | µ \ `′

E E-Res

x∗ fresh e2 = resume ` va vs vnD̀
1@C1 [yield vy] ; `2@C2 [e2] ; S

?|µ
E
→

D̀
2@C2 [vs vy] ; S?|µ [`1 7→ λx∗.C1[x

∗]]
E E-Yie

D
`1@vr; `2@C2 [resume ` va vs vn] ; S? | µ

E
→

D
`2@C2 [vn vr] ; S

? | µ
E E-CoRet

D
`@C [transfer ` va] ; S? | µ

E
→

D
`@C [va] ; S? | µ

E E-TraSelf

`′ ∈ dom (µ) x∗ freshD
`@C

ˆ
transfer `′ v

˜
; S? | µ

E
→

D
`′@(µ(`′) v); S? | (µ \ `′) ∪ {(`, λx∗.C[x∗])}

E E-Tra

E-TraErr
`′ 6∈ dom (µ)˙

`@C
ˆ
transfer `′ va

˜
| µ

¸
→ Error

E-ResErr
`′ 6∈ dom (µ)˙

`@C
ˆ
resume `′ va vs vn

˜
| µ

¸
→ Error

Fig. 5: Small-step operational semantics rules.

5

suspended coroutine (the callee), becoming its caller (E-Res). In doing so, it
enters the waiting state, and the callee becomes running.

A running coroutine can also yield, after which it is suspended and the caller
running (E-Yie). If a running coroutine reduces to a value, it is said to return
that value. The returning coroutine enters its terminal state, and the value is
then passed to the caller if there is one (E-CoRet) or becomes the final result
of the program.

Alternatively, the running coroutine can transfer control to a suspended
coroutine, suspending itself. In this case, the successor coroutine not only enters
the running state, but it also becomes the (only) callee of the predecessor’s caller
(E-Tra).

In the rules, the state of a program being evaluated is represented as a pair
〈S | µ〉 of stack and store. The stack S contains, from left to right, the running
coroutine, its caller, its caller’s caller and so on, each in the form of labeled
contexts `@e (see Fig. 4). As the running coroutine is the top of the stack, the
reduction rules must never pop the last labeled context off the stack.

All suspended coroutines5 are kept in the store µ, a function from labels ` to
values v. The values in the store are the continuations of the yield and transfer
expressions which caused the coroutine to be suspended, or, in the case of newly
created coroutines, functions which are constructed to be applied likewise.

Coroutines in the returned state are neither in the stack nor in the store
because they play no further role in the execution. The waiting and suspended
states resemble each other in that neither state permits β-reductions.

The coroutine-related rules all maintain the invariant that a coroutine never
rests in the stack and in the store simultaneously. Rule E-Create sets up a
continuation v∗ which makes the new label `∗ known under the name x inside
the body expression e and passes the first input value to e. E-Res removes
the stored continuation of the given coroutine from the store and applies it to
the argument in a new labeled context on top of the stack. In the now-waiting
coroutine, the resume expression remains, awaiting a result from the coroutine
above. The third and fourth resume parameters are the result functions to be
called later with yielded and returned values, respectively.

E-Yie and E-Tra put the continuation of the running coroutine into the
store. While E-Yie passes the argument to the first of the two result functions
of the caller, E-Tra sets up a new stack top in which the continuation from
the store is applied to the argument, just like in E-Res. E-CoRet passes the
return value to the other result function in the caller and discards the callee. Of
the resume expression in E-Yie and E-CoRet, only the two result functions are
used; the old label ` need not match the returning or yielding coroutine because
the stack top may have been replaced in a transfer action.

If a coroutine attempts to activate another coroutine which is not in the
store (i.e., not suspended), execution aborts with a run-time error (E-ResErr,

5 An implementation would keep the coroutines within the store all the time and
annotate them with their state instead; however, the notion of putting coroutines
into the store and taking them out again makes the rules easier to read.

6

E-TraErr)6. As an exception to this rule, a coroutine may safely transfer to
itself, e.g. in a multitasking system with just one ready task (E-TraSelf).

Rule E-Yie is only enabled if the stack contains a suitable waiting corou-
tine below; fortunately, the type system rejects all programs in which a yield
expression could appear as a redex in the lowest labeled context.

There is no distinguished main program; the initial expression is also treated
as a coroutine, except that it starts in the running state. In order to evaluate a
CorDuroy program e, it is wrapped in an initial state with the fixed label `0:

initState(e) = 〈S0 | ∅〉 S0 = `0@e; ε (1)

The function J·K in E-Const maps primitive function symbols kn, n > 0 to
partial functions of the same arity. The notation e[x 7→ f] stands for standard
capture-avoiding substitution which replaces all free occurrences of x in e by f .
The set of free variables in e is free(e).

2.3 Type system

The type system ensures that values passed to and from coroutines do not cause
type errors at run time, and that coroutine operations within the same coroutine
body are compatible with each other. It is based on the simply-typed λ-calculus,
with an effect system describing which coroutine actions may occur during the
evaluation of an expression.

Effects. The effect part of the type and effect system summarizes the yield and
transfer expressions which may be evaluated during the evaluation of an expres-
sion. The propagation of effects through function application permits a called
function to yield and transfer on behalf of the running coroutine in a type-safe
way.

