
The Blame Theorem for a Linear Lambda
Calculus with Type Dynamic

Technical Report

Luminous Fennell and Peter Thiemann

University of Freiburg, Georges-Köhler-Allee 079, 79110 Freiburg, Germany,
{fennell,thiemann}@informatik.uni-freiburg.de

Abstract. Scripting languages have renewed the interest in languages
with dynamic types. For various reasons, realistic programs comprise
dynamically typed components as well as statically typed ones. Safe and
seamless interaction between these components is achieved by equipping
the statically typed language with a type Dynamic and coercions that
map between ordinary types and Dynamic. In such a gradual type system,
coercions that map from Dynamic are checked at run time, throwing a
blame exception on failure.
This paper enlightens a new facet of this interaction by considering a
gradual type system for a linear lambda calculus with recursion and a
simple kind of subtyping. Our main result is that linearity is orthogonal
to gradual typing. The blame theorem, stating that the type coercions
always blame the dynamically typed components, holds in a version anal-
ogous to the one proposed by Wadler and Findler, also the operational
semantics of the calculus is given in a quite different way. The significance
of our result comes from the observation that similar results for other
calculi, e.g., affine lambda calculus, standard call-by-value and call-by-
name lambda calculus, are straightforward to obtain from our results,
either by simple modification of the proof for the affine case, or, for the
latter two, by encoding them in the linear calculus.

Keywords: linear typing, gradual typing, subtyping

This is the technical report. It extends the submitted paper with the omitted
details mentioned in the original text in an appendix. In particular, all proofs
are included.

1

Table of Contents

1 Introduction . 2
2 Linear Lambda Calculus . 4
3 Linear Lambda Calculus with Type Dynamic . 7
4 Subtyping . 10
5 The Blame Theorem . 11
6 Shortcut Casts . 12
7 Related Work . 15
8 Conclusion . 15
A Untyped linear lambda calculus . 18
B Expression Safety and Heap Safety . 20
C Affine Systems . 21
D Proof of Lemma 6 (blame-safe progress) . 22
E Additional lemmas . 23
F Proof of preservation . 26
G Proof of type progress (Lemma 2) . 31
H Proof of safety preservation . 35
I Proof of subtype factoring (Lemma 3) . 44
J Proof of Lemma 20 . 49
K Proof of Lemma 21 . 50
L Proof Extensions for Shortcut Casts . 52

1 Introduction

Many of today’s computing systems contain multi-core processors or regularly
access distributed services. The behavior of such a concurrent system depends
on the interaction of its components, so it is important for its construction
and maintenance to specify and enforce communication protocols and security
policies.

Ideally, static analysis should guarantee the adherence of a system to pro-
tocols and security policies, but such a comprehensive analysis is not always
possible. For example, there may be legacy components that were implemented
before a specification was established, or there may be components implemented
in a dynamic language that are impractical to analyze. These are situations,
where it is desirable to have the ability to combine static and dynamic enforce-
ment of specifications.

Gradual typing is a specification method that satisfies these requirements.
Gradual type systems were developed to introduce typing into dynamic lan-
guages to improve the efficiency of their execution as well as their maintain-
ability. They are also useful to mediate accesses between statically typed and
dynamically typed program components [5,10,12,22,24]. A commonality of these
approaches is that they extend the statically typed language with a type Dynamic

along with type coercions that map into and out of the Dynamic type. The dy-
namically typed part is then modeled as a program where every result is coerced
to Dynamic and where every elimination form is preceded by a coercion from
Dynamic. Clearly, the mapping into the Dynamic type never fails whereas the
mapping from the Dynamic type to a, say, function type may fail if the actual
dynamic value happens to be an integer. The standard implementation of a dy-
namic value is a pair consisting of a value and an encoding of its run-time type.
The coercion from Dynamic to another type checks the run-time type against
the expected one and throws an exception if the types do not match.

As a first step towards gradual enforcement of communication policies as
embodied by work on session types [18], this paper considers the interaction
of the type Dynamic and blame assignment with linearity [9]. A linear calculus
formalizes single-use resources in the sense that each introduced value can and
must only be eliminated exactly once. Thus, linearity is an important property
in all type systems that are related to managing stateful resources, in particular
communication channels in a session calculus [7, 20].

