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Abstract
LJGS is a lightweight Java core calculus with a gradual security type system. The calculus guar-
antees secure information flow for sequential, class-based, typed object-oriented programming
with mutable objects and virtual method calls. An LJGS program is composed of fragments that
are checked either statically or dynamically. Statically checked fragments adhere to a security
type system so that they incur no run-time penalty whereas dynamically checked fragments rely
on run-time security labels. The programmer marks the boundaries between static and dynamic
checking with casts so that it is always clear whether a program fragment requires run-time
checks. LJGS requires security annotations on fields and methods. A field annotation either
specifies a fixed static security level or it prescribes dynamic checking. A method annotation
specifies a constrained polymorphic security signature. The types of local variables in method
bodies are analyzed flow-sensitively and require no annotation. The dynamic checking of fields
relies on a static points-to analysis to approximate implicit flows. We prove type soundness and
non-interference for LJGS.
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Technical Report

This is the technical report for our ECOOP2016 paper. It includes the text of the original
paper followed by appendices. The appendices give the complete rules for LJGS’ semantics
and type system as well some details that were excluded from the original paper for lack of
space.
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1 Introduction

Information-flow control (IFC) is a cornerstone of language-based security. A typical IFC
policy rules out the flow of information from classified sources to public sinks. The technical
property aimed for is noninterference: changing a classified source does not influence the
public sinks. Noninterference comes in different flavors depending on the observational
capabilities of an attacker (e.g., termination sensitive or not, batch or interactive).

There are also different kinds of IFC. A static system performs a static analysis, for
instance using a security type system, and guarantees noninterference for analyzed programs.
A dynamic system attaches run-time security labels to values, propagates them along with
the values, and checks them at appropriate points during program execution. Hybrid systems
employ additional static analysis to improve precision in the detection of implicit flows [23].

The choice between a static and a dynamic system is a difficult trade-off in the development
of secure software. For new software components that are designed with security in mind
and for components that have high reliability requirements a static analysis is a good fit:
It does not impose any run-time overhead and provides hard static guarantees whereas a
dynamic system needs to manage security labels at run-time and often aborts a running
program when a security problem is detected.

For the integration of legacy components as well as for prototyping, static IFC can impede
programming productivity significantly: Simple analyses yield many false positives and thus
may reject many programs that are in fact secure. Precise analyses often require extensive
manual annotation of the source code. They rely on complex abstract domains that may be
computationally expensive or difficult to understand by non-experts. In contrast, dynamic
approaches rely on an instrumented run-time system. Thus, after specifying a security policy,
a programmer can debug policy breaches by testing and inspecting concrete program runs.

Contributions
To make the benefits of both approaches available to mainstream object-oriented programming,
we propose a type-based amalgamation of static and dynamic IFC for Java. Inspired by work
on gradual typing [26, 14], our system enables programmers to rely on the guarantees and
efficiency of a lightweight security type system and to back off to dynamic checking when
necessary. Gradual typing enables the composition of programs from typed and untyped
fragments using suitable type casts at the interfaces. It guarantees full compliance with the
type system in the typed fragments, whereas untyped fragments may raise run-time type
errors. Gradual security typing transposes this approach to an information flow setting.

Lightweight Java with Gradual Security (LJGS) is an object-oriented core calculus that
implements our ideas. LJGS is a subset of Java without threads, exceptions, or reflection. It
is inspired by Lightweight Java (LJ) [29]. Our specification of LJGS is type-based: it takes
the form of a type system and it assumes that the underlying program is well-typed. Thus,
LJGS is independent of specific Java typing features like generics. The LJGS types in this
paper amount to type annotations in an actual Java program.

Following Denning [10], LJGS specifies permissible information flows using a lattice
(Sec,v) of security levels. For each field of a class, the programmer specifies a fixed security
level or marks the field as dynamically checked. For each method, the programmer supplies
a constrained polymorphic security type signature (see examples in Section 2). The signature
relates the security types of the arguments, the result, and the effect on global variables with
each other and with fixed levels that arise from field accesses. The security types of local
variables need not be declared. Moreover, the types of local variables are flow sensitive, that



is they can change during the method; object field types are flow insensitive to keep static
checking light-weight. In contrast to other work on security type signatures for Java [30] our
type checking algorithm works directly on the constraints.

The LJGS type system is designed so that the security level of a value with a static
security type does not have to be tracked at run-time. Each value with a dynamic security
type, in a dynamic field or in a temporarily dynamic local variable, carries a run-time
security label that overapproximates its true security level. Implicit flows are detected with
an approach inspired by hybrid monitors [23]: at the join points in the control-flow graph,
security labels of variables and fields are upgraded preemptively if they could be updated
in the untaken branches. A points-to analysis assists in determining the heap references
to fields that require upgrading. Purely dynamic approaches like the no-sensitive-upgrade
(NSU) policy [3, 36] may be used as well, but with more conservative results.1

No existing system provides a similarly powerful combination of static and dynamic
IFC for a Java-like language. In particular, prior work [12, 13] illustrates the principles of
gradual security typing with toy languages. While LJGS is the result of extrapolating similar
principles to an object-oriented setting, extensions required in practice, like polymorphic
signatures and avoiding run-time checks for static code, yield a type- and run-time system that
differs significantly from prior designs. The differences are further elaborated in Section 9.

Technical results: Besides proving type preservation and progress (up to breaches of
the security policy in dynamic updates), our key result is batch termination insensitive
non-interference (BTINI), as defined by Askarov et al [2]. We assume that an attacker can
only access the public part of the heap, may construct the public arguments of any LJGS
method, run it, and inspect only the public part of the result and the heap afterwards. If the
method diverges or aborts, the attacker receives no information. There is no way to obtain
intermediate results.

Scope of the LJGS calculus
LJGS supports the features of class-based, typed object-oriented languages that pose fun-
damental challenges for information flow control: mutually recursive methods and classes,
mutable local variables, mutable objects, and virtual method calls. In the following, we
summarize these challenges and then discuss features omitted from LJGS, namely exceptions,
and Java-style downcasts and type-tests. Furthermore, Section 7 discusses how a practical
language based on LJGS could deal with reflective and otherwise hard-to-analyze code.
Mutually recursive classes and methods complicate global, inter-procedural inference
of types and information flow. LJGS supports local type inference, only. It avoids the need
for global inference with annotations on methods and classes. The issue of mutable local
variables arises already in simple imperative languages [24], but it is not addressed by
previous work on gradual security [12, 13]. For LJGS, we adapt best practice in maintaining
a program counter type to track implicit flows and in handling variables flow-sensitively
[17, 23] to improve precision.

Mutable objects may lead to global implicit flows, as the following example shows:
class C { int F; void setF (){ this .F = 1; };}
C c = new C(); C d = c;
i f ( secret == 42) {d.setF ();}
printPublic (c.F); // <- information leak

1 We used NSU in a previous version of this paper: http://proglang.informatik.uni-freiburg.de/
projects/gradual/ljgs/fcs2015.pdf

http://proglang.informatik.uni-freiburg.de/projects/gradual/ljgs/fcs2015.pdf
http://proglang.informatik.uni-freiburg.de/projects/gradual/ljgs/fcs2015.pdf


Here, secret has a high-security type and printPublic is a low-security sink. The field F of
the object c is updated under a high-security program counter by calling method setF() on
d which is an alias of c. Afterwards, c.F is publicly exposed by printPublic(). However,
there is no local indication for the leak: the program does not directly change c.F. The
reason for the leak is that c, d, and this in the method call to setF are aliases for the same
object during the execution of the program. Sound information flow control has to prevent
low-security access to the field c.F after the update, even if the update is performed on a
different alias or in a different method.

In LJGS and other security-typed languages [21, 22] this requirement is enforced by
fixed, flow-insensitive security types for fields and by write-effect annotations on methods
that indicate the types of fields that a method updates. For static, high-security program
counters, low-security or dynamic effects are forbidden. Dynamic program counters admit
only dynamic effects and dynamic fields updates. LJGS treats mutable objects differently
than previous work[13], where run-time labels are required even for statically typed object
references.

Virtual method calls cause conditional control flow and thus may create implicit
information flows: the run-time type of the receiver object selects the implementation of a
method to execute. While dynamic enforcement of information flow copes naturally with
dynamic dispatch, statically checking a virtual method requires a sound, static approximation
of the security properties of all possible implementations that might be executed. LJGS
supports dynamic dispatch for Java-like class derivation and method overriding. To soundly
type-check method calls, the type system imposes a restriction on signatures of overriding
methods (cf. Definition 5, Section 4.4).

Among the features that LJGS omits, support for (catchable) exceptions is the most
challenging for information flow control:2 throwing an exception introduces non-local implicit
information flows from the program counter of the throw-site to any exception handler in
the call stack. Practical languages with type-based support for information flow control
like JIF [21] and FlowCaML [22] solve this problem with additional effect annotations on
methods that track the program counter type at the throw-site. This exception effect is an
appropriate lower bound for the program counter type of exception handlers. To simplify
the presentation in this paper, we do not consider catchable exceptions, but we expect the
extension of LJGS’s type system with exception effects to be unsurprising, as the typing
constraints of LJGS are similar to FlowCaML’s constrained type schemes.

Banerjee and Naumann identify (down-)casting of classes and type test as potential
sources of information flow [6]. A conditional based on a type test creates an information
flow from the tested object to the program counter of the branches. For example, the body
of the condition in line 5 executes with a high-security program counter, as the run-time
class of c depends on the value of the high-security variable secret (line 4).

1 class C { }
2 class D extends C { }
3 C c;
4 i f ( secret == 42) { c = new D(); } else { c = new C(); }
5 i f (c instanceof D) {
6 ... // <-- high - security program counter
7 }

LJGS does not support type tests directly, but as the objects involved in branch conditions
are already tracked, the feature would be straightforward to add as a primitive operation.

2 It is unproblematic to extend LJGS with uncatchable exceptions, as abrupt program termination does
not violate BTINI.



1 int max( int x, int y) where { x ≤ ret , y ≤ ret } {
2 i f (x ≤ y) {x = y;} return x;
3 }
4
5 class Logger { String [LOW] buf; String [HIGH] hbuf; String [?] dbuf; }
6
7 int maxMsg ( Logger log , int x, int y)
8 where { x ≤ ret , y ≤ ret , log ≤ LOW} and { LOW } {
9 i f (x ≤ y) { x = y; }

10 log.buf = "max was called ";
11 return x;
12 }

Figure 1 Examples of method definitions and polymorphic signatures

Downcasts may result in additional exceptional flows when a cast error is recoverable. As we
currently do not consider exceptions for LJGS, we also omit downcasts for simplicity.

2 A Taste of LJGS

This section demonstrates the salient features of LJGS. The security lattice used in the
examples has at least two points, LOW and HIGH, where LOW v HIGH and HIGH 6v LOW.

Figure 1 illustrates how to specify information flow policies via security signatures. The
method max calculates the maximum of its parameters x and y. Clearly, the method’s result
depends on both parameters. To express this dependency, method max carries polymorphic
constraints in the where clause of its signature. It indicates that information may flow from
x and y to the result by asserting that the parameters’ security types are lower bounds for
the type of the return value. The variables x, y, and ret stand for the security type of
the parameters x, y, and the return value. As the variables are not bounded by concrete
security levels, the signature is polymorphic and max may be called under any program
counter type with arguments that satisfy the constraints. It may also be called with two
dynamic arguments.

Line 5 of Figure 1 defines a class Logger with three fields: buf has with static security
type LOW, hbuf with static security type HIGH, and dbuf with dynamic type ?. The method
maxMsg is a version of max with global side effects; it writes to the low-security field of a
Logger object. The signature of the method indicates this global effect to a LOW field in
the and part of the where clause. LJGS requires that the program counter type at all call
sites is smaller than the declared effect {LOW}, which guarantees that maxMsg is only called
securely in contexts where the program counter security level is LOW. The signature of maxMsg
additionally enforces that the log parameter is a low-security reference by upper-bounding it
with LOW. The parameters x and y remain polymorphic, as they do not influence the global
side effect. Typically, parameters have concrete security types as upper bound, like log in
method maxMsg, if either the method requires read or write access to a field of that type or
if the parameter flows into a program counter for a field update.