If an expression has the effect τi ̈τo/τr, then its execution may yield a
value of type τo to the calling coroutine and expect a value of type τi when it is
activated again. It may also transfer execution to a coroutine which yields values
of type τo or returns a value of type τr.

Effects ϕ form a lattice with bottom element ⊥ and top element > (see
Fig. 6). ⊥ means that the expression will under no circumstance ever yield. Effect
> means that yield expressions with different types are possible and nothing can
be said about the values.

Types. The type system features basic types B, function types, coroutine types
as well as top and bottom types.

6 This class of runtime errors can be eliminated if E-Res and E-Tra leave the corou-
tine in the store. Then, activating a terminated or waiting coroutine would invoke (a
copy of) the last stored continuation, similar to multi-shot continuations. We chose
the error-rules because they are more similar to how Lua and Python handle these
situations, and they do not need a facility to copy continuations.

7

⊥ t ϕ = ϕ t ⊥ = ϕ

> t ϕ = ϕ t > = >

(τi ̈τo/τr) t
`
τ ′i ̈τ ′o/τ ′r

´
=

`
τi u τ ′i

´
 ̈

`
τo t τ ′o

´
/

`
τr t τ ′r

´
ϕ1 v ϕ2 iff ∃ϕ′

1.ϕ1 t ϕ′
1 = ϕ2

(a) Effects.

> t τ = τ t > = >
⊥ u τ = τ u ⊥ = ⊥

⊥ t τ = τ t ⊥ = > u τ = τ u > = τ

τ+
1 t τ+

2 =

(
τ+
1 τ+

1 = τ+
2

> otherwise

τ+
1 u τ+

2 =

(
τ+
1 τ+

1 = τ+
2

⊥ otherwise

(b) Types.
Fig. 6: Join and meet.

Function arrows are annotated with the effect which may occur during the
function’s evaluation. We write τ1→τ2 for τ1

⊥−→τ2.
A value of type τi τo/τr corresponds to a coroutine which can be resumed

with values of input type τi and yields values of output type τo or returns a value
of return type τr.

Types form a flat lattice with bottom ⊥ and top >. For simplicity, subtyping
is not allowed, and subeffecting is only allowed in create and fix expressions. Join
and meet on types are defined in figure 6, where τ+ represent types except for
> and ⊥.

Typing rules. The rules are given in Fig. 7. The type environment Γ maps vari-
ables to their types. The store typing

Σ ⊆ Labels×{τi τo/τr|τi,o,r 6= >, τi 6= ⊥} (DefΣ)

maps labels to the types of the corresponding coroutines at run time. The exclu-
sion of > and ⊥ serves to avoid subtyping. Note that type rules do not extend
Σ; expressions are type-checked against a fixed Σ, and preservation (Sec. 3.1)
guarantees that some Σ can be found after each evaluation step.

The type function bastyk (kn) maps constants to their types of the form
B1 →B2 → . . .→Bn+1. We assume that bastyk (kn) agrees with the primitive
denotation JknK. We also assume that true and false are the only k0 of type Bool,
and that only unit inhabits Unit.

Most type rules compute the effect of their expression by joining the effects
of the subexpressions. The only exceptions are T-Fix and T-Create, in which
the effect of the body expression is moved onto the function arrow or into the
coroutine type.

The create expression creates a coroutine from a function. In doing so, it
binds a variable to the freshly created coroutine label.

yield and transfer contribute an effect with its input type τi. Both suspend the
current coroutine and expect a value of type τi the next time it is activated. The
output and return types in the effect of yield describe that yield certainly causes
the coroutine to yield a value of that type, but never causes a return. transfer,

8

however, transfers control and the relationship to the caller to a coroutine which,
in turn, may yield and return. Therefore, T-Tra puts the other coroutine’s
output and return types into the effect in order to force the surrounding yield
and return expressions to match.

Rule T-Prog defines when an entire program is well-typed. The input type
Unit is an arbitrary choice, but since the initial label `0 is not lexically accessible
in the program, the input type is of little importance anyway7. The output type
is bounded to ⊥ so that an expression which yields can never be the bottom-most
expression in a stack (and yield with e : ⊥, while allowed, will diverge instead of
yielding).

The initial store typing for a program e with `prog e : τ is defined as follows:

Στ
0 = {(`0,Unit ⊥/τ)} (2)

3 Soundness

This section contains the soundness proof. In Sec. 3.1, we prove that reduction
steps preserve typing. Sec. 3.2 contains the progress proof, stating that all well-
typed execution states are reducible or have finished.

3.1 Preservation

This section states and proves the preservation theorem (Theorem 1). We define
the notion of a well-typed execution state before we formulate some lemmas in
preparation for the main proof.

Fig. 8 contains the definition of an execution state 〈S | µ〉 being well-typed,
T-State. Apart from requiring that the types of store and stack members cor-
respond to the store typing Σ, which is defined in T-Store and T-StackN,
it poses a constraint Σ `w S about the waiting coroutines in the stack: the
redex of waiting callers must be a resume expression whose result functions are
compatible with the output and return types of the callee.