A linear lambda calculus has two dimensions that the type Dynamic may
address: it may hide and dynamically check the type structure or the linearity
requirement (or both). In this paper, we let the type system enforce linearity
statically and have the type Dynamic mostly hide the type structure. The re-
sulting calculus extends Turner and Wadler’s linear lambda calculus [21] with
cast expressions inspired by Wadler and Findler’s blame calculus [22], as demon-
strated in the following example program. It first wraps a pair of a linear function
and a replicable function (the exponential in !λb. b − 1 introduces a replicable
value) into a dynamic value. Then it unwraps the components and demonstrates
their use as functions and replicable functions.

let p = 〈D ⇐ (int (int)⊗ !(int (int)〉((λa. a+ 2)⊗ (!λb. b− 1)) in

let f ⊗ g1 = 〈D ⊗D ⇐ D〉p in

let !g = 〈!(int (int)⇐ D〉g1 in

g (g (〈int (int ⇐ D〉f 0))

The next example illustrates a possible interaction of typed and untyped
code through a latently typed communication channel, which is modeled with
a linear, dynamic type. Initially, the channel is represented by a linear function
submit : int (D : it expects an integer and its remaining behavior is Dynamic.
To use it after sending the integer 5, we attempt to coerce the remaining behavior
to a string (? channel. An exception will be raised if it turns out that the run-
time type of submit’ does not have this type.

let submit’ = 〈string (?⇐ D〉(submit 5) in submit’ “Hello”

Our calculus has a facility to hide part of a linearity requirement. To this end,
we extend the compatibility relation to admit casts that shortcut the elimination
of the exponential, effectively allowing dynamic replicable values to be treated
as linear. With this extension, the above example also executes correctly if the

3

linear variables a, b ::= . . . non-linear variables x, y ::= . . .

types t ::= ? | t⊗ t | t(t | !t

expressions e, f ::= ? | let ? = e in e | e⊗ e | let a⊗ a = e in e |
λa. e | e e | a | !(x = e) | let !x = e in e | x

storable values s ::= ? | a⊗ a | λa. e | !x

Fig. 1. Original type and expression syntax.

run-time type of submit’ has a form like !(!string (?). In both cases, we show
that linearity and gradual typing are orthogonal. We first define a suitable linear
lambda calculus with a gradual type system and blame assignment in the manner
of Taha and Siek [14, 16] and Wadler and Findler [22], respectively. We prove
the soundness of this system and then follow Wadler and Findler in formulating
subtyping relations and proving a blame theorem.

Overview

Section 2 defines the static and dynamic semantics of a typed linear lambda
calculus with recursion.

Section 3 contains our first contribution, an extension of the calculus with
gradual types, which adds a type Dynamic and cast expressions to map between
ordinary types and Dynamic. We prove type soundness of this extended calculus.
Our gradual extension is more modular than Wadler and Findler’s blame calculus
[22] thus making our calculus easier to extend and making our approach easier
to apply to other calculi. Section 4 recalls the subtyping relation of the blame
calculus and adapts it to the linearly typed setting.

Section 5 contains our second contribution. We state and prove the blame
theorem for the linear blame calculus.

Section 6 contains our third contribution. We show how to exploit the
modularity by integrating shortcut casts in the system that enable direct casting
from a replicable value wrapped in the dynamic type to the underlying type.
Type soundness and the blame theorem still hold for this extension.

All proofs may be found in a companion technical report.1

2 Linear Lambda Calculus

Turner and Wadler’s linear lambda calculus [21] is the basis of our investiga-
tion. Figure 1 contains the syntax of their original calculus extended to deal
with recursive exponentials. Types are unit types, pairs, linear functions, and
exponentials. The term syntax is based on two kinds of variables, linear ones
a and non-linear ones x. There are introduction and elimination forms for unit

1 http://proglang.informatik.uni-freiburg.de/projects/gradual/

4

heaps H ::= · | H,x = e | H, a = s

evaluation contexts E ::=[]⊗ e | a⊗ [] | [] e | a [] |
let a⊗ b = [] in e | let !x = [] in e | let ? = [] in e

{H}e→ {H}e′

?-I {H}? → {H, a∗ = ?}a∗

?-E {H, a = ?}let ? = a in e → {H}e
⊗-I {H}a1 ⊗ a2 → {H, b∗ = a1 ⊗ a2}b∗

⊗-E {H, a′′ = a′ ⊗ b′}let a⊗ b = a′′ in e → {H}e[a/a′, b/b′]
(-I {H}λa. e → {H, b∗ = λa. e}b∗

(-E {H, b = λa. e}b a′ → {H}e[a/a′]
!-I {H}!(x = e) → {H, b∗ =!y∗, y∗ = e[x/y∗]}b∗