Figure 2 illustrates the use of polymorphic methods in dynamic and static code. Dy-
namically checked values are created with a value cast like (? W HIGH)secret. The two
casts in line 1 create a dynamic version of the high-security value in variable secret and a
low-security constant 42, storing them in x and y, respectively. The source type of a cast,
here HIGH and LOW, respectively, indicates what run-time label to attach to the cast value.
The destination type is the dynamic type, ?. The polymorphic method maxMsg may be called
with arguments that are either all static (line 3) or all dynamic (4). The recipient r is typed
flow-sensitively and has type HIGH in line 3 and type ? in line 4.

Calling maxMsg with mixed static and dynamic arguments, as shown in line 7, is not



1 Logger log = new Logger (); int x = (? W HIGH) secret ; int y = (? W LOW) 42; int r;
2
3 r = this . maxMsg (log , secret , 42);
4 r = this . maxMsg (log , x, y);
5
6 // type error : uncontrolled mix of dynamic and static arguments
7 // r = this . maxMsg (log , secret , y);
8
9 i f (x == 42) {

10 // type error : program counter is statically unknown
11 // r = this . maxMsg (log , x, y);
12 }

Figure 2 Calling polymorphic methods

1 int maxMsgDyn ( Logger log , int x, int y)
2 where { x ≤ ret , y ≤ ret , log ≤ ?} and { ? } {
3 i f (x ≤ y) { x = y; }
4 log.dbuf = "max was called "; return x; }
5
6 void logResults ( Logger log , boolean privMode , int h, int l)
7 where { HIGH ≤ h , l ≤ LOW ,
8 , privMode ≤ ?, privMode ≤ LOW , log ≤ ?, log ≤ LOW}
9 and { ?, LOW } {

10 log.dbuf = " public result :" + (? W LOW) l;
11 i f ( privMode ) {log.dbuf += " secret result :" + (? W HIGH) h; }
12 /* ... */
13 i f (! privMode ) {log.buf = (LOW W ?) log.dbuf; }
14 }
15
16 boolean high = ...; // a high -sec . value
17 maxMsgDyn (log , x ,y);
18 i f (high) {( HIGH V ?) { maxMsgDyn (log , x ,y); }}

Figure 3 Examples of methods using dynamic IFC

allowed in this example: The dynamics of LJGS (cf. Sections 5 and 6) do not represent static
security information at run-time. Thus, information flow between static and dynamic types
cannot be controlled only by inspecting run-time security labels and the type system forbids
flows from static to dynamic entities except when they are explicitly controlled by casts.
Uncontrolled flows from dynamic to static entities are also forbidden, as dynamic labels are
not available at type-checking time. To enforce both restrictions, constraints of the form
x ≤ y are not satisfiable if x is static and y is dynamic, or vice-versa. Thus the call in Line 7
violates the signature of maxMsg which relates both arguments with ret.

LJGS imposes similar restrictions for implicit flows. For example, the call to maxMsg in
line 11 would be rejected. Testing the dynamic variable creates a dynamic program counter
that cannot be checked against the static effect of maxMsg’s signature.

Figure 3 illustrates the distinguishing feature of LJGS: the integration of dynamic and
static enforcement of security policies. The method maxMsgDyn is a less restrictive version of
maxMsg that relies on dynamic IFC. As before, its signature states that x and y flow into
the return value. But instead of a LOW effect, it asserts a dynamic effect and requires that
the log object admits dynamic access (i.e., is smaller that ?). While maxMsg writes to a
low-security field and is thus incompatible with high-security program counters, maxMsgDyn
uses the dynamic field dbuf. Dynamic fields are checked flow-sensitively at run-time, so that
LJGS permits calls to maxMsgDyn in low- and high-security program counters (lines 16 to 18
in Figure 3). After line 17, log.dbuf contains a dynamic low-security string. The statement
starting with “(HIGH V?)” in line 18 is a context cast which instructs the run-time system
to propagate a high-security program counter label for the statements contained in the cast.



1 interface Modifier { int modify ( int x) where { x ≤ ret }; }
2
3 int maxMod ( int x , int y, Modifier ymod) where { x ≤ ret , y ≤ ret , ymod ≤ ret }{
4 z = ymod. modify (y);
5 i f (x ≤ z) { return z } else { return x }
6 }

Figure 4 Example of object-oriented code.

As a result, the dynamic label of log.dbuf can be updated to a high-security label after the
call in line 18 to reflect the implicit flow from the program counter into log.dbuf.

The method logResults (also in Figure 3) shows how to adapt information flow behavior
dynamically using a boolean flag. It takes as arguments a log object, a boolean flag privMode
and two integers h and l. The method’s purpose is to write the values of l and h to various
buffers in the log object, depending on the flag privMode (“private mode”). The signature
states that h is HIGH3 and l is LOW. It also states that the method has both, an effect of type
dynamic (?) and static-low (LOW). Similarly it requires log to admit accesses to fields of type
? and LOW, and that privMode can flow into fields of type ? and LOW. The reason for these
constraints become clear when inspecting the method’s body: in line 11 there is a dynamic
write of a dynamic high-security value to dbuf in the context of privMode and log and in
line 13 there is a static write to buf using the value of dbuf cast to LOW in the context of
privMode and log. Despite the copy of the potentially high-security content of dbuf to buf
in line 13, the method is actually secure: the flag privMode guards the field updates such
that a high-security content of dbuf is never written to buf. If the author of logResults
would have failed to guard the field updates correctly, for example by accidentally omitting
the negation of privMode in line 13, the value cast from ? to LOW would have aborted the
program by signalling a dynamic security violation. Using boolean flags in such a way is only
possible in the dynamic fragment of LJGS; if log.dbuf were static, the type system would
require it to have a high-security type and unconditionally forbid the copy to log.buf.

It remains to explain how the constraints for privMode and log can be possibly satisfied,
given the premise that a value cannot be implicitly converted between static and dynamic
types. LJGS includes a special bottom type, called the public type (•), for this purpose. The
type systems ensures that such a public value carries no confidential information so that it
can be used in dynamic code without carrying a run-time label.

Figure 4 shows a final example that illustrates the interaction of LJGS’ gradual security
typing with object-oriented code. The interface Modifier specifies a method modify with a
signature that asserts no global side effects and where the input flows into the output. The
method maxMod calculates the maximum of its arguments x and y after modifying y using
the Modifier object ymod. Its signature contains the same constraints as max in Figure 1
and adds the additional requirement that ymod is less confidential than the result.

The following code snippet implements the polymorphic max method with maxMod:
class Id extends Modifier { int modify ( int x) where { x ≤ ret } { return x; }}
// re - implementation of max
int max2( int x, int y) where {x ≤ ret , y ≤ ret} { return maxMod (x, y, new Id ()); }

Class Id implements an identity modification. Its modify method inherits the constraints
of the Modifier interface. In LJGS, freshly create objects are always public. By passing

3 A concrete security type as lower bound to a parameter is never required in LJGS. Here it is specified
to make h a high-security value for the sake of the example.



prog ::= cld1 .. cldns

cld ::= classC extends cl{F1[a1] .. Fn[an]md1 ..mdm} cl ::= C | Object
a ::= • | A | ? md ::= M(var1, .. , varn)whereS andG{s return y}
x, y ::= var | this
e ::= x | x.F | N | x+ y | newC(x1, .. , xn) | (aW a′)x

s ::= var = e | x.F = y | var = x.M(y1, .. , yn) | s; s
| if [sl,L,G](x == y){s}{s} | while [sl,L,G](x == y){s} | (aV a′){s}

sl ::= unique identifiers for branching statements

Figure 5 Syntax of LJGS

a new Id instance to maxMod, max2’s signature is as flexible as that of max: the constraint
ymod ≤ret of maxMod is trivially satisfied and can be omitted from the signature of max2.

Semantically, the result of max2, or of max for that matter, always has a security level
that is the least upper bound of x and y. Thus, calling max2 with statically or dynamically
typed arguments makes little difference. In the following call to maxMod, however, a static
call is more conservative than a dynamic one.
class Erase extends Modifier { int[•] def; int modify ( int y) { return def; }}
/* ... */ z = maxMod (42 , y, new Erase (0)); /* ... */

Here we use an Erase modifier that replaces the value of y value with a public constant. The
signatures of maxMod and Erase.modify still assert a dependency on the argument y but
dynamically the connection is cut by the particular implementation of Erase.modify. Thus,
the following call succeeds without security problems when printPublic is a low-security
sink and secret a static high-security variable.
y = (? W HIGH) secret ; z = maxMod (42 , y, new Erase (0)); printPublic (( LOW W ?)z);

A corresponding static call without the typecasts would be rejected by the type checker:
maxMod’s signature would type z as HIGH, even though no information flows from y to z.

3 Syntax of LJGS Programs

LJGS extends Lightweight Java with annotations for security types and casts.
To better focus on the security aspects and to avoid notational clutter, we omit the Java

types and signatures for fields, local variables, and methods; we only write the annotations
relevant for security typing.4 Nevertheless, we assume that all programs are well-typed Java
programs where types, signatures, and declarations of local variables are erased.

An LJGS program (see Figure 5) consists of a set of class definitions, cld, followed by a
statement s, the entry point to the program. Class definitions consist of field declarations,
Fi[ai], and method declarations, mdi. Classes form a hierarchy with Object at its root. For
simplicity, all method and field names are unique and we assume that the relationship of
method overrides is externally defined.

A field declaration relates a field name with a security type a. A security type is either
the public type •, a static security level A, or the dynamic type ?.

4 In an implementation, we have to write Java types and signatures as well as security annotations.



A method definition declares the method name, M , a list of parameters, a set of method
constraints S, the global effect G, a statement s that serves as method body, and a single local
variable y for the return value. We write params (M), constraints (M), and effects (M) to
refer to the parameters, method constraints and effects, respectively. Method constraints and
effects are discussed in detail in Sections 4.1 and 4.3. Further local variables are implicitly
defined by their first assignment.

A variable x is either user-defined, var, or references the receiver of the method call, this.
An expression e can be a variable access, x, field access x.F , an integer constant, N , integer
addition, x+ y, object instantiation, newC(x1, .. , xn), or a value cast. A cast expression
(aW a′)x converts the value of x from source type a′ to destination type a. We omit a null
value for simplicity. It would be straightforward to add, however, as null behaves like an
integer constant with respect to information flow.

A local update, var = e assigns the value of an expression e to a variable. A field update
x.F = y writes the value of y to field F of the object referenced by x. A method call
var = x.M(y1, .. , yn) stores the result of calling method M with arguments y1, . . . , yn in
variable var. The if and while statements are standard except for three annotations, a
source location sl and effects L and G. The role of the effects is further explained in Sections
4.3 and 5.4. The external write effect analysis that backs the dynamic IFC uses source
locations to identify branching statements. The role of the effect analysis is further explained
in Section 5.3. The examples of Section 2 do not show locations or effects on if statements as
they can be inferred. Finally, the context cast statement (aV a′){s} embeds a computation
with inner program counter type a′ into a context with outer program counter type a.

4 Security Constraints and Typing Rules

In LJGS, a programmer specifies information-flow properties by providing suitable method
signatures. As illustrated in Section 2, a signature relates parameters, return values, and
side effects of methods with security types. The type system ensures that the signature
specifications are adequate and that operations depending on statically typed parameters
and fields have no security leaks. Its design also ensures that the security levels of statically
typed values need not be tracked at run-time.

Security types form a lower semi-lattice induced by the following ordering.

I Definition 1 (Partial order on security types).

• ≤ a A ≤ A′ if A v A′ ? ≤ ?

By embedding the lattice of security levels into security types, LJGS supports the usual
notion of security subtyping: values with a low security level are implicitly promoted to a
higher one and contexts with a low-security program counter type admit computations that
perform side effects on a higher security level. To ensure a clean boundary between static
and dynamic code, implicit conversion between static types and the dynamic type is not
allowed; that is, the supremum of A and ? is not defined. However, the public security type
• may act polymorphically as the dynamic type and the static type at the bottom of the
security lattice (⊥).