Lemma 1 If ∅|Σ ` C[e] : τ&ϕ, then ∅|Σ ` e : τ ′&ϕ′ for some τ ′, ϕ′ v ϕ, and
free(e) = ∅

Proof. By induction on C, using that the type rules for all term constructors in C
require the subexpressions to be well-typed, that all these type rules join the ef-
fects of the subexpressions, and the rules for C never enter the term constructors
whose typing rules modify Γ . �

Lemma 2 If Γ |Σ ` v : τ&ϕ, then ϕ = ⊥ and τ 6= ⊥.

7 If the program’s design features multiple coroutines transferring to each other, there
is still the possibility of having the initial program create one or more such coroutines,
each of which knows its label, and transferring control to one of them.

9

T-Const
bastyk (kn) = B1→ . . .→Bn+1 ∀i = 1 . . . n. Γ |Σ ` ei : Bi&ϕi

Γ |Σ ` kn e1 . . . en : Bn+1&
G

i=1...n

ϕi

T-Var
Γ (x) = τ

Γ |Σ ` x : τ&⊥

T-App
Γ |Σ ` e1 : τ2

ϕ3−−→τ1&ϕ1 Γ |Σ ` e2 : τ2&ϕ2

Γ |Σ ` e1 e2 : τ1&ϕ1 t ϕ2 t ϕ3

T-If
Γ |Σ ` ec : Bool &ϕc Γ |Σ ` et : τ&ϕt Γ |Σ ` ef : τ&ϕf

Γ |Σ ` if ec then et else ef : τ&ϕc t ϕt t ϕf

T-Fix
Γ, f :τ1

ϕ−→τ2, x :τ1|Σ ` e : τ2&ϕ′ ϕ′ v ϕ

Γ |Σ ` fix λf.λx.e : (τ1
ϕ−→τ2)&⊥

T-Label
Σ(`) = τi τo/τr

Γ |Σ ` ` : τi τo/τr&⊥
T-Create
Γ, x : τi τo/τr|Σ ` e : τi

ϕ−→τr&ϕ′ ϕ, ϕ′ v τi ̈τo/τr τi,o,r 6= >, τi 6= ⊥
Γ |Σ ` create x.e : τi τo/τr&⊥

T-Res
Γ |Σ ` ec : τi τo/τr&ϕ1

Γ |Σ ` ea : τi&ϕ2 Γ |Σ ` es : τo
ϕ3−−→τq&ϕ4 Γ |Σ ` en : τr

ϕ5−−→τq&ϕ6

Γ |Σ ` resume ec ea es en : τq&
G

i=1...6

ϕi

T-Yie
Γ |Σ ` e : τo&ϕ1 τi 6= >

Γ |Σ ` yield e : τi& (τi ̈τo/⊥) t ϕ1

T-Tra
Γ |Σ ` ec : τa τo/τr&ϕ1 Γ |Σ ` ea : τa&ϕ2

Γ |Σ ` transfer ec ea : τi& (τi ̈τo/τr) t (ϕ1 t ϕ2)

T-Prog
∅|∅ ` e : τ&ϕ ϕ v Unit ̈⊥/τ

`prog e : τ

Fig. 7: Typing rules.

Proof. Trivial from the definition of v and the typing rules. �

Lemma 3 If Γ, x : τ ′|Σ ` e : τ&ϕ and ∅|Σ ` v : τ ′&⊥, then Γ |Σ ` e[x 7→ v] :
τ&ϕ.

Proof. By induction over type derivations, replacing T-Var instances of free x
in e with type derivations for v. �

Definition 1 Given Γ,Σ, we write Γ |Σ ` e1 ≤ e2, if Γ |Σ ` e1 : τ&ϕ1 and
Γ |Σ ` e2 : τ&ϕ2 with ϕ1 v ϕ2. Σ ` e1 ≤ e2 is an abbreviation for ∅|Σ ` e1 ≤ e2.

Lemma 4 (Contexts are effect-monotone) If Γ |Σ ` e′ ≤ e and for some
τ, ϕ, Γ |Σ ` C[e] : τ&ϕ, then Γ |Σ ` C[e′] : τ&ϕ′ for some ϕ′ v ϕ, and Γ |Σ `
C[e′] ≤ C[e].

10

T-State
Σ `sto* µ Σ `le* S Σ `w S labels(S) ∩ dom (µ) = ∅

Σ ` 〈S | µ〉

T-Stack0

Σ `le* ε

T-StackN
` 6∈ labels(S?) Σ `le `@e Σ `le* S?

Σ `le* S where S = `@e; S?

T-StackE
Σ(`) = τi τo/τr ∅|Σ ` e : τr&ϕ ϕ v τi ̈τo/τr

Σ `le `@e

T-WaitN
S = `1@e1; S

′ τi τo/τr = Σ(`1) S′ = `2@e2; S
? e2 = C[resume ` va vs vn]

∅|Σ ` vs : τo
ϕs−−→τ&⊥ ∅|Σ ` vn : τr

ϕn−−→τ&⊥ Σ `w S′

Σ `w S

T-Wait1
S = `@e; ε Σ(`) = τi ⊥/τr

Σ `w S

T-Store
µ is function ∀(`, v) ∈ µ : Σ `sto (`, v)

Σ `sto* µ

T-StoreE
Σ(`) = τi τo/τr ∅|Σ ` v : τi

ϕ−→τr&⊥ ϕ v τi ̈τo/τr

Σ `sto (`, v)

Fig. 8: Well-typed execution states, stacks, stores.