!-E {H, b =!y}let !x = b in e → {H}e[x/y]

Var {H,x = e}x → {H,x = e}e

{H}e→ {H ′}e′

{H}E[e]→ {H ′}E[e′]
Context

Fig. 2. Original operational semantics.

values ?, linear pairs e⊗ e, and lambda abstractions. By default all expressions
are linear. Following the work on Lily [6] and in this respect generalizing Turner
and Wadler, replicable and recursive expressions can be constructed with the
exponential !(x = e), where the non-linear variable x may appear in e. The
exponential can be seen as a suspended computation which, when forced, may
return some value. We may also write !e for !(x = e) when x does not occur
in e. The elimination forms, except function application, are expressed using
suitable let-forms. Our presentation is based on Turner and Wadler’s second,
heap-based semantics. For that reason, our evaluation rules always return linear
variables (heap pointers) that refer to storable values s. The latter only consist of
introduction forms applied to suitable variables. In particular, the storable value
for the exponential refers to a non-linear variable that keeps the real payload
that is repeatedly evaluated.

The corresponding original operational semantics is given in Figure 2. The
reduction rules are defined in terms of heap-expression configurations {H}e.
The heap contains two kinds of bindings. Linear variables are bound to linear
values, whereas standard variables are bound to expressions. The intention is
that a linear variable is used exactly once and removed after use, whereas a
standard variable can be used many times and its binding remains in the heap.
In the rules we use the notation a∗ to denote that a should be a fresh variable.

5

Linear type environments Γ ,∆ and non linear type environments Θ

Γ,∆ ::= - | Γ, a : t Θ ::= - | Θ, x : t

Θ;Γ ` e : t

Θ, x : t; - ` x : t
Var

Θ; a : t ` a : t
LVar

Θ; - ` ? : ?
?−I

Θ;Γ ` e : ? Θ;∆ ` f : t

Θ;Γ,∆ ` let ? = e in f : t
?−E

Θ;Γ ` e : te Θ;∆ ` f : tf

Θ;Γ,∆ ` e⊗ f : te ⊗ tf
⊗−I

Θ;Γ ` e : ta ⊗ tb Θ;∆, a : ta, b : tb ` f : tf

Θ;Γ,∆ ` let a⊗ b = e in f : tf
⊗−E

Θ;Γ, a : ta ` e : te

Θ;Γ ` λa. e : ta (te
(−I

Θ;Γ ` e : tf (te Θ;∆ ` f : tf

Θ;Γ,∆ ` e f : te
(−E

Θ, x : t; - ` e : t

Θ; - `!(x = e) :!t
!−I

Θ;Γ ` e :!te Θ, x : te;∆ ` f : tf

Θ;Γ,∆ ` let !x = e in f : tf
!−E

Fig. 3. Original linear type system.

` H : Θ;Γ

` · : - ; -
Empty

` H : Θ;Γ Θ, x : t; - ` e : t

` H,x = e : Θ, x : t;Γ
Closure

` H : Θ;Γ,∆ Θ;∆ ` s : t

` H, a = s : Θ;Γ, a : t
Value

Fig. 4. Heap typing.

Figure 3 recalls the inference rules of the corresponding type system as presented
by Turner and Wadler [21]. There are two kinds of type environments, a linear
one, Γ , and a non-linear one, Θ. Linearity is enforced by splitting the linear type
environment in the inference rules in the usual way and by requiring the linear
environment to be empty in the usual places (constants, non-linear variables,
and the exponential). In addition to the expression typing, there is a heap typing
judgment of the form ` H : Θ;Γ that relates a heap H to environments Θ and
Γ that provide bindings for non-linear and linear variables, respectively. The
judgment is defined in Figure 4 and is a minor modification of the corresponding
judgment of Turner and Wadler with the Closure rule adapted to accomodate
recursive bindings. It is needed for the type soundness proof.

The type of a heap is a pair of a linear and a non-linear type environment re-
flecting the respective variable bindings in the heap. Linear variables are defined
by linear values, non-linear variables are defined by expressions that have no free

6

types t ::= . . . | D expressions e ::= . . . | 〈t⇐ t〉p e
blame labels p, q ::= . . . storable values s ::= . . . | Dc(a)

constructors c ::= ? | ⊗ | (| !

Fig. 5. Syntactic extensions.

Θ;Γ ` e : t , Θ;Γ ` s : t

Θ;Γ ` e : t2 t1 ∼ t2
Θ;Γ ` 〈t1 ⇐ t2〉pe : t1

Cast

Θ; a : ? ` D?(a) : D
DynVal - ?