4.1 Method Constraints
The constraints in a method signature represent the information flow dependencies between
parameters and return values: flows into the return value are represented by lower bounds



S ::= {sc1, .. , scn}
sc ::= st ≤ st | st ∼ st
st ::= a | x | ret

C ::= {c1, .. , cn}
c ::= sec ≤ sec | sec ∼ sec
sec ::= st | α
tvar ::= x | ret | α

Figure 6 Components of method constraints and typing constraints

on a return symbol, whereas flow restrictions on the arguments are represented by upper
bounds on parameter symbols. Figure 6 defines the syntax for method constraints S. A
constraint relates its method constraint types, st1 and st2, either by subsumption, st1 ≤ st2,
or by compatibility, st1 ∼ st2. Method constraint types st are literal security types a or
symbols for a method’s formal parameters x (including this) and return value, ret. For
simplicity, we require that all method constraints mention exactly the parameters of their
respective methods, as well as ret and this.

The constraint st1 ≤ st2 (“st2 subsumes st1”) specifies that st1 and st2 should be ordered
according to Definition 1. For example, the constraint HIGH ≤ ret requires the return value
of a method to be a statically known security level that is at least HIGH. The constraint
st1 ∼ st2 (“st1 is compatible with st2”) specifies that if st1 is dynamic then st2 should be
dynamic or public and vice versa. If both components are static, then they are compatible.

Compatibility constraints appear rarely in signatures, but here is an example. Consider a
method, const42, that contains the same statements as max, but subsequently cuts the flow
from parameters to the result by overwriting the x with a constant.
int const42 ( int x, int y) where { x ∼ y } {

i f (x ≤ y) {x = y;}
x = 42; return x;

}

Although const42 ignores the parameters and does not constrain ret, the parameters x and
y cannot have arbitrary types: If const42 is called with a dynamic first argument, the second
argument needs to be dynamic or public to enable the run-time system to track implicit flows
arising from the conditional. The compatibility constraint x ∼ y expresses this requirement.

4.2 Typing Constraints and Constraint Interpretation
To type-check a method’s body against its signature, LJGS’ typing rules (cf. Section 4.4)
generate sets of typing constraints, C. Typing constraints c (see Figure 6) are like method
constraints but relate statement constraint types, sec, which extend method constraint types
with local type variables α. Local type variables represent the flow-sensitive security types
for the local variables before and after the statements of a method body. A method body
complies to a signature if the generated typing constraints refine the information flow between
parameters, fields and return value that the signature represents.

We now formalize the intuitive notion of constraints that we used in the examples in
Section 2 and Section 4.1. In the following, we let C range over sets of typing constraints, α,
β, γ over local type variables, and we write α† for a fresh local type variable. We also let
tvar range over statement constraint types that are not literal security types (cf Figure 6).

I Definition 2 (Assignment, solution, solvability). An assignment is a total function from type
variables to security levels. An assignment θ is extended to a total function from components
to security levels, θ∗, by mapping security levels to themselves:

θ∗(sec) = a if sec = a θ(tvar) if sec = tvar



An assignment θ is a solution of a constraint set C, written θ |= C, iff (i) for all constraints
sec1 ≤ sec2 ∈ C, it holds that θ∗(sec1) ≤ θ∗(sec2), and (ii) for all constraints sec1 ∼ sec2,
it holds that there exists a type a such that θ∗(sec1) ≤ a and θ∗(sec2) ≤ a.

A constraint of the form • ≤ sec imposes no restriction on solutions. A compatibility
constraint that contains a static and a dynamic component, like ? ∼ LOW, is never solvable.

Type checking of LJGS requires that the typing constraints generated for method bodies
refine the constraints of the respective signatures. For method- and typing constraints,
refinement amounts to checking entailment of constraints modulo local type variables.

I Definition 3 (Refinement of typing constraints). Let C1, C2 be two constraint sets. C2 refines
C1, written C2 <: C1, if for each solution θ |= C1 there exists an assignment θ′ such that (i)
θ′ |= C2, (ii) θ′(x) = θ(x) for all parameters x, and (iii) θ′(ret) = θ(ret).

Example: the constraints {LOW ≤ ret} and {LOW ≤ α, α ≤ ret, HIGH ≤ β} both refine the
(more restrictive) constraint {HIGH ≤ ret}.

4.3 Effects
Typing of LJGS method bodies includes the generation of two kinds of effects, L and G. The
local effect L is a set of variables. It appears as annotation on branching statements. If a
local variable is listed in L then the branching statement may modify that variable and thus
potentially taint it with information from the branch condition. The run-time system uses L
to update local variables in untaken branches.

The global effect G is a set of security types. It appears on method definitions and
branching statements. If a security type is listed in G, then the method or branching
statement may perform a side effect that leaks information into a (globally) accessible field
of that type. The type system uses G to track implicit flows to the heap.

There is a refinement relation for global effects that amounts to checking subsumption
contravariantly on the contained security types.

I Definition 4 (Subsumption of global effects). G2 refines G1, written G2 <: G1, if for all
a ∈ G2 there exists a′ ∈ G1 such that a′ ≤ a.

For example, the global effects {high, ?} and {low, high, ?} both refine {low, ?}. In contrast
{high, ?} does note refine G = {low}, as there is no type in G that is smaller or equal to ?.

4.4 Typing Rules
We are now in a position to define the rules for LJGS. In addition to the typing requirements
for Java-like languages, well typed LJGS programs satisfy three conditions: all method
constraints are satisfiable, the signatures of overriding methods of every subclass refine the
corresponding signatures of its superclass, and, for every method, LJGS’ statement typing
rules generate constraints and effects that refine the method’s signature.

The following definition captures the refinement requirement for subclassing:

I Definition 5 (Well-typed class hierarchy). Let constraints (M) and effects (M) be the
constraints and the effects that are given by the signature of method M . Method M1 refines
method M2 if constraints (M1) <: constraints (M2) and effects (M1) <: effects (M2).

The class hierarchy of an LJGS program is well-typed if for every method M1 that
overrides a method M2 method M1 also refines method M2.



The following judgment summarizes the requirements for method bodies:

Γ1 = [var1 7→ var1, .. , varn 7→ varn, this 7→ this]
γ ` s : Γ1 ⇒ Γ2, C, (L,G′) α = Γ2(y) C ∪ {α ≤ ret} <: S G′ <: G

`M(var1, .. , varn)whereS andG{s return y}

Its central requirement is the judgment γ ` s : Γ1 ⇒ Γ2, C, E which generates constraints
C and effects E for well-typed statements. Effects E have the form (L,G). Γ1 and Γ2 are
typing environments that map local variables to the type variables. The environments
connect a local variable with the variable that represents its type before and after a particular
statement. Together with C, the initial environment Γ1 describes the typing constraints for
local variables before s is executed, whereas the final environment Γ2 describes local variable
types after executing s. The type variable γ represents the type of the program counter. The
method typing judgment pre-initializes the environment for the parameters and checks if the
generated constraints and effects refine the constraints and effects of the signature.

4.4.1 Statement Typing: Overview
Section 4.4.2 explains some of the typing rules in detail. A complete listing of rules can be
found in a technical report5. Although the details of the typing rules may seem complex the
basic principles behind the constraint generation are rather simple: To track explicit flows
in assignment statements, the rules generate constraints where each read variable or field
is a lower bound to the variable written. For example, the statement x = z.F; x = x + y
yields constraints that include C = {z ≤ β1, a ≤ β1, β1 ≤ β2, y ≤ β2}. Here, a is the type of
the field F , z and y are parameters and β1, β2 are the type variables that the environment
maps to x after the first and second assignment, respectively. The typing rules consider
implicit flows by checking with the program counter variable γ. Each assignment generates
an additional constraint where the program counter variable is a lower bound of the updated
variable. In the example, C would be extended with the constraints γ ≤ β1, γ ≤ β2. If, for
example, the result of a branch condition flows into the branches of an if statement, a new
program counter variable is introduced. Program counter variables establish the implicit
flows from local variables and parameters to results and field writes. For example, the
statement if (x = y) { z.F = 42; }, where x, y, z are parameters and the type of field
F is a, and the initial program counter type is γ, generates the constraints C2 = {γ ≤ γ′, x ≤
γ′, y ≤ γ′, γ′ ≤ z, γ′ ≤ a}. A method constraint like {x ≤ z, y ≤ z, z ≤ a} that subsumes C2,
take the flows through γ′ into account without mentioning the program counter variables.

Casts hide information flows from the type system. The constraints generated by
assignments with value casts do not connect the type of the right-hand-side variable with that
of the result. Instead, they connect the right-hand-side type with the source type of the cast
and the cast’s destination type with the result. For example, the statement x = (?W LOW)y
has the constraints {γ ≤ α1, y ≤ LOW, ? ≤ α2} which do not relate the type of y with that
of x (α1). Similarly to value casts, context casts break up the connection between program
counters and insert their respective source and destination types, instead.

4.4.2 Statement Typing: Details
Figure 7 gives the rules for assignments. The rule for local assignment, st-local, yields the

5 http://proglang.informatik.uni-freiburg.de/projects/gradual/ljgs/ecoop2016-tr.pdf

http://proglang.informatik.uni-freiburg.de/projects/gradual/ljgs/ecoop2016-tr.pdf


γ ` s : Γ1 ⇒ Γ2, C, E

st-local
Γ1, α

† ` e : C Γ2 = Γ1[var 7→ α†]

γ ` var = e : Γ1 ⇒ Γ2, C ∪ {γ ≤ α†}, ({var},∅)

st-putfield
C = {Γ(x) ≤ fsec (F ),Γ(y) ≤ fsec (F ), γ ≤ fsec (F )}

γ ` x.F = y : Γ⇒ Γ, C, (∅, {fsec (F )})

Figure 7 Statement typing: updates

rt-new
a1 .. an = fieldsecs (C)

C = {Γ1(x1) ≤ a1, .. ,Γ1(xn) ≤ an}
Γ, α ` newC(x1, .. , xn) : C

rt-local
C = {Γ(x) ≤ α}

Γ, α ` x : C

rt-cast
a . a′

C = {Γ(x) ≤ a, a′ ≤ α}
Γ, α ` (a′ W a)x : C

? . a a . ? • . A ⊥ . •

Figure 8 Expression typing Γ, α ` e : C and castability a . a′

constraints for a fresh type variable, α†, that represents the type of the updated local variable
after the assignment. The final type environment is updated accordingly. An expression
typing judgment generates the constraints for explicit flows to α† while additional constraint
γ ≤ α† takes care of implicit flows. Writing to variable var generates a singleton local effect
{var}. No global effects are generated, as local updates are not visible outside of the method.

Rule st-putfield types write operations to a field F . It requires that F ’s type, indicated
by fsec (F ), subsumes the type of the source variable, the type of the accessed object reference
x, as well as the type of the program counter. The statement’s effect is a global effect with
F ’s type. As no local variables are modified, initial and final environments are identical.

Figure 8 gives some of the constraint generation rules for expressions. The constraints for
object allocation, rule rt-new, state that constructor arguments flow into their corresponding
field. The meta-function fieldsecs yields the security types of a class’ fields. The new object
reference is considered public on creation. Constants (rule not shown) are also considered
public in LJGS and impose no constraints. For variable access, rule rt-local requires that
the result type subsumes the type of the accessed local variable. The rules for addition and
field access (not shown) are similar. The rule for casts, rt-cast, requires that the result
type subsumes the destination type of the cast and that the source type subsumes that of the
accessed variable. Additionally the source type needs to be castable into the destination type,
written a . a′. Castability, defined in Figure 8, rules out casts that are either unnecessary
or are guaranteed to fail: casts from A to A′ trivially succeed when A v A′ and fail when
A 6v A′. Casts from A to • also trivially fail when A 6= ⊥.