Proof. By induction on C, using that the type rules for all term constructors in
C compute the effect of a composite expression as a join of the effects of the
subexpressions, and none of those type rules introduce variable bindings in Γ .
�

Lemma 5 Let S = `@C[e] ; S?, S′ = `@C[e′] ; S? such that Σ ` e′ ≤ e. Then
Σ `le* S ⇒ Σ `le* S′ and Σ `w S ⇒ Σ `w S′ hold.

Proof. Σ `w `@C[e′] ; S? follows from Σ `w `@C[e] ; S? because the rules only
involve the contents of Σ and S?. Furthermore, Σ `le `@C[e′] follows from
Σ `le `@C[e] by Lemma 4. Finally, the stacks do not differ in the sequence of
labels, so that the distinctness property also holds in the second stack. �

Lemma 6 Let S = `1@e1; `2@C[resume `′ vp vs vn] ; S? such that Σ `le* S and
Σ `w S. Let τi τs/τn = Σ(`1). Let v be a value with ∅|Σ ` v : τα&⊥ for an
α ∈ {s, n}. Then, S′ = `2@C[vα v] ; S? satisfies Σ `le* S′ and Σ `w S′.

Proof. Σ `w S′ follows directly from Σ `w S because the rule for `w does not
inspect the topmost expression.
To prove Σ `le* S′, we need to prove that
(a) `2 6∈ labels(S?),
(b) Σ `le `2@C[vα v], and

11

(c) Σ `le* S?.
Propositions (a, c) follow directly from the assumed Σ `le* S.
To prove proposition (b), it suffices to show that Σ ` vα v ≤ resume `′ va vs vn,
which follows from Σ `w S and the assumed type of v. �

Lemma 7 If τi ̈τo/τr v τ ′i ̈τ ′o/τ ′r, then all of the following hold:

– τi = τ ′i or τi = > or τ ′i = ⊥
– τo = τ ′o or τo = ⊥ or τ ′o = >
– τr = τ ′r or τr = ⊥ or τ ′r = >

Proof. Trivial from the definition of t and u. �

Lemma 8 (Well-typed initial states) Let e be an expression with `prog e : τ ,
and 〈S | µ〉 = initState(e). Then Στ

0 ` 〈S | µ〉.

Proof. The label disjointness property and Σ `sto* µ are trivially true because
µ = ∅. Σ `w S holds because the output type in Equation (1) was chosen as ⊥.
Finally, Σ `le* S holds due to the choice of coroutine type in Σ compared to
the condition on type and effect of e in T-Prog. �

Theorem 1 (Preservation) If Σ ` 〈S | µ〉 and 〈S | µ〉 → 〈S′ | µ′〉, then Σ′ `
〈S′ | µ′〉 for some Σ′ ⊇ Σ.

Proof. First, we observe that S `sto* µ and the label-disjointness condition are
preserved in rules E-Const through E-Fix because these rules only transform
the expression in the topmost labeled context without touching the store or
the remaining stack. For the remainder, we consider the evaluation rule used to
derive the assumption.
Case distinction on the evaluation rule.

– Case E-Const: So S = `@C[kn v1 . . . vn] ; S? and S′ = `@C[JknK (v1, . . . , vn)] ; S?.
We choose Σ′ = Σ. Since J·K is assumed to agree with bastyk (·), Σ `
JknK (v1, . . . , vn) ≤ kn v1 . . . vn holds and Σ `le S′ follows from Lemma 5
and the observation that JknK (v1, . . . , vn) and kn v1 . . . vn both have effect
⊥, which preserves `w properties from S to S′. 3

– Case E-IfT: So S = `@C[if true then e1 else e2] ; S? and S′ = `@C[e1] ; S?,
and µ′ = µ. Choose Σ′ = Σ. With Lemma 5, it remains to prove Σ ` e1 ≤
if true then e1 else e2, which is obvious from T-If. 3.

– Case E-IfF: Analogously. 3

– Case E-Fix: So µ = µ′, S = `@C[(fix λf.λx.e′′) v] ; S? and S′ = `@C[e′] ; S?

with e′ = e′′[f 7→ fix λf.λx.e] [x 7→ v] . By inversion of T-App, ∅|Σ ` (fix λf.λx.e′′) :
τ1

ϕ−→ τ2&⊥ and ∅|Σ ` v : τ1&⊥ both hold for some τ1, τ2, ϕ. Hence, by in-
version of T-Fix, Γ, f : τ1

ϕ−→ τ2, x : τ1|e′′ ` τ2 : ϕ′& for some ϕ′ v ϕ. The
proposition follows using Lemma 3 and Lemma 5. 3