Θ; a : D ⊗D ` D⊗(a) : D
DynVal - ⊗

Θ; a : D (D ` D((a) : D
DynVal - (

Θ; a :!D ` D!(a) : D
DynVal - !

Compatibility t ∼ t′

? ∼ ? t ∼ D D ∼ t
t1 ∼ t′1 t2 ∼ t′2
t1 ⊗ t2 ∼ t′1 ⊗ t′2

t1 ∼ t′1 t2 ∼ t′2
t1 (t2 ∼ t′1 (t′2

t ∼ t′

!t ∼!t′

Fig. 6. Type system extensions and compatibility.

linear variables. Note that the type system for expressions is syntax-directed and
that the heap typing rules are invertible as in Turner and Wadler’s original work.

3 Linear Lambda Calculus with Type Dynamic

To introduce dynamic and gradual typing into the calculus, we extend the
Turner-Wadler calculus with new constructs adapted from Wadler and Find-
ler’s work [22] as shown in Figure 5. There is a new kind of wrapper value Dc(a),
which denotes a dynamic value pointing to a variable a with type constructor
c, a new type D of dynamic values, and a cast expression 〈t′ ⇐ t〉p e. The cast
is supposed to transform the type of e from t to t′. Casts are annotated with
a blame label p to later identify the place that caused a run-time error result-
ing from the cast. A plain blame label p indicates positive blame whereas an
inverted label p̄ indicates negative blame. Inversion is involutory so that ¯̄p = p.
The wrapper values are needed by the casts to perform run-time type checking.
Unlike the wrapper values of Wadler and Findler’s blame calculus, they are only
defined for linear variables and occur exclusively as heap values.

The extensions to the type system are also inspired by the blame calculus.
The additional rules are given in Figure 6. The Cast rule changes the type t2
of an underlying expression to a compatible type t1. The compatibility relation
t ∼ t is also defined in Figure 6. It is analogous to the definition in the blame

7

calculus. However, as subset types are not considered here, the only possible
casts are either trivial or cast from or to D . The four value rules are only used
inside of heap typings.

Figure 7 shows the reduction rules that perform run-time type checking by
manipulating casts and wrapper values. These rules are original to our system
and they implement casting in a different way than Wadler and Findler. The
first set of rules concerns casting into the dynamic type. It distinguishes casts
by checking the source type for groundness (a type constructor directly applied
to D). A cast from a ground type to D corresponds to a wrapper application
(second part of first group) whereas any other cast is decomposed into a wrapper
cast preceded by a cast into the ground type. It is not possible to merge these
two parts because a wrapper cannot be applied before its argument is properly
casted and evaluated.

The second group of rules specifies the functorial casts that descent struc-
turally in the type. For the types dynamic and unit, the casts do nothing. For
pairs, the casts are distributed to the components. For functions, the cast is
turned into a wrapper function, which casts the argument with types reversed
and the blame label “inverted” and which casts the result with the types in the
original order. A cast between exponential types unfolds the exponential and
performs the cast on the underlying linear value.

The third group of rules concerns casting from type D . This group has a
simpler structure than the first group because top-level unwrapping can be done
in any case. The “remaining” cast is then applied to the unwrapped value of
ground type. It is put to work by the functorial rules.

The last group defines the failure rules. They apply to unwrapping casts that
are applied to dynamic values with the wrong top type constructor. These are
the only rules that generate blame.

The resulting linear blame calculus is still type safe. We can prove preserva-
tion and progress lemmas extending the ones given by Turner and Wadler.

Lemma 1 (Type preservation). If {H}e → {H ′}e′ and ` H : Θ;Γ and
Θ;Γ ` e : t then there exist Θ′ and Γ ′ such that ` H ′ : Θ,Θ′;Γ ′ and Θ,Θ′;Γ ′ `
e′ : t.

Lemma 2 (Progress). If ` H : Θ;Γ and Θ;Γ ` e : t then one of the following
alternatives holds: (i) there exist H ′ and e′ such that {H}e→ {H ′}e′, (ii) there
exists p such that {H}e→ ⇑p, or (iii) e is a linear variable.

The last case may be surprising, as the standard formulation of a progress lemma
states the outcome of a value at this point. However, in the present setting, all
values are represented by (linear) pointers to the heap. Thus, the presence of a
linear variable indicates that the evaluation returns the linear value pointed to
by the variable.

From these two lemmas, we can prove type soundness in the usual way [23].