Figure 9 shows rules for statements that create new contexts. Rule st-call in Figure 9
covers method calls. It extracts the formal parameters, the method constraints, and the
effects of the callee M with the operations params (M), constraints (M), and effects (M).



st-call
S = constraints (M) G = effects (M) var1, .. , varn = params (M)

C′ = S[this 7→ Γ1(x), var1 7→ Γ1(x1), .. , varn 7→ Γ1(xn), ret 7→ α†]

C = C′ ∪ {Γ1(x) ≤ α†, γ ≤ α†} ∪ ⊔γG Γ2 = Γ1[var 7→ α†]

γ ` var = x.M(x1, .. , xn) : Γ1 ⇒ Γ2, C, ({var},G)

st-if
β† ` s1 : Γ1 ⇒ Γ′2, C1, (L1,G1)

β† ` s2 : Γ1 ⇒ Γ′′2 , C2, (L2,G2) C′ = {γ ≤ β†,Γ1(x) ≤ β†,Γ1(y) ≤ β†}
Γ2, C′′ = Γ′2 t Γ′′2 C = C1 ∪ C2 ∪ C′ ∪ C′′ L = L1 ∪ L2 G = G1 ∪ G2

γ ` if [sl,L,G](x == y){s1}{s2} : Γ1 ⇒ Γ2, C, (L,G)

st-cxcast
β† ` s : Γ1 ⇒ Γ2, C′, (L,G) C = {a ≤ β†, γ ≤ a′} ∪ C′ a′ . a

γ ` (a′ V a){s} : Γ1 ⇒ Γ2, C, (L, {a′})

Figure 9 Statement typing: branching, method calls and context casts, γ ` s : Γ1 ⇒ Γ2, C, E

Then, it instantiates the information flows stated in the method constraints for the current
context by simultaneous substitution of parameters with arguments and of ret with the
fresh local type variable α†. Otherwise the rules behave like assignments. The global effect
of the method signature is treated analogously as in rule st-putfield. The operation⊔γG := {γ ≤ a | a ∈ G} generates the corresponding constraints. The rule for conditionals,
st-if, types the branches s1 and s2 under a fresh program counter variable β†. Types assigned
to β† need to subsume the old program counter type γ and the types of the condition variables
x and y (cf. C′). The effects of the conditional is the union of the effects of both branches.
The final environment is a join of the final environments of s1 and s2. The join operation
Γ′2 t Γ′′2 generates additional constraints to be included in the final constraints C.

I Definition 6 (Join of typing environments). An environment Γ together with a constraint
set C form the join of two environments Γ1 and Γ2, written Γ, C = Γ1 t Γ2, iff

C = {Γ1(x) ≤ αx | x ∈ dom(Γ1)} ∪ {Γ2(x) ≤ αx | x ∈ dom(Γ2)}
Γ = {x 7→ αx | x ∈ dom(Γ1) ∪ dom(Γ2)}

where {αx | x ∈ dom(Γ1) ∪ dom(Γ2)} is a set of fresh type variables, one for each variable in
the domain of Γ1 and Γ2.

Rule st-while (not shown) works similarly to rule st-if. Rule st-cxcast deals with the
cast between program counters: The program counter type of the cast context needs to
subsume the outer type a′ given in the cast. The outer type also defines the global effect of
the statement. The body of the cast is typed under a fresh program counter type variable
β†. The constraints require that β† subsumes the inner type a. Together with the typing
rules st-putfield and st-call, this restriction guarantees that the global effect G of the
body is subsumed by {a}. Also, a′ has to be castable to a.

The rule for sequences (not shown) is unsurprising: it combines constraints and effects of
its components, as expected.



ς, `, g ::= S | D(A) | •
s ::= . . . | done
E ::= 〈〉 | E; s | cx [L,G,R, `]{E}

| cx [a/`/g V a′/`/g′]{E}
| call [M, var, x, y1, .. , yn, L]{E}

rs ::= E(s)

v ::= rv[ς]

rv ::= oref | N
L ::= ∅ | L⊕ x 7→ v

| L⊕ x 7→ null
µ ::= ∅ | µ⊕oref 7→ obj

Figure 10 Dynamic domains and run-time statements

5 Dynamics

To enforce non-interference in dynamically checked code, LJGS’ dynamics propagate and
check run-time security labels. Before explaining the full operational semantics, we first
discuss the interpretation of security labels and their operations.

5.1 Security Labels
Security labels (see Figure 10) are the mirror image of security types: a security label is
either the static label, S, a dynamic label, D(A), carrying a security level or, the public label,
•. The level of a static label is absent at run-time because it has been checked by the type
system already. The dynamic subset of security labels form a lattice based on the attached
security levels. The entire set of labels forms a lower semi-lattice with • as bottom element,
analogously to the semi-lattice of security types.

During the execution of an LJGS program, every value carries a value label ς. To track
implicit flows, the semantics maintains two labels for each execution context, a local program
counter label, `, and a global program counter label, g. For value labels, this security level
indicates the current run-time confidentiality of a labeled value. A program counter label
approximates the confidentiality of information that implicitly flows into the current program
counter. Thus, the dynamic label on a program counter gives a lower bound on the side
effects.

When information flows into a value or program counter from multiple sources, the
dynamic semantics employs a partial join operation on the labels involved. The judgment
ς := ς1 t ς2 determines the label ς that joins ς1 and ς2.

S := StS D(A1 tA2) := D(A1) tD(A2) ς := • t ς ς := ς t •

Joining static labels is trivial. Dynamic labels are joined by joining the security levels they
contain. The public label is a neutral element for the join operation. Joining static and
dynamic labels is undefined, as the security level of a static labeled entity cannot be recovered
at run-time. A well typed LJGS program only performs well-defined joins.

5.2 Configurations
The execution of a method manipulates configurations rs/L/µ of run-time statements
rs, stack frames L, and heaps µ. Run-time statements, defined in Figure 10, consist of
execution contexts E applied to source statements s. For technical reasons, the statements
previously defined in Section 3 need to be extended with the marker statement done. An
execution context is a hole 〈〉, a sequence of an execution context and a source statement,
a run-time security context cx [L,G,R, `]{E}, a cast context cx [a/`/g V a′/`′/g′]{E}, or a



calling context call [M,var, x, x1, .. , xn, L]{E}. The run-time statement 〈done〉 signals that
execution of the current context is complete. A sequence context focuses the first component
of a statement sequence. A run-time security context remembers metadata that is needed to
track the dynamic implicit flows that arise from branching statements and virtual method
calls: the program counter label ` that is active during its execution, and local and global
effects, L, G, that were analyzed for its body. It also remembers a set of field references R
which we explain in Sections 5.3 and 5.4. A cast context stores the old and new program
counter types and labels during the execution of a block subject to a context cast. A calling
context stores the method name and stack frame of the callee and the return variable of
the caller during a method call. It also contains the method call receiver x and the call
arguments x1, . . . , xn for technical reasons.

A stack frame is a finite map from local variables to values. Stack frames have a fixed size
and bind exactly the local variables that occur in the body of their method. Uninitialized
variables are bound to null.

A value consists of a raw value rv and value label ς. A raw value is either a number
N ∈ N or an object reference, oref. A heap is a finite map from references to objects. An
object consists of its run-time class C and the values of its fields.

5.3 Effect Analysis Support for Dynamic IFC

Information flow control in the dynamic fragment of LJGS copes with implicit flows by relying
on statically analyzed information about write effects in untaken control flow branches.6 As
in Russo and Sabelfeld’s work [23] the basic principle is to upgrade the labels of dynamic
variables and fields if they may be updated in the untaken branches.

For upgrades of local variables the typing rules generate sufficient information with the
local effect L. For object oriented languages like LJGS, obtaining precise information about
heap write effects is more involved. Including such an analysis in LJGS would go beyond
the scope of this paper. Instead, we rely on an external static analysis for write effects
that provides (abstract) references to potentially updated fields in branching statements
and method calls. In the semantics, we encapsulate the analysis result in the meta-function
call R = updaterefs (sl, L, µ). The function updaterefs takes as arguments the location of a
branching statement (or the name of a method), a stack frame, and a heap, and returns a
set R of (concrete) field references oref.F . The result R contains references to all fields that
may be updated by the statement labelled sl, the concretization of the externally analyzed
write effect for L and µ. The technical report gives a precise specification of updaterefs.

There are a number of interprocedural points-to analyses for languages with heap references
[18, 28] from which a write effect analysis suitable for implementing updaterefs can be derived.
We limit the static analysis to write effects for simplicity; it should also be possible to directly
incorporate points-to information into the dynamic IFC policy, as illustrated by Moore and
Chong [20], to gain precision.

6 IFC techniques where the label propagation relies on static analysis are typically called hybrid IFC.
Given our setting, we still refer to these approaches as dynamic IFC because they are based on run-time
propagation of security labels and because LJGS employs such an approach in the dynamically typed
fragments of programs.



stepupd-plus
N [ς1] = L[x]

N ′[ς2] = L[y] ς := ς1 t ς2
` x+ y/L/µ ⇓ N +N ′[ς]/ µ

stepupd-new
v1 = L[x1] .. vn = L[xn]

oref′ = fresh v′ = oref′[•]
µ
′

= µ⊕oref′ 7→ {C, v1 .. vn}
` newC(x1, .. , xn)/L/µ ⇓ v′/ µ′

stepupd-cast
rv[ς] = L[x] a′ V a ` ς V ς ′

` (aW a′)x/L/µ ⇓ rv[ς ′]/ µ

estep-local
` e/L/µ ⇓ rv[ς]/ µ

′

ς ′ := ς t ` L′ = L[var 7→ rv[ς ′]]

`; g ` 〈var = e〉/L/µ −→ 〈done〉/L′/ µ′

aV a ` ς V ς AV ? ` ς V D(A)

A v A′

?V A′ ` D(A) V S •V A ` ς V S

•V ? ` ς V D(⊥) ⊥V • ` S V • ?V • ` D(⊥) V •

Figure 11 Local updates (excerpt) ` e/L/µ ⇓ v/ µ′ and label conversion a′ V a ` ς ′ V ς

5.4 Reduction rules
The judgment `; g ` rs/L/µ −→ rs′/L′/ µ

′ defines the small step reduction of a configuration
under the local program counter label ` and global program counter label g. Apart from the
rules for casts, reduction mostly follows the principles of other dynamic IFC systems [3, 23].
Figures 11 and 12 show some of the rules. The technical report contains the full semantics.

Figure 11 shows the rules for evaluating expressions and for updating local variables. The
judgment ` e/L/µ ⇓ v/ µ′ evaluates expression e to a result and an updated heap. Rule
step-upd-plus illustrates evaluation. It reads the operands from the stack frame L, and
returns a raw value, here N +N ′, that has an updated security label attached. The updated
label is the join of the operands’ labels. Allocations, covered by rule stepupd-new, extend
the heap with a fresh reference which has the public label. Other expressions that are not
shown work similarly. A cast expression converts the value label of its subject according to
the label conversion judgment aV a′ ` ς V ς ′, also defined in Figure 11. Label conversion
changes a label ς that corresponds to a cast’s source type a to a label ς ′ corresponding to the
destination type a′. A trivial cast results in a trivial label conversion. The conversion from a
static type to the dynamic type creates a dynamic label that contains the source type as
security level. A static-to-dynamic conversion always succeeds in a well-typed LJGS program.
A conversion from dynamic to a static type A′ returns the static label, if the dynamic source
label contains a security level subsumed by A. Otherwise, the static-to-dynamic conversion
fails. The public type may be converted to a dynamic type and a low-security label or any
static type. Converting to the public type requires either a static source type of bottom or
a dynamic bottom label. Finally, rule estep-local stores the result of an evaluation in a
local variable after joining its label with the current program counter label.

Figure 12 shows illustrative cases of reductions that enter and leave contexts. Rule
estep-if-true covers if-statements where the branch condition is satisfied. Selecting a
branch potentially creates an implicit flow from the condition to the execution context of the



estep-if-true
rv[ς1] = L[x]

rv[ς2] = L[y] ς ′ := ς1 t ς2 `′′ := ` t ς ′ R = updaterefs (sl, L, µ)

`; g ` 〈if [sl,L,G](x == y){s1}{s2}〉/L/µ −→ cx[L,G,R, `′′]{〈s1〉}/L/µ

estep-cx-done
µ
′

= upgr(µ,R,G, `′) L′ = upgr(L,L,G, `′)
`; g ` cx[L,G,R, `′]{〈done〉}/L/µ −→ 〈done〉/L′/ µ′

estep-cxcast
aV a′ ` `V `′ aV a′ ` g V g′

`; g ` 〈(aV a′){s}〉/L/µ −→ cx[a/`/g V a′/`′/g′]{〈s〉}/L/µ

Figure 12 Reduction: entering and leaving contexts (excerpt) `; g ` rs/L/µ −→ rs′/L′/ µ′

branch. Thus, the reduction results in a run-time security context that stores a program
counter label `′′ which includes the value labels of the operands and the label of the program
counter in the outer context. The run-time context also stores the effect annotations of
the conditional and the field reference set R that points to the heap locations that are
potentially modified during the execution the untaken branch s2. The rules for failing
conditions, while loops and method calls (not shown) are similar. Method calls additionally
create a calling context call [M, var, x, y1, .. , yn, L]{E} that initializes new stack frames and
copies the method result into the caller’s stack frame in a straightforward way.