12

– Case E-Create: So S = `@C[create x.e] ; S?, S′ = `@C[`∗] ; S?, and µ′ =
µ ∪ {(`∗, v∗)} with v∗ = λx∗.((λx.e x∗) `∗). From the assumed Σ `le* S,
Lemma 1 yields ∅|Σ ` create x.e : τc&ϕc for some τc, ϕc. The only rule to
derive this is T-Create, from which we can conclude that ϕc = ⊥ and
τc = τi τo/τr. Furthermore, the same rule requires that

x :τc|Σ ` e : τi
ϕ−→τr&ϕ′ (3)

for some ϕ, ϕ′ v τi ̈τo/τr. Choose Σ′ = Σ∪{(`∗, τc)} , which still is a func-
tion due to freshness condition on `∗. Also, the constraints on occurrences
of > and ⊥ in τi,o,r, as demanded in (DefΣ), are satisfied by the precon-
dition in T-Create. Then ∅|Σ′ ` `∗ : τc&⊥ holds, and Σ′ `le* S′ follows
by Lemma 5. Σ′ `w S′ follows from Σ `w S (using that `w is obviously
montone in Σ).
Σ′ `sto* µ′ requires that µ′ is a function (true due to the freshness of `∗),

and that v∗ has the right type: ∅|Σ′ ` v∗ : τi
ϕ∗

−−→ τr&⊥ for some ϕ∗ v
τi ̈τo/τr. This follows from (3) by T-App and T-Fix, observing that all
type derivations using Σ also work with its superset Σ′. 3

– Case E-Yie: Then S = `1@e1; `2@e2;S?

and S′ = `2@e′2;S
?

with e1 = C1[yield vy],
e2 = C2[resume ` va vs vn],
e′2 = C2[vs vy].
Also µ′ = µ ∪ {(`1, e′1)}
with e′1 = λx∗.C1[x∗].
We choose Σ′ = Σ.
Due to Σ `le* S, Σ must contain entries for `1, `2 of the form Σ(`k) = τk

i
τk
o /τk

r for k = 1, 2.
Furthermore, by T-StackN, ∅|Σ ` e1 : τ1

r &ϕ1
e and ∅|Σ ` e2 : τ2

r &ϕ2
e must

hold for some ϕ1
e v ϕ1, ϕ2

e v ϕ2 (where ϕk = τk
i ̈τk

o /τk
r).

To prove Σ′ `le* S′ and Σ′ `w S′ using Lemma 6,
we need to show ∅|Σ ` vy : τ1

o &⊥ (the rest follows immediately from the
assumptions and Σ′ = Σ).
Let τy, τ∗i be the types assigned to vy and yield vy, respectively, in the type
derivation for the assumed Σ `le `1@e1.
By T-Yie and Lemma 1, we get

τ∗i ̈τy/⊥ v τ1
i ̈τ1

o /τ1
r (4)

By Lemma 7, τy = ⊥ (impossible: Lemma 2), or τ1
o = > (contradicting

(DefΣ)), or τy = τ1
o . 3

To prove Σ `sto* µ′, it remains to prove that µ′ is still a function
(by T-State, `1 6∈ dom (µ), so adding `1 preserves the function property of
µ), and that ∅|Σ ` µ′(`1) : τ1

i
ϕ−→τ1

r &⊥ with some ϕ v ϕ1.
Applying Lemma 7 to (4), we know that τ1

i = τ∗i
(T-Yie forbids τ∗i = >, (DefΣ) forbids τ1

i = ⊥).

13

Setting Γ := x∗ : τi, we immediately get Γ |Σ ` x∗ ≤ yield vy,
and by Lemma 4, Γ |Σ ` C1[x∗] ≤ e1.

Hence, by T-Fix, ∅|Σ ` λx∗.C1[x∗] : τ1
i

ϕ′

−→τ1
r &⊥ for some ϕ′ v ϕ1. 3

– Case E-CoRet: Then S = `1@v; `2@C[resume ` va vs vn] ; S? and
S′ = `2@C[vn v] ; S?.
We choose Σ′ = Σ.
From Σ `le* S, we know that ∅|Σ ` v : τ1

r &⊥,
where τ1

i τ1
o /τ1

r = Σ(`1).
The proposition follows immediately using Lemma 6. 3

– Case E-Res: So S = `2@C[resume `1 va vs vn] ; S?,
and S′ = `1@(v1 va);S
with v1 = µ(`1), µ′ = µ \ `1.
Furthermore, we know that Σ(`1) = τi τo/τr

for some τi, τo, τr because Σ `le* S holds.
We choose Σ′ = Σ.
For Σ′ ` 〈S′ | µ′〉, we need to prove:
(a) Σ `sto* µ′,
(b) Σ `le `1@v1 va,
(c) `1 6∈ labels(S?) (which yields Σ′ `le* S′ together with (b)),
(d) Σ `w S′, and
(e) labels(S′) ∩ dom (µ′) = ∅.

Proposition (a) follows immediately from µ′ being a subset of µ and the
assumption Σ `sto* µ. 3Proposition (c) is clear from Σ ` 〈S | µ〉. 3Propo-
sition (e) is clear because moving `1 between sets preserves disjointness. 3
Proposition (b): prove ∅|Σ ` v1 va : τr&ϕ1 for some ϕ1 v τi ̈τo/τr.

By assumption Σ `sto* µ, we know about v1 that ∅|Σ ` v1 : τi
ϕ′

1−→ τr&⊥
holds
with ϕ′

1 v τi ̈τo/τr.
With Lemma 1, Lemma 2 and T-Res, we conclude that ∅|Σ ` va : τi&⊥,
which yields the desired result using T-App.
Proposition (d): By Lemma 1, Lemma 2 and T-Res, we know that ∅|Σ `
vs : τo

ϕs−→τq&⊥
and ∅|Σ ` vn : τr

ϕn−−→τq&⊥,
which matches the precondition of T-WaitN about vs and vn.
The other preconditions follow directly from the assumptions. 3

– Case E-TraSelf: So S = `@e1;S?, and S′ = `@e2;S? with e1 = C[transfer ` va],
e2 = C[va], µ′ = µ. We choose Σ′ = Σ. By Lemma 1 and inversion of T-
Tra, ∅|σ ` va : τi&⊥ holds for a τa with τa τo/τr = Σ(`). On the other
hand, the effect of the transfer-expression as computed in said rule has input
type τi, so by Lemma 4 and Lemma 7, τi = τa. Therefore, Σ `le* S′ follows
using Lemma 5.
The other preconditions of Σ ` 〈S′ | µ′〉 follow trivially from Σ ` 〈S | µ〉
because store, label sets and the contents of S? have not been changed in
the transition. 3

14

– Case E-Tra: So S = `1@e1;S? and S′ = `2@(v2 va);S? with v2 = µ(`2),
e1 = C[transfer `2 va], µ′ = (µ\ `2)∪{(`1, λx∗.C[x∗]}. Furthermore, we know
that Σ(`1) = τ1

i τ1
o /τ1

r for some τ1
i , τ1

o , τ1
r because Σ `le* S holds.

We choose Σ′ = Σ. For Σ′ ` 〈S′ | µ′〉, we need to prove: (a) Σ `sto* µ′,
and (b) Σ `le `2@v2 va, (c) `2 6∈ labels(S?) (yields Σ `le* S′ with (b)),
(d) Σ `w S′, and (e) labels(S′) ∩ dom (µ′) = ∅.
Proposition (a): since Σ `sto* µ and Σ `sto* µ′′ for any µ′′ ⊆ µ (which is
obvious from the definition), all we need to prove here is

∅|Σ ` λx∗.C[x∗] : τ1
i

ϕ−→τ1
r &⊥ for some ϕ v τ1

i ̈τ1
o /τ1

r (5)

We prove this by T-Fix. Hence, it suffices to prove x∗ :τ1
i |Σ ` C[x∗] : τ1

r &ϕ.
By Lemma 1, ∅|Σ ` transfer `2 va : τi&ϕt holds for some τi,o,r, ϕt with

τi ̈τo/τr v τ1
i ̈τ1

o /τ1
r (6)

With Lemma 7 and excluding τi = > and τ1
i = ⊥ (both impossible by

(DefΣ)), we know that τi = τ1
i . The type judgment of C[x∗] follows by

Lemma 4. 3
Proposition (b): First, Σ(`2) = τ2

i τ2
o /τ2

r for some τ2
i,o,r because the transfer

expression is well-typed, the only rule to derive which being T-Tra with its
precondition on `2, derivable using T-Label only. In the same instance of
T-Tra, va is constrained to have type τ2

i . From the assumed Σ `sto* µ

follows ∅|Σ ` e2 : τ2
i

ϕ′

−→ τ2
r &ϕ for some ϕ, ϕ′ v (τ2

i ̈τ2
o /τ2

r). Therefore by
T-App, ∅|Σ ` (e2 va) : τ2

r &(ϕ t ϕ′). 3.
Propositions (c) follows from the label disjointness condition in Σ `le* S:
given that `2 ∈ dom (µ), `2 cannot be in labels(S), which excludes the pos-
sibility of `1 = `2 as well as that of `2 appearing in S?. 3
Similarly, proposition (e) follows from `1 and `2 having switched set mem-
berships. 3
Proposition (d): Σ `w S holds by assumption. Since in S′, only the topmost
labeled context has been replaced, it suffices for Σ `w S to prove that
`2 has at most the same output and return types, i.e. τ2

o ∈ {⊥, τ1
o } and

τ2
r ∈ {⊥, τ1

r }. Applying Lemma 7 to (6) (with τ2
o = τ0 and τ2

r = τr, which
hold by T-Label), we know that τ2

o = ⊥, or τ1
o = > (impossible by def. of

Σ), or τ2
o = τ1

o . Similar for τ2
r , τ1

r . 3
– Case E-ResErr, E-TraErr : Impossible case because the right-hand side

of → would have a different shape.

End case distinction on the evaluation rule. �

3.2 Progress

In this section, we prove the progress property. First, we define a language of
redexes in Fig. 9, then we show in Lemma 10 that well-typed expressions are
either values or redexes embedded in evaluation contexts, which facilitates the
main progress theorem, Theorem 2.

15

R ::=kn v1 . . . vn | (fix λf.λx.e) v

| if true then e1 else e2 | if false then e1 else e2

| create x.e | yield v | resume ` v v v | transfer ` v

Fig. 9: The language of redexes.

Lemma 9 (Canonical forms) 1. If Γ |Σ`v : τ
ϕ−→τ ′&ϕ′, then v = fix λf.λx.e

for some f, x, e.
2. If Γ |Σ ` v : Bool &ϕ′, then v = true or v = false.
3. If Γ |Σ ` v : Unit &ϕ′, then v = unit.
4. If Γ |Σ ` v : τi τo/τr&ϕ′, then v = ` for some ` ∈ dom (Σ).