Rule estep-cx-done exits the run-time context and, to counter illegal implicit flows,
performs a preemptive upgrade of local variables and fields mentioned in the context. The
meta functions upgr(µ,R,G, `) and upgr(L,L,G, `) perform these upgrades for all field
references in R and all (dynamic) variables in L, respectively. The functions use the program
counter label for upgrading, if it is dynamic. But, due to context casts, upgrades may also
be necessary in static contexts where the program counter label ` carries no information. For
example, consider the following statement that contains a context cast inside of a conditional:

i f ( this .high) {( HIGH V ?) { this .dyn = 42; }}

Here, the type of field high is the static level HIGH and that of dyn is dynamic. According to
the IFC principle outlined above, the semantics should upgrade this.dyn after executing
the statement, as a dynamic field is conditionally updated with a high-security program
counter. In those situations, the upgrade functions use the greatest lower bound of the global
effects G for upgrading. This choice is safe because the source type of context casts are
always reflected in the global effects (cf. typing rule st-cxcast). The technical report gives
a complete definition of the upgr functions.

Context casts, covered by rule estep-cxcast, determine the local and global program
counter labels for executing their body with the same label conversion judgment used for
value casts. A cast execution context stores the converted and original types and labels.
Reduction under a run-time security context, covered by rule estep-cx-step, uses the stored,
modified program counter label. The global program counter label is joined with the stored
label such that global effects also respect the augmented context. When a run-time security
context is completely executed, it is discarded (not shown). Cast contexts (not shown) work
similarly, but use the stored converted labels to reduce their bodies. Sequence execution
contexts, also not shown, completely execute the first context before moving on to the second.



1 class C { int F[?]; int G[LOW];
2
3 void m( int y) where { y ∼ ? }
4 and {?, LOW} {
5 LocalMap locals = getCall ();
6 ObjectMap objects = getObjects ();
7 PcStack lPC = new PcStack ();
8 PcStack gPC = getGlobalPC ();
9 int g = this .G;

10 int x = (? W HIGH) g;
11 locals .put("x", Levels .HIGH );
12 x = x + y;
13 locals .put(
14 "x", join( locals .get("x"),
15 locals .get("y")));

16 lPC.push( locals .get("x"));
17 gPC.push( locals .get("x"));
18 i f [ this .F] (x == 5) {
19 this .F = 42;
20 objects .put(this , "F", gPC.get ());
21 }
22 objects .put(this , "F",
23 join( objects .get(this , "F"),
24 gPC.get ()));
25 lPC.pop (); gPC.pop ();
26 int y = this .F
27 locals .put("y", objects .get(this , "F"));
28 cast( locals .get("y"), Level .LOW );
29 this .G = (LOW W ?) y;
30 }
31 }

Figure 13 An LJGS class compiled to plain Java code

6 Execution Model

The dynamics of LJGS attach security labels to static and dynamic values alike. Fortunately,
LJGS is designed such that static labels can be erased in a realistic implementation. In this
section, we sketch a compilation strategy from Java with LJGS security annotations to plain
Java. The actual implementation of a compiler to bytecode is ongoing work.

Figure 13 shows an LJGS class with a dynamic field F, a statically LOW field G and a
method m that includes typecasts. LJGS specific annotations and casts are coloured blue.
The Figure also shows, in red, the Java code that an LJGS compiler would produce according
to our execution model. The blue parts would be removed from the the compilation result.
First, the required datastructures are brought into scope: Line 5 retrieves a LocalMap locals
that maps local variables to security levels. Each executing method call possesses its own
LocalMap. The caller initializes the LocalMap with the security levels of the dynamic method
arguments and publishes it for the callee using the method setCall as illustrated with the
following code fragment:
int x = ... /* some dynamic variable */
LocalMap localsForM = new LocalMap ();
localsForM .put("x", locals .get("x"));
setCall ( localsForM );
m(x);

The globally accessible ObjectMap objects (line 6) is a weak map from objects and field
names to security levels which stores the dynamic labels of all non-null dynamic fields.

Lines 7 and 8 retrieve the PcStack objects to track the levels of dynamic local and
global program counters. A PcStack is a stack of security levels that stores the level of each
dynamic branch condition or method call receiver. The join of all security levels on a stack,
calculated by PcStack.get(), yields the level of the current, dynamic program counter. The
local program counter stack is freshly initialized for the method while the global program
counter stack is available through the static method getGlobalPC().

Line 9 is the first statement taken from the original LJGS program. As it is a static
update, no instrumentation is needed. Lines 10 and 11 perform the cast from HIGH to ?.
As casts from static to dynamic never fail, the value of g is copied to x. Line 11 stores the
source level mentioned in the cast for x in locals. Similarly, line 14 updates the local map
for x with the join of the labels of x and y, using locals and the static method join.

Line 18 starts a context with a dynamic program counter. Thus, the dynamic label of the
tested variable x gets pushed to the local and global PcStacks. The field update in line 19



with a low-security constant requires an update to the object map with the label of the global
pc (line 20). Line 22 forms the join point for the conditional. To protect against implicit
flows, the label of field F is joined with the level of the global program counter. Afterwards,
line 25 pops the program counter stacks. The cast of the dynamic variable to the static
security level LOW compiles to lines 28 and 29. The static method cast checks if y’s label can
be converted to LOW. If not, as is the case in this example, the program is aborted. Otherwise
line 29 performs the field update no further dynamic security tracking of y’s value.

The compilation of LJGS can rely on the typing derivation of m to determine whether
code is dynamic or static and thus whether label tracking code should be emitted: For
example, line 9 in Figure 13 does not require tracking code as it is a static update with a
public program counter, whereas line 10 is a dynamic update that needs to be tracked.

Polymorphic methods, like method max of Figure 1, can be called with dynamic or static
arguments. To avoid overhead in the static case, a compilation procedure can generate
different versions of max, say max_STATIC_STATIC and max_DYN_DYN, for static and dynamic
calls, respectively. The Java method max_STATIC_STATIC would not contain any tracking
code whereas max_DYN_DYN would track all updates and program counters. The corresponding
results are not shown here for lack of space but included in the technical report. It is not
necessary to generate versions for other combinations of parameters, like max_STATIC_DYN,
as they are ruled out by the method constraints.

7 Unanalyzable Code

LJGS, as presented in the previous sections, relies on two kinds of static analysis: A type
analysis checks the typing rules of Section 4. It requires all classes to be annotated with
field types and method signatures, and checks all method bodies for compliance with their
signature. Additionally, a write effect analysis supports the dynamic IFC (cf. Section 5.3).

From a practical standpoint, a major use case for gradual typing is the integration of
legacy code that is hard to type and analyze statically. In addition, one might expect
that dynamically typed code could take advantage of highly dynamic language features like
reflection. This section explains how to extend LJGS to accommodate for code that cannot
be easily annotated or analyzed. We require, however, that it is possible to instrument
this unanalyzable code, either by source- or bytecode-transformation or by integrating a
corresponding monitor to the virtual machine. We thus do not consider legacy code that is
impractical to instrument, like precompiled C-libraries.

7.1 Default, Dynamic Type Annotations
The type-checking of unanalyzeable code can be avoided by assuming dynamic annotations
by default and using dynamic IFC during its execution. Consider the following example
where LegacyClass represents a class that should not be subject to (security-) type-checking.

1 class LegacyClass { int legacyField ; int legacyMethod ( int x, int y) {...}}
2 class LJGSClass {void m() {z = reflectiveCall ("any" + " Method ", x, y); }}

The default annotation for the field legacyField would be ? and the default constraints
and effect for method legacyMethod would be {? ≤ ret, x ≤ ?, y ≤ ?} and {?}, respectively.
As long as legacyMethod does not use LJGS specific features like casts and only accesses
other legacy classes, the method’s body will comply with the default signature; type-checking
would only generate trivial constraints that classify all entities as dynamic.

Care has to be taken in the presence of abstraction-breaking features like reflection which
could allow legacy methods to access statically typed fields and methods of LJGS classes that



derive from legacy classes. If these features are required, the run-time enforcement needs to
be extended to dynamically block access to non-legacy classes.

A reflective call, as illustrated in line 2, has to be treated in the same way as legacy
code. Thus, the run-time enforcement needs to check dynamically if the called method, here
anyMethod, complies to a default signature.

7.2 Avoiding the Analysis of Write Effects
If a precise write effect analysis is infeasible for legacy code, a more conservative approximation
can be used, for example, by assuming that all fields of all exposed classes of a legacy Java
library are updated when calling a legacy method.

Another possibility is to use a purely dynamic enforcement, like Austin and Flanagan’s
non-sensitive-upgrade policy (NSU, [3]). However, a purely dynamic approach may report
false positives that would pose no problems for flow-sensitive static typing [23] whereas a
hybrid approach, as the one taken by LJGS, is strictly more flexible.

Instead of falling back to purely dynamic IFC, it is possible to assert a particular write
effect for legacy method calls and reflective calls and check compliance dynamically using a
dynamic effect analysis, like access permission contracts [15].

8 Correctness

To guarantee that the statics and dynamics presented in the previous sections enforce security
according to our attacker model, we need to prove termination insensitive non-interference.
As the dynamics only check the security labels of dynamically typed values, non-interference
also relies on the soundness of the type system which guarantees that statically typed data
is not responsible for program crashes caused by security violations. We always implicitly
assume that an LJGS program is well-formed according to the standard typing principles
of Java. In particular we rely on the fact that no variables or object fields are accessed
uninitialized. Also, we implicitly assume that the class hierarchy in an LJGS program is
well-typed, according to Definition 5. Proof sketches of the theorems stated in this section
can be found in the technical report.

8.1 Soundness of the type system
Simple typing judgments for values and annotations connect static and dynamic domains.

I Definition 7 (Typing of Dynamic Domains). A security label ς has type a, written
` ς : a, if either (i) ς = •, (ii) ς = D(A) and a = ?, or (iii) ς = S and a = A. A security
label is typed by a type variable α under constraints C, written C ` ς : α, if there exist
a and θ such that θ |= (C ∪ {α ≤ a}) and ` ς : a. A stack frame L is well-typed under
constraints C and environment Γ, written Γ, C ` L if for all bindings x 7→ rv[ς] in L it holds
that C ` ς : Γ(x). This judgment essentially checks that dynamically typed variables have
either dynamic or public labels. A heap µ is well-typed, written ` µ, if for all field values it
contains, the value label has the type of the corresponding field declaration.

The type soundness and non-inference lemmas require a typing judgment for execution
contexts, γ, `, g ` E : Γ1 ⇒ Γ2, C, E|`′, g′. The judgment describes the typing environment
of the execution context, and, given its program counter labels `, g, it defines the program
counter labels `′, g′ that are active at its hole. For example, starting with labels `, g, the
context cx [L,G,R, `′]{〈〉} has the labels `′ and `′ t g active at its hole. The constraints,



effect and environments that make up a context typing are the same as for statement typing.
The technical report contains the corresponding rules. They are unsurprising; the premises
for each context (e.g. cx) are similar to those of the statements that enter the context (if).

A typed configuration E(s)/L/µ combines the typings of its individual components.
Thus we write γ, `, g ` E(s)/L/µ : Γ1 ⇒ Γ2, C, E|`′, g′ if (i) Γ1, C ` L (ii) ` µ and γ, `, g `
E : Γ1 ⇒ Γ2, C, E|`′, g′, (iii) γ ` s : Γ1 ⇒ Γ2, C, E and C ` ` : γ (iv) ` ≤ g. As usual for a
gradually typed system, a well typed LJGS program guarantees a refined progress property.
While (security related) run-time errors in static code are ruled out, a program may run into
a dynamically stuck configuration where dynamic code goes wrong.

I Definition 8 (Dynamically stuck). A well-typed configuration γ, `, g ` E(s)/L/µ : Γ1 ⇒
Γ2, C, E|`′, g′ is dynamically stuck iff it attempts either: (i) an insecure value cast from
dynamic to static, s = (var = (aW ?)x), a ∈ {•, A}, L[x] = rv[D(A′)], and a 6≤ A, or (ii) an
insecure context cast from dynamic to static s = ((?V a){s′}), `′ = D(PC), a ∈ {•, PC}and
PC 6v A

The progress result for LJGS states that well typed programs that are not able to make a
reduction step are either done, or dynamically stuck. The preservation result is standard: a
well typed LJGS configuration that can be reduced yields another well-typed configuration
with possibly more permissible constraints and effects. The precise definitions for progress
and preservation are given in the technical report.

8.2 Non-Interference

The non-interference theorem for LJGS states that methods run under low-equivalent envir-
onments, that is, environments that an attacker cannot distinguish, produce low-equivalent
results. First we define the notion of low-equivalence and subsequently state the non-
interference theorem. In the following, we assume that low is the upper bound of security
levels that an attacker can observe. We refer to a security level A as high if A 6v low.

I Definition 9 (Low-equivalent values, objects, heaps and stack-frames). Let B be a (partial)
bijective mapping on heap references (orefs). Two values rv1[ς], rv2[ς] are equivalent under
B, written rv1[ς] =B rv2[ς] iff either rv1/2 are equal integers, or rv1 ∈ dom (B) and B(rv1) =

rv2. Two objects obj1, obj2 are low-equivalent under B, written obj1 =B,low obj2, if for all
fields F where getfield (F, obj1) 6=B getfield (F, obj2) it holds that either (i) fsec (F ) = A and
A 6v low, or (ii) fsec (F ) = ?, getfield (F, obj1) = rv1[D(A1)], getfield (F, obj2) = rv1[D(A2)],
and A1 6v low and A2 6v low. Two heaps µ1, µ2 are low-equivalent, written µ1 ≡B,low µ2

if (i) dom (µ1) ⊇ dom (B) and dom (µ2) ⊇ dom (B−1), and (ii) the objects stored at the
references listed in B are low-equivalent with respect to B. Two environments L1, L2

are low-equivalent with respect to environment Γ, solution θ, and bijection B, written
L1 ≡Γ,θ,B,low L2 if dom (L1) = dom (L2), L1[this] = L2[this], and for all var ∈ dom (L1)

either (i) L1[var] = rv1[ς1],L2[var ] = rv2[va2]], and rv1 =B rv2, (ii) θ(Γ(var)) = A, and
A 6v low, or (iii) θ(Γ(var)) = ? and ς1 = D(A1), ς2 = D(A2), and A1 6v low and A2 6v low

I Theorem 10 (Non-interference). Let E(s)/L1/ µ1, E(s)/L2/ µ2 be two configurations with
typings γ, `, g ` E(s)/Li/ µi : Γ1 ⇒ Γ2, C, E|`′, g′, (i ∈ {1, 2}) and solution θ |= C. Let B
be a bijection such that L1 ≡Γ1,θ,B,low L2 and µ1 ≡B,low µ2. Given two executions `; g `
E(s)/Li/ µi −→∗ 〈done〉/L′i/ µ

′
i there exists a bijection B′ ⊇ B such that L′1 ≡Γ2,θ,B′,low L′2

and µ′1 ≡B′,low µ
′
2.



9 Related Work

There is a large body of prior work on security type systems that ultimately goes back to
Denning and Denning’s classic paper on information flow security [11]. We focus on discussing
works on security type systems and dynamic security enforcement designed for “main-stream”
programming languages and defer the reader to the overview articles of Sabelfeld and Myers
[24] and Hedin and Sabelfeld [16] for other aspects of language based security.

FlowCaML [22] is an ML dialect supporting static polymorphic security types with
security constraints similar to those of LJGS. FlowCaML additionally supports higher-
order types and complete type inference. Sun, Banerjee and Naumann describe a modular
polymorphic type system for a Java-like, object oriented language [30]. The polymorphic
method signatures are comparable to the static fragment of LJGS, but they do not specify a
constraint-based typechecking algorithm. Instead, they apply a standard algorithm to all
instances of signatures. Their system additionally supports class definitions with security
type parameters and full type inference. Both approaches seem compatible with LJGS and
we plan to investigate how they could be adapted for gradual security typing in future work.
Barthe et al describe an information flow type system for Java Bytecode and develop a
corresponding certified type checker [7]. Their system supports Objects, virtual, monomorphic
methods, exceptions and arrays. JIF [21] is an extension to Java with static security types
and first-class dynamic security-labels. In JIF, security types may depend on dynamic labels
and the interaction of labels and types is verified statically during type checking. In contrast,
LJGS does not restrict dynamically labeled values statically but enforces non-interference at
run-time. Also, while JIF’s dynamic labels may be used to implement some form of ad-hoc
dynamic IFC, LJGS aims for the integration of principled dynamic IFC techniques.

LJGS’ run-time security enforcement for values with dynamic labels is an adaption of
Russo and Sabelfeld’s technique for hybrid information flow control [23]. Chandra and Franz
[9] present an implementation of a hybrid IFC framework for Java Bytecode that is based on
the same principles and closely resembles LJGS’ enforcement for dynamic fragments. The
updaterefs function that supports dynamic IFC in LJGS can be implemented with off-the-
shelf points-to analysis like that proposed by Khedker et al [18]. We refer the interested
reader to the survey paper of Smaragdakis and Balatsouras [28] for further related work on
static points-to analysis. Moore and Chong [20] studied the applicability of static points-to
analyses to improve the efficiency of hybrid IFC. Using the points-to information in the
hybrid monitor allows their system to infer when heap values do not need tracking anymore.
Although their ideas seem compatible with LJGS, our hybrid enforcement settles for an
analysis of simple write effects and we rely on explicit static typing for optimization.

Austin and Flanagan propose a series of sound, purely dynamic IFC techniques, the most
basic being the no-sensitive-upgrade policy, that do not rely on prior static analysis [3, 4, 5].
These approaches are also compatible with LJGS’ type system.

Recently, Bedford et al proposed a type system for a simple imperative core language
that also includes types for entities with statically unknown security levels [8]. Their work
focuses on inferring program points for run-time instrumentation based on the typing results.
In contrast, LJGS’ focus is on giving the programmer explicit control over the boundaries
between static and dynamic checking.

The original work on gradual typing [32, 19, 27, 34] focuses on simple types with extensions
like refinement predicates, polymorphism [1], and union types [33]. More recently, researchers
started to gradualize type systems that check properties unrelated to the structure of values,
like type annotations [14], ownership [25], typestate [35], and session types [31]. Gradual



security type systems also fall into this category. Disney and Flanagan study gradual security
types for a pure lambda calculus [12] and we describe MLGS, a system for a calculus with
ML style references, in our prior work [13]. Compared with LJGS treatment of object fields,
MLGS treats mutable references in a more liberal way because it admits casts between
reference types with static and dynamic content. However, this liberality comes at the cost
of requiring pervasive run-time labelling even for static values and it blurs the separation of
static and dynamic code, which, although sound, runs contrary the execution model and
design goal of LJGS.

10 Conclusion and Future Work

LJGS is a sequential Java core calculus with gradual security typing. The calculus strictly
separates statically verified and dynamically checked code which enables running statically
checked code without run-time security labels. Methods may have polymorphic security
signatures that accept static or dynamic arguments.

There are several avenues for future work. We are currently implementing the type
checking and run-time enforcement for (sequential) Java based on the principles of LJGS. A
type checker is already available as an accompanying artifact to this paper but the run-time
instrumentation is still work in progress. With this implementation we want to investigate the
practicality of the type system for realistic applications and to evaluate different compilation-
and execution strategies for dynamic code. We also want to extend the system with security
type parameters for classes and methods, and type inference.
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upgr(µ,∅,G, `) = µ

upgr(µ, {oref.F} ] R,G,D(A)) = upgr(µ,R,G,D(A))[oref 7→ obj]

if getfield (F, µ[oref]) = rv[D(A′)]

and obj = µ[oref][F 7→ rv[D(A tA′)]]
upgr(µ,R, { },S) = µ

upgr(µ, {oref.F} ] R,G,S) = upgr(µ,R,G,S)[oref 7→ obj]

if getfield (F, µ[oref]) = rv[D(A′)]

and obj = µ[oref][F 7→ rv[D(A tA′)]]
and A = ⊔G

upgr(L, { },G, `) = L
upgr(L, {x} ] L,G, `) = upgr(L,L,G, `) if L[x] = rv[S]

upgr(L, {x} ] L,G,D(A)) = upgr(L,L,G,D(A))[x 7→ rv[D(A tA′)]]
if L[x] = rv[D(A′)]

upgr(L, {x} ] L,G,D(A)) = upgr(L,L,G,D(A))[x 7→ rv[D(A tA′)]]
if L[x] = rv[D(A′)]

upgr(L,L, { },S) = L
upgr(L, {x} ] L,G,S) = upgr(L,L,G,D(A))[x 7→ rv[D(A tA′)]]

if L[x] = rv[D(A′)] and A = ⊔G
Figure 14 Definition of upgrade functions

A Specification of the functions upgr and updaterefs

Figure 14 defines the upgr meta functions for heaps and local variables. If the context label
` is static then the upgrade is based on the greatest lower bounds of the global effects G.

On variable upgrade, the current definition checks if the variable carries a dynamic label.
To yield efficient Java code after compilation (cf. Section 6), the static variables should be
removed from L after instantiation of polymorphic parameters.

The meta-function R = updaterefs (sl, L, µ) yields the results of the static write effect
analysis of the statement labeled as sl.

I Definition 11 (Specification of updaterefs). Let `; g ` E(s)/L/µ −→∗ E(done)/L′/ µ
′

be an execution where the statement s has label sl.
A reference set R is an approximation of the concrete write effects of sl if and only if

for all oref 7→ obj ∈ µ and F where getfield (F, µ[oref]) 6= getfield (F, µ
′
[oref]), it holds that

oref.F ∈ R.
An implementation of updaterefs is sound for a set of configurations rs0/L1/ µ1 . . . rs0/Ln/ µn

if and only if for all i ∈ {1 . . .n} and all configurations E′(s′)/L′/ µ′ where `; g `
E(s)/Li/ µi −→∗ E′(s′)/L′/ µ

′ and s has label sl it holds that updaterefs (sl, L′, µ
′
) is

an approximation of the write effects of sl.

Such an updaterefs function can be implemented using a static analysis for write effects
WriteEffects: Let A be the set of abstract pointers returned by WriteEffects for source
location sl. Then the set of concrete references R = updaterefs (sl, L, µ) is the instantiation
of A for the concrete environment L and the concrete heap µ.