Proof. Of all typing rules, only T-Const, T-Fix and T-Label match values. Of
them only T-Const yields basic types (with a special assumption being made
in Sec. 2.3 about true and false being the only Bool values and unit being the
only Unit value), only T-Label yields coroutine types, and only T-Fix yields
function types. �

Lemma 10 (C[R]-decomposition) Let ∅|Σ ` e : τ&ϕ for some e,Σ, τ, ϕ.
Then e is a value, or e = C[R] for some C,R.

Proof. By induction over the type derivation.

– Case T-Const: So e = kn e1 . . . en for some n ≥ 0. If all ei are val-
ues vi, choose R = kn v1 . . . vn and C = �. Otherwise, let j = max{i |
ei is value}. By induction hypothesis, ej+1 = C ′[R′] for some C ′, R′. Choose
C = kn e1 . . . ejC

′ej+2 . . . en and R = R′. 3
– Case T-Label, T-Fix: Then e is a value. 3
– Case T-Var: Impossible due to Γ = ∅. 3
– Case T-App: Then e = e1 e2. If e1 = v1, e2 = v2, then by inversion of

T-App, v1 has a type τ
ϕ−→ τ ′, so by Lemma 9, e1 = λx.e′ for some x, e′,

or e1 = fix λf.λx.e′ for some f, x, e′. In both cases, C = � and R = e is
a solution. If e2 is not a value, then by induction hypothesis, e2 = C ′[R′].
Choose C = v1 C ′ and R = R′. If e1 is not a value, either, then by induction
hypothesis, e1 = C ′[R′]. Choose C = C ′ e2 and R = R′. 3

– Case T-Create: Then R = e and C = �. 3
– Case T-If, T-Res, T-Yie, T-Tra: In an analogous manner to T-App. �

Theorem 2 (Progress) Let 〈S | µ〉 be an evaluation state and Σ a store typing
so that Σ ` 〈S | µ〉. Then S = `@v; ε for some v, `, or 〈S | µ〉 → 〈S′ | µ′〉 for
some S′, µ′, or 〈S | µ〉 → Error.

Proof. From Σ ` 〈S | µ〉 follows by definition S = `@e;S?, hence ∅|Σ ` e : τ&ϕ
for some τ , ϕ. Thus, by Lemma 10, e = C[R] for some C,R, or e is a value.
If e is a value v, then either S? = ε, thus S = `@v; ε (final result computed),

16

or S? = `2@e2;S?
2 . In that case, Σ `w S entails that e2 must have the shape

C2[resume `′ va vs vn], and E-CoRet applies. Thus remains the e = C[R] case,
which we prove by case distinction on R: If e is a value, then either the program
has finished or E-CoRet applies. Otherwise, case distinction on R: (simple cases
omitted for brevity):

– Case kn v1 . . . vn: Then E-Const applies. 3

– Case if b then e1 else e2, b ∈ {true, false}: Then E-IfT or E-IfF applies. 3

– Case (fix λf.λx.e) v: Then E-Fix applies. 3

– Case create x.e: Then E-Create applies. 3

– Case yield v: Then by T-Yie, the yield-subexpression must have a nontrivial
effect ϕ′ = τ ′i ̈τ ′o/τ ′r with τ ′o 6= ⊥ (τ ′o = ⊥ only if v has type ⊥, impossible
for values), and by Lemma 4, ϕ′ v ϕ must hold, so that by Lemma 7, the
output type in ϕ must be τ ′o (or >, but that is impossible due to Σ `le `@e
and (DefΣ) forbidding output type >).
By assumption, Σ `w S holds, which means that since τ ′o 6= ⊥, S? must have
the shape S? = `2@C2[resume ` va vs vn] ; S?

2 . Therefore, E-Yie applies. 3

– Case resume `′ v2 v3 v4: Then either E-Res or E-ResErr applies, depending
on whether `′ ∈ dom (µ) holds or not. 3

– Case transfer `′ v: Then one of E-TraSelf, E-Tra, E-TraErr applies. �

4 Related Work

Formalizations of coroutines. De Moura and Ierusalemschy [14] formally define
coroutines in an untyped λ-calculus with mutable variables as a model for Lua
coroutines. Their interexpressibility results (e.g. transfer in terms of resume/yield)
make heavy use of untyped mutable variables; it is yet unclear which of the trans-
formations can be adapted to a statically-typed setting. Their work contains a
comprehensive overview of the state of the art in coroutines and related tech-
niques.

Wang and Dahl [18] formalize the control-flow aspects of idealized Simula
coroutines. The operational semantics of Belsnes and Østvold [1] also focuses on
the control-flow aspects but includes threads and thread-coroutine interaction.
Laird [10] presents a process calculus in which the coroutine is the basic building
block. Berdine and coworkers [2] define coroutines in their process calculus.

Language design. Languages with parameterless coroutines include Simula [5],
Modula-2 [19], and BETA [9]. However, the type systems of these languages need
not treat coroutines with much sophistication because the coroutine operations
do not pass values.