B LJGS-to-Java Compilation for the Polymorphic Method max

int max_STATIC_STATIC ( int x, int y) {
i f (x ≤ y) {x = y;}
return x;

}

int max_DYN_DYN ( int x, int y) {
LocalMap locals = getCall ();
ObjectMap objects = getObjects ();
PcStack lPC = new PcStack ();
PcStack gPC = getGlobalPC ();
i f (x ≤ y) {

lPC.push(join( locals .get("x"),
locals .get("y")));

gPC.push(join( locals .get("x"),
locals .get("y")));

x = y;
locals .put("x", join( locals .get("y"),

lPC.get ()));
}
locals .put("x", join( locals .get("x"), lPC.get ()));
lPC.pop (); gPC.pop ();
return x;

}



C Complete Static Semantics

Γ, α ` e : C

rt-local
C = {Γ(x) ≤ α}

Γ, α ` x : C

rt-plus
C = {Γ(x) ≤ α,Γ(y) ≤ α}

Γ, α ` x+ y : C

rt-new
a1 .. an = fieldsecs (C)

C = {Γ1(x1) ≤ a1, .. ,Γ1(xn) ≤ an}
Γ, α ` newC(x1, .. , xn) : C

rt-getfield
a = fsec (F )

C = {Γ(x) ≤ α, a ≤ α}
Γ, α ` x.F : C

rt-const
C = { }

Γ, α ` N : C

rt-cast
a . a′

C = {Γ(x) ≤ a, a′ ≤ α}
Γ, α ` (a′ W a)x : C

Figure 15 Statics: expression typing

γ ` s : Γ1 ⇒ Γ2, C, E

st-local
Γ1, α

† ` e : C
Γ2 = Γ1[var 7→ α†]

γ ` var = e : Γ1 ⇒ Γ2, C ∪ {γ ≤ α†}, ({var},∅)

st-done

γ ` done : Γ⇒ Γ,∅, (∅,∅)

st-putfield
C = {Γ(x) ≤ fsec (F ),Γ(y) ≤ fsec (F ), γ ≤ fsec (F )}

γ ` x.F = y : Γ⇒ Γ, C, (∅, {fsec (F )})

st-call
S = constraints (M)

G = effects (M)

var1, .. , varn = params (M)

C′ = S[this 7→ Γ1(x), var1 7→ Γ1(x1), .. , varn 7→ Γ1(xn), ret 7→ α†]

C = C′ ∪ {Γ1(x) ≤ α†, γ ≤ α†} ∪ ⊔γG
Γ2 = Γ1[var 7→ α†]

γ ` var = x.M(x1, .. , xn) : Γ1 ⇒ Γ2, C, ({var},G)

Figure 16 Statics: statement typing, base cases



γ ` s : Γ1 ⇒ Γ2, C, E

st-if
β† ` s1 : Γ1 ⇒ Γ′2, C1, (L1,G1)

β† ` s2 : Γ1 ⇒ Γ′′2 , C2, (L2,G2)

C′ = {γ ≤ β†,Γ1(x) ≤ β†,Γ1(y) ≤ β†}
Γ2, C′′ = Γ′2 t Γ′′2
C = C1 ∪ C2 ∪ C′ ∪ C′′

L = L1 ∪ L2

G = G1 ∪ G2

γ ` if [sl,L,G](x == y){s1}{s2} : Γ1 ⇒ Γ2, C, (L,G)

st-while
β† ` s : Γ1 ⇒ Γ2, C′, (L,G)

Γ3, C′′ = Γ1 t Γ2

C = {γ ≤ β†,Γ1(x) ≤ β†,Γ1(y) ≤ β†} ∪ C′

γ ` while [sl,L,G](x == y){s} : Γ1 ⇒ Γ3, C, E

st-seq
γ ` s1 : Γ1 ⇒ Γ2, C1, (L1,G1)

γ ` s2 : Γ2 ⇒ Γ3, C2, (L2,G2)

E = (L1 ∪ L2,G1 ∪ G2)

γ ` s1; s2 : Γ1 ⇒ Γ3, C1 ∪ C2, E

st-cxcast
β† ` s : Γ1 ⇒ Γ2, C′, (L,G)

C = {a ≤ β†, γ ≤ a′} ∪ C′

a′ . a

γ ` (a′ V a){s} : Γ1 ⇒ Γ2, C, (L, {a′})

Figure 17 Statics: statement typing, context opening statements

a . a′

cstbl-from-dynamic

? . a

cstbl-to-dynamic

a . ?

cstbl-public-to-static

• . A

cstbl-static-to-public

⊥ . •

Figure 18 Statics: castable types



γ, `, g ` E : Γ1 ⇒ Γ2, C, E|`′, g′

et-hole

γ, `, g ` 〈〉 : Γ1 ⇒ Γ2, C, E|`, g

et-cx
` ≤ `′

g ≤ g′ `′ ≤ g′
β†, `′, g′ ` E : Γ1 ⇒ Γ′2, C′, (L′,G)|`′′, g′′

Γ2, C′′ = Γ′2 t Γ′′2
C = C′ ∪ C′′ ∪ {γ ≤ β†}

L′ ⊆ L
γ, `, g ` cx [L,G,R, `′]{E} : Γ1 ⇒ Γ2, C, (L,G)|`′′, g′′

et-calling
var1, .. , varn = params (M)

S = constraints (M)

y = return (M)

G = effects (M)

Γ′1, C′ ` L′

γ†, •, g ` E : Γ′1 ⇒ Γ′2, C′, E ′|`′′, g′′
C′ ∪ {Γ′2(y) ≤ ret} <: S
G′ <: G E = (L,G)

Γ2 = Γ1[var 7→ α†]

C′′ = {Γ1(x) ≤ α†} ∪ S[var1 7→ Γ1(x′1), .. , varn 7→ Γ1(x′n), ret 7→ α†]

C = C′′ ∪ ⊔γG
γ, `, g ` call [M,var, x, x′1, .. , x′n, L′]{E} : Γ1 ⇒ Γ2, C, (L,G)|`′′, g′′

et-cxcast
a . a′ aV a′ ` `V `′

aV a′ ` g V g′
β†, `′, g′ ` E : Γ1 ⇒ Γ2, C′, (L,G)|`′′, g′′

C′′ = {γ ≤ a, a′ ≤ β†}
γ, `, g ` cx [a/`/g V a′/`′/g′]{E} : Γ1 ⇒ Γ2, C′ ∪ C′′, (L, {a})|`′′, g′′

et-seq
γ, `, g ` E : Γ1 ⇒ Γ2, C1, E1|`′′, g′′

γ ` s2 : Γ2 ⇒ Γ3, C2, E2
γ, `, g ` E; s2 : Γ1 ⇒ Γ3, C1 ∪ C2, E1 ∪ E2|`′′, g′′

Figure 19 Statics: typing of execution contexts



C.1 Complete Dynamic Semantics

` e/L/µ ⇓ v/ µ′

stepupd-const
v′ = N [•]

` N/L/µ ⇓ v′/ µ

stepupd-new
v1 = L[x1] .. vn = L[xn]

oref′ = fresh v′ = oref′[•] µ
′

= µ⊕oref′ 7→ {C, v1 .. vn}
` newC(x1, .. , xn)/L/µ ⇓ v′/ µ′

stepupd-move
v = L[x]

` x/L/µ ⇓ v/ µ

stepupd-plus
N [ς1] = L[x] N ′[ς2] = L[y] ς := ς1 t ς2

` x+ y/L/µ ⇓ N +N ′[ς]/ µ

stepupd-getfield
oref[ς1] = L[x] obj = µ[oref] rv[ς2] = getfield (F, obj) ς := ς1 t ς2

` x.F/L/µ ⇓ rv[ς]/ µ

stepupd-cast
rv[ς] = L[x] a′ V a ` ς V ς ′

` (aW a′)x/L/µ ⇓ rv[ς ′]/ µ

Figure 20 Dynamics: expression evaluation



`; g ` rs/L/µ −→ rs′/L′/ µ
′

estep-local
` e/L/µ ⇓ rv[ς]/ µ

′
ς ′ := ς t ` L′ = L[var 7→ rv[ς ′]]

`; g ` 〈var = e〉/L/µ −→ 〈done〉/L′/ µ′

estep-putfield
rv′[ς1] = L[x] oref′[ς2] = L[y]

obj = µ[oref′] ς ′ := ς1 t ς2 ς := ς ′ t ` µ
′

= µ[oref′ 7→ obj[F 7→ rv′[ς]]]

`; g ` 〈x.F = y〉/L/µ −→ 〈done〉/L/µ′

estep-seq

`; g ` 〈s1; s2〉/L/µ −→ 〈s1〉; s2/L/µ

estep-call
v1 = L[x1] .. vn = L[xn] oref[ς] = L[x] `′ := ` t ς {C, v1 .. vn} = µ[oref]

M ′(var1, .. , varm)whereS andG{s return y} = dispatch (C,M)

L′ = initframe (M, this 7→ v, var1 7→ v′1, .. , varm 7→ v′m) R = updaterefs (M,L, µ)

`; g ` 〈var = x.M(x1, .. , xn)〉/L/µ −→ cx [{ },G,R, `′]{ call [M ′, var, x, x1, .., xn, L
′]{〈s〉}}/L/µ

estep-cxcast
aV a′ ` `V `′ aV a′ ` g V g′

`; g ` 〈(aV a′){s}〉/L/µ −→ cx[a/`/g V a′/`′/g′]{〈s〉}/L/µ

estep-seq-done

`; g ` 〈done〉; s/L/µ −→ 〈s〉/L/µ

estep-castcx-done

`; g ` cx[a/`/g V a′/`′/g′]{〈done〉}/L/µ −→ 〈done〉/L/µ

estep-calling-done
M ′(var1, .. , varm)whereS andG{s return y} = definition (M)

rv[ς] = L′[y] ς ′ := ς t ` L′ = L[var 7→ rv[ς ′]]

`; g ` call [M, var, x, var′1, .. , var
′
n, L

′′]{〈done〉}/L/µ −→ 〈done〉/L′/ µ

Figure 21 Dynamics: reduction rules, part 1



`; g ` rs/L/µ −→ rs′/L′/ µ
′

estep-seq-step
`; g ` E(s)/L/µ −→ E′(s′1)/L′/ µ

′

`; g ` E(s); s2/L/µ −→ E′(s′1); s2/L
′/ µ
′

estep-cx-step
g′ := g t `′ `′; g′ ` E(s)/L/µ −→ E′(s′)/L′/ µ

′

`; g ` cx [L,G,R, `′]{E(s)}/L/µ −→ cx [L,G,R, `′]{E′(s′)}/L′/ µ′

estep-calling-step
•; g ` E(s)/L′/ µ −→ E′(s′)/L′′/ µ

′

`; g ` call [M ′, var, x, x1, .. , xn, L
′]{E(s)}/L/µ −→ call [M ′, var, x, x1, .. , xn, L

′′]{E′(s′)}/L/µ′

estep-castingcx-step
`′; g′ ` E(s)/L/µ −→ E′(s′)/L′/ µ

′

`; g ` cx [a/`/g V a′/`′/g′]{E(s)}/L/µ −→ cx [a/`/g V a′/`′/g′]{E′(s′)}/L′/ µ′

estep-if-true
rv[ς1] = L[x]

rv[ς2] = L[y] ς ′ := ς1 t ς2 `′′ := ` t ς ′ R = updaterefs (sl, L, µ)

`; g ` 〈if [sl,L,G](x == y){s1}{s2}〉/L/µ −→ cx[L,G,R, `′′]{〈s1〉}/L/µ

estep-if-false
rv[ς1] = L[x]

rv′[ς2] = L[y] rv 6= rv′ `′′ := ` t ς1 t ς2 R = updaterefs (sl, L, µ)

`; g ` 〈if [sl,L,G](x == y){s1}{s2}〉/L/µ −→ cx[L,G,R, `′′]{〈s2〉}/L/µ

estep-while-true
rv[ς1] = L[x] rv[ς2] = L[y] `′′ := ` t ς1 t ς2

`; g ` 〈while [sl,L,G](x == y){s}〉/L/µ −→ cx[L,G,R, `′′]{〈s〉}; while [sl,L,G](x == y){s}/L/µ

estep-while-false
rv[ς1] = L[x] rv′[ς2] = L[y] rv 6= rv′

`; g ` 〈while [sl,L,G](x == y){s}〉/L/µ −→ 〈done〉/L/µ

Figure 22 Dynamics: reduction rules, part 2



aV a′ ` ς V ς ′

castconv-trivial

aV a ` ς V ς

castconv-static-to-dyn

AV ? ` ς V D(A)

castconv-dyn-to-static
A v A′

?V A′ ` D(A) V S

castconv-public-to-static

•V A ` ς V S

castconv-public-to-dyn

•V ? ` ς V D(⊥)

castconv-static-to-public

⊥V • ` S V •

castconv-dyn-to-public

?V • ` D(⊥) V •

Figure 23 Dynamics: Label conversion



D Correctness

D.1 Progress

I Theorem 12 (Progress). For any well typed configuration γ, `, g ` E(s)/L/µ : Γ1 ⇒
Γ2, C, E|`′, g′ one of the following three cases holds: (i)E(s) = 〈done〉, (ii) the configuration
is dynamically stuck, or (iii) there exists E′(s′), L′, µ′ such that `; g ` E(s)/L/µ −→
E′(s′)/L′/ µ

′

The proof is by induction on the typings of execution context E. The interesting causes
for a configuration to be stuck are
1. an undefined join operation on labels, and
2. a failing cast conversion

In all cases the constraints generated by well-typed configuration ensure that all join
operations required by the semantics are defined. This fact is essentially captured by the
following lemma:

I Lemma 13. If ` ς : θ(α), ` ς ′ : θ(α′), θ |= C and {α ≤ β, α′ ≤ β} ⊆ C then there exists
ς ′′ such that ς ′′ := ς t ς ′. If ` ς : θ(α), ` ` : θ(γ) , θ |= C and {γ ≤ α} ⊆ C then there exists
ς ′′ such that ς ′ := ς t `.

The lemma is easily verified by checking the definition of solvability.
Inspecting the definitions of castability and label conversion, it is clear that all failing

well-typed casts fall under dynamically stuck.

D.2 Preservation

I Theorem 14 (Preservation). Given a well typed configuration γ, `, g ` E(s)/L/µ : Γ1 ⇒
Γ2, C, (L,G)|`′, g′ and a reduction step `; g ` E(s)/L/µ −→ E′(s′)/L′/ µ

′ then there exists
Γ′1, C′, `′′, g′′, and (L′,G′) such that γ, `, g ` E′(s′)/L′/ µ′ : Γ′1 ⇒ Γ2, C′, (L′,G′)|`′′, g′′, and
C′ ⊆ C, L′ ⊆ L, G′ ⊆ G′.

The proof is by induction on the reduction step.

D.3 Non interference

I Theorem 15 (Non-interference). Let E(s)/L1/ µ1, E(s)/L2/ µ2 be two configurations with
typings γ, `, g ` E(s)/Li/ µi : Γ1 ⇒ Γ2, C, E|`′, g′, (i ∈ {1, 2}) and solution θ |= C. Let B
be a bijection such that L1 ≡Γ1,θ,B,low L2 and µ1 ≡B,low µ2. Given two executions `; g `
E(s)/Li/ µi −→∗ 〈done〉/L′i/ µ

′
i there exists a bijection B′ ⊇ B such that L′1 ≡Γ2,θ,B′,low L′2

and µ′1 ≡B′,low µ
′
2.

The proof is by induction on execution context. Most inductive cases are straightforward
using the induction assumption and the type preservation result.

The interesting base-cases are those for branching statements and method calls. They
require two confinement lemmas to show secure execution for the body of the context.
Confinement states that the low-security parts of a configuration do not change when
executing code with high-security global or local contexts.



D.3.1 Confinenemt
I Definition 16 (Low inclusion). A heap µ low-includes a heap µ′, written µ ⊇low µ

′ iff for
all references oref ∈ dom(µ),

oref ∈ dom(µ
′
), and

if getfield (F, µ
′
[oref]) = rv[D(A)] with A v low then getfield (F, µ[oref]) = rv[D(A′)],

and
if fsec (F ) = A with A v low then getfield (F, µ

′
[oref]) = getfield (F, µ[oref])

A stack frame L low-includes a stack frame L′ under typing environment Γ, and assignment
θ, written L ⊇Γ,θ,low L′ iff for all x ∈ dom(L′)

if L′[x] = rv[D(A)] and A v low then L[x] = rv[D(A′)] and A′ v low, and
if A = θ(Γ(x)) and A v low then L′[x] = L[x].

The write-difference of two heaps is the set of references at which the objects of the
second heap have been modified.

I Definition 17 (Write-Difference). The write-difference wdiff (µ1, µ2) of two heaps µ1 and
µ2 is defined by

{oref 7→ obj | oref 7→ obj ∈ µ2 and oref ∈ dom (µ1) and µ1[oref] 6= obj}

If we start with low-equivalent heaps as initial states then all versions of the heaps that
low-include the initial state are low-equivalent if the write-difference between the versions is
low-equivalent.

I Corollary 18 (Low equivalence from low inclusion). Let µ1, µ2 be two heaps and B a bijection
of references. If µ1 ⊇low µ

′
1 and µ2 ⊇low µ

′
2 and µ1 ≡B,low µ2 and

1. for all oref ∈ wdiff (µ1, µ
′
1) we have µ′2[B(oref)] =B,low wdiff (µ1, µ

′
1)[oref]

2. for all oref ∈ wdiff (µ2, µ
′
2) we have µ′1[B(oref)] =B,low wdiff (µ2, µ

′
2)[oref]

then µ′1 ≡B,low µ
′
2.

Let L1, L
′
1, L2, L

′
2 be stack-frames. If L1 ⊇Γ,θ,low L′1 and L2 ⊇Γ,θ,low L′2 and L1 ≡Γ,θ,B,low

L2 and
1. for all x ∈ dom (L′1 \ L1), let L′′2 = {x 7→ v | x 7→ v ∈ L′2 we have L′′2 ≡Γ,θ,B,low L′1 \ L1

2. for all x ∈ dom (L′2 \ L2), let L′′1 = {x 7→ v | x 7→ v ∈ L′1 we have L′′1 ≡Γ,θ,B,low L′2 \ L2

then L1 ≡Γ,θ,B,low L2.

I Definition 19 (High security global context). Given a well-typed configuration γ, `, g `
E(s)/L/µ : Γ1 ⇒ Γ2, C, (L,G)|`′, g′, g and G form a high-security global context if either (i)
g = S and for all PC ∈ G it holds that PC 6v low or (ii) g = D(PC) and PC 6v low.

I Lemma 20 (Global confinement). Given a well-typed configuration γ, `, g ` E(s)/L/µ :

Γ1 ⇒ Γ2, C, (L,G)|`′, g′ and a reduction step `; g ` E(s)/L/µ −→ E′(s′)/L′/ µ
′ then

µ ⊇low µ
′ if g and G form a high-security global context.

I Definition 21 (High security local context). Given a well-typed configuration β, `, g `
E(s)/L/µ : Γ1 ⇒ Γ2, C, (L,G)|`′, g′ with solution θ |= C ∪ ⊔βG, `, and θ form a high-security
local context if either (i) ` = S, PC = θ(β) and PC 6v low or (ii) ` = D(PC) and PC 6v low.

I Lemma 22 (Confinement). Given a well-typed configuration γ, `, g ` E(s)/L/µ : Γ1 ⇒
Γ2, C, (L,G)|`′, g′ with solution θ |= C ∪ ⊔γG where ` and θ form a high-security local context
and a reduction step `; g ` E(s)/L/µ −→ E′(s′)/L′/ µ

′ then L ⊇Γ2,θ,low L′ and µ ⊇low µ
′

and dom (L′ \ L) ⊆ L.



The confinement lemmas are proven by induction on the reduction. Most cases are straight-
forward, given the definition for solvability of constraints. Also lemma 22 relies on global
confinement (lemma 20).

D.3.2 Non-Interference for Branching Statements
Proving non-interference for cases of branching statements like 〈if [sl,L,G](x == y){s1}{s2}〉
requires to distinguish whether execution enter a high-security context or not, that is whether
the conditions depends on high-security values or not. In case it does not, the low-equivalence
assumption for stack frames guarantees that executions chooses the same branch for both
configurations. The result then follows from the induction assumption. In case the condition
depends on high-security values, the executions may choose different branches. We can still
follow that 〈if [sl,L,G](x == y){s1}{s2}〉/Li/ µi reduces to cx[L,G,Ri, `i]{〈sj〉}/Li/ µi,
where j ∈ {1, 2} and 〈sj〉/Li/ µi is in a local (and global) high-security context and Ri =

updaterefs (sl, Li, µi). As the semantics is deterministic, we can follow that 〈sj〉/Li/ µi
reduces to 〈done〉/L′i/ µ

′
i. By lemma 22 we have Li ⊇Γ2,θ,low L′i and µi ⊇low µ

′
i.

By corollary 18, it remains to show, that the upgrade operation of rule estep-cx-done
forces L′i \ Li and wdiff (µi, µ

′
i) to be low-equivalent.

It suffices to show that (i) low-security static fields in wdiff (µ1, µ
′
1) and static low-security

variables in L′i \ Li are low-equivalent to those fields in µ
′
2 regardless of upgr (the other

direction is analogous) (ii) that upgr targets the right dynamic variables and fields and (iii)
that upgr pushes the targeted values to a sufficiently high level.
1. Let µ′′i = wdiff (µi, µ

′
i). By result µ1 ⊇low µ

′
1 and the fact that wdiff (µi, µ

′
i) ⊆ µ

′
i:

for all F where fsec (F ) ≤ low and oref ∈ dom (µ
′′
i ) we have getfield (F, µ

′′
1 [oref]) =

getfield (F, µ1[oref]).
By result µ1 ≡B,low µ2 we have that getfield (F, µ1[oref]) =B getfield (F, µ2[B(oref)]).
By result µ2 ⊇low µ

′
2 we have that getfield (F, µ2[B(oref)]) = getfield (F, µ

′
2[B(oref)])

Let L′′i = L′i \ Li. By result L1 ⊇Γ2,θ,low L′1: for all x where θ(Γ(x)) ≤ low and
x ∈ dom (L′i \ Li) we have L′′1 [x] = L1[x].
By result L1 ≡Γ2,θ,B,low L2 we have that L1[x] =B L2[x].
By result L1 ⊇Γ2,θ,low L′1 we have that L′1[x] =B L1[x].

2. By lemma 22the effect L contains L′i \ Li, thus upgr targets all relevant variables.
For fields, the function upgr targets the fields referenced by Ri = updaterefs (sl, Li, µi).
As we assume a sound updaterefs function according to Definition 11, that the result in-
cludes all possible write effects of the branching statement, it holds that dom (wdiff (µi, µ

′
i)) ⊆

R.
3. By typing, `i are either both dynamic or both static. If `i are dynamic then they also

carry a high security level, as we assume a high-security condition variable, and the
upgrades are sufficiently high. If `i are static then we have to show that ⊔G is defined
and is sufficiently high.
I Lemma 23 (Dynamic modification in static, high contexts). Let γ,S,S ` E(s)/L/µ :

Γ1 ⇒ Γ2, C, E|`′, g′ be a well-typed configuration with solution θ |= C ∪ ⊔γG where θ forms
a high-security local context and let S; S ` E(s)/L/µ −→ E′(s′)/L′/ µ

′ be a reduction
step. If L ⊇Γ2,θ,low L′ and L 6≡Γ2,θ,low L′ or if µ ⊇low µ

′ and µ 6≡low µ
′ then G 6= ∅).

The proof is a an induction on the reduction step. Informally, this lemma holds because
the only way to update dynamic fields or variables in high-security static contexts is by
using a context cast, which is directly reflected in G. Then by typing in a high context
we can follow that ⊔G 6≤ low.



For the case of method calls, 〈var = x.M(x1, .. , xn)〉/Li/ µi, we need to distinguish
whether L1[x] = L2[x]. If so, the configurations reduce to

cx [L,G,R, `i]{ call [M,var, x, x1, .., xn, L
′
i]{〈s〉}}/Li/ µi .

As the semantics is deterministic we know that there is an execution from 〈s〉/L′i/ µi
to 〈done〉/L′′i / µ

′
i. By induction assumption, L′′1 and L′′2 , as well as µ

′
1 and µ′2 are low-

equivalent, from which we can follow the result. If L1[x] 6= L2[x], then we can follow
from the low-equivalence assumption that x contains high-security information. Thus the
configurations reduce to cx [L,G,R, `]{ call [M,var, x, x1, .., xn, L

′
i]{〈si〉}}/Li/ µi where

〈si〉/L′i/ µi is in a high-security local and global context. Again we have that 〈si〉/L′i/ µi
reduces to 〈done〉/L′′i / µ

′
i. By lemma 20, µ′1 and µ′2 are low-equivalent. When the method

returns with estep-calling-done, we have L′′i = Li[var 7→ vi]. As the method call
executes in a locally high context, the update of return variable var does not impede
low-equivalence, and thus L′′1 and L′′2 are low-equivalent.


	Introduction
	A Taste of LJGS
	Syntax of LJGS Programs
	Security Constraints and Typing Rules
	Method Constraints
	Typing Constraints and Constraint Interpretation
	Effects
	Typing Rules
	Statement Typing: Overview
	Statement Typing: Details


	Dynamics
	Security Labels
	Configurations
	Effect Analysis Support for Dynamic IFC
	Reduction rules

	Execution Model
	Unanalyzable Code
	Default, Dynamic Type Annotations
	Avoiding the Analysis of Write Effects

	Correctness
	Soundness of the type system
	Non-Interference

	Related Work
	Conclusion and Future Work
	Specification of the functions  upgr  and  updaterefs 
	LJGS-to-Java Compilation for the Polymorphic Method max
	Complete Static Semantics
	Complete Dynamic Semantics

	Correctness
	Progress
	Preservation
	Non interference
	Confinenemt
	Non-Interference for Branching Statements