Some mainstream dynamically-typed languages like Python [17] and Lua [15]
pass values to and from coroutines, but without a static type system. C# [13] has
static typing and generators (asymmetric coroutines with parameters only for
yield), but as the yield-equivalent may only be used lexically inside the generator’s
body, the type system avoids the complexity involved with stackful coroutines.

17

Marlin’s ACL [12] is a (statically typed) coroutine extension of Pascal in
which coroutines can accept parameters. In analogy to the separation between
procedures and functions in Pascal, it features separate syntax for symmetric
and asymmetric coroutines. The problem of procedures performing coroutine
operations on behalf of the enclosing coroutine is solved by referring to the static
block structure, which simplifies the type system at the expense of flexibility.

Haynes and coworkers [7] express coroutines using continuations in Scheme;
Harper and colleagues [6] in turn describe a type system for continuations.

Lazy languages like Haskell [16] get asymmetric coroutines for free: a corou-
tine can be viewed as a transformer of a stream of input values to a stream
of output values, which is straightforward to implement using lazy lists. Blaze-
vic [3] produced a more sophisticated monad-based implementation of symmetric
coroutines.

5 Conclusion

We presented CorDuroy, a language with type-safe stackful asymmetric and sym-
metric first-class coroutines, and proved its soundness. CorDuroy constitutes the
first provably sound type system for an eager-evaluated language that supports
realistic and expressive facilities for coroutines.

One obvious direction of further research is the addition of polymorphism.
For subtype polymorphism, (a subset of) C# would be a promising candidate
since it already has generators. Parametric polymorphism would likely bring
challenges similar to those caused by mutable references.

As this work was inspired by De Moura and Ierusalemschy’s paper [14] in
which they present translations between various styles of coroutines, continu-
ations and threads in an untyped setting with mutable variables, it would be
interesting to see if the corresponding typed equivalences also hold.

Currently, the operational semantics contains failure rules. Instead, linearity
could be introduced to prevent the activation of returned coroutines by keeping
track of the coroutine state.

References

1. Belsnes, D., Østvold, B.M.: Mixing threads and coroutines (2005), submitted to
FOSSACS 2005, available by mail from bjarte@nr.no

2. Berdine, J., O’Hearn, P., Reddy, U., Thielecke, H.: Linear continuation-passing.
Higher-Order and Symbolic Computation 15(2-3), 181–208 (2002)

3. Blazevic, M.: monad-coroutine: Coroutine monad transformer for suspending
and resuming monadic computations. http://hackage.haskell.org/package/

monad-coroutine (2010)
4. Conway, M.E.: Design of a separable transition-diagram compiler. Comm. ACM

6(7), 396–408 (1963)
5. Dahl, O.J., Myrhaug, B., Nygaard, K.: SIMULA 67 Common Base Language.

Norwegian Computing Center, Oslo (1970), revised version 1984

18

6. Harper, R., Duba, B.F., MacQueen, D.: Typing first-class continuations in ML. In:
Proc. 1991 ACM Symp. POPL. ACM Press, Orlando, FL (Jan 1991)

7. Haynes, C.T., Friedman, D.P., Wand, M.: Obtaining coroutines with continuations.
Computer Languages 11(3), 143–153 (1986)

8. Knuth, D.E.: Fundamental Algorithms, The Art of Computer Programming, vol. 1.
Addison-Wesley, Reading, MA, 2nd edn. (1968)

9. Kristensen, B.B., Pedersen, B.M., Madsen, O.L., Nygaard, K.: Coroutine sequenc-
ing in BETA. In: Proc. of 21st Annual Hawaii International Conference on Software
Track. pp. 396–405. IEEE Computer Society Press, Los Alamitos, CA, USA (1988)

10. Laird, J.: A calculus of coroutines. In: Dı́az, J., Karhumäki, J., Lepistö, A., San-
nella, D. (eds.) ICALP. Lecture Notes in Computer Science, vol. 3142, pp. 882–893.
Springer (2004)

11. Liskov, B.: CLU reference manual. Springer Verlag (1981), lNCS 114
12. Marlin, C.D.: Coroutines: a programming methodology, a language design and an

implementation. Springer (1980)
13. Microsoft Corp.: C# Version 2.0 Specification (2005), http://msdn.microsoft.

com/en-US/library/618ayhy6(v=VS.80).aspx

14. de Moura, A.L., Ierusalimschy, R.: Revisiting coroutines. ACM Trans. Program.
Lang. Syst. 31(2), 1–31 (2009)

15. de Moura, A.L., Rodriguez, N., Ierusalimschy, R.: Coroutines in Lua. Journal of
Universal Computer Science 10, 925 (2004)

16. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries, The Revised Report.
Cambridge University Press (2003)

17. Van Rossum, G., Eby, P.: PEP 342 – coroutines via enhanced generators. http:
//www.python.org/dev/peps/pep-0342/ (2005)

18. Wang, A., Dahl, O.J.: Coroutine sequencing in a block structured environment.
BIT Numerical Mathematics 11(4), 425–449 (1971), http://www.springerlink.
com/content/g870vkxx22861w50

19. Wirth, N.: Programming in Modula-2. Springer (1982)
20. Wright, A., Felleisen, M.: A syntactic approach to type soundness. Information

and Computation 115(1), 38–94 (1994)

19