Theorem 1 (Type soundness). If ` H : Θ;Γ and Θ;Γ ` e : t then either
(i) {H}e diverges, (ii) {H}e →∗ ⇑ p, for some p, or (iii) {H}e →∗ {H ′}a, for
some H ′ and a.

8

results r ::= {H}e | ⇑p
eval. contexts E ::= . . . | 〈t1 ⇐ t2〉p[]

{H}e→ r
{H}e→ ⇑p
{H}E[e]→ ⇑p ContextFail

Casting to D

CastDyn - ⊗ {H}〈D ⇐ t1 ⊗ t2〉pa → {H}〈D ⇐ D ⊗D〉p〈D ⊗D ⇐ t1 ⊗ t2〉pa
if t1 6= D ∨ t2 6= D

CastDyn - ({H}〈D ⇐ t1 (t2〉pa → {H}〈D ⇐ D (D〉p〈D (D ⇐ t1 (t2〉pa
if t1 6= D ∨ t2 6= D

CastDyn - ! {H}〈D ⇐!t〉pa → {H}〈D ⇐!D〉p〈!D ⇐!t〉pa
if t 6= D

WrapDyn - ? {H}〈D ⇐ ?〉pa → {H, b∗ = D?(a)}b∗

WrapDyn - ⊗ {H}〈D ⇐ D ⊗D〉pa → {H, b∗ = D⊗(a)}b∗

WrapDyn - ({H}〈D ⇐ D (D〉pa → {H, b∗ = D((a)}b∗

WrapDyn - ! {H}〈D ⇐!D〉pa → {H, b∗ = D!(a)}b∗

Functorial casts

Cast - D {H}〈D ⇐ D〉pa → {H}a
Cast - ? {H}〈?⇐ ?〉pa → {H}a
Cast - ⊗ {H}〈t′1 ⊗ t′2 ⇐ t1 ⊗ t2〉pa → {H}let a1

∗ ⊗ a2
∗ = a in

〈t′1 ⇐ t1〉pa1
∗ ⊗ 〈t′2 ⇐ t2〉pa2

∗

Cast - ({H}〈t′1 (t′2 ⇐ t1 (t2〉pa → {H}λb∗. 〈t′2 ⇐ t2〉p(a (〈t1 ⇐ t′1〉p̄b∗))
Cast - ! {H}〈!t′ ⇐!t〉pa → {H}let !x∗ = a in !(y∗ = 〈t′ ⇐ t〉px∗)

Casting from D

FromDyn - ? {H, a = D?(a′)}〈?⇐ D〉pa → {H}a′

FromDyn - ⊗ {H, a = D⊗(a′)}〈t1 ⊗ t2 ⇐ D〉pa → {H}〈t1 ⊗ t2 ⇐ D ⊗D〉pa′

FromDyn - ({H, a = D((a′)}〈t1 (t2 ⇐ D〉pa → {H}〈t1 (t2 ⇐ D (D〉pa′

FromDyn - ! {H, a = D!(a
′)}〈!t⇐ D〉pa → {H}〈!t⇐!D〉pa′

Failing casts from D

CastFail - ? {H, a = D?(a′)}〈t⇐ D〉pa → ⇑p if t 6= ? and t 6= D

CastFail - ⊗ {H, a = D⊗(a′)}〈t⇐ D〉pa → ⇑p if t 6= t1 ⊗ t2 and t 6= D

CastFail - ({H, a = D((a′)}〈t⇐ D〉pa → ⇑p if t 6= t1 (t2 and t 6= D

CastFail - ! {H, a = D!(a
′)}〈t⇐ D〉pa → ⇑p if t 6=!t′ and t 6= D

Fig. 7. Reduction rule extensions.

9

Ground types
g ::= ? | D ⊗D | D (D |!D

Subtyping t <: t′

? <: ? D <: D

t <: g

t <: D

t1 <: t′1 t2 <: t′2

t1 ⊗ t2 <: t′1 ⊗ t′2
t′1 <: t1 t2 <: t′2

t1 (t2 <: t′1 (t′2

t <: t′

!t <:!t′

Positive subtyping t <:+ t′

? <:+ ? t <:+ D

t1 <:+ t′1 t2 <:+ t′2

t1 ⊗ t2 <:+ t′1 ⊗ t′2
t′1 <:− t1 t2 <:+ t′2

t1 (t2 <:+ t′1 (t′2

t <:+ t′

!t <:+!t′

Negative subtyping t <:− t′

? <:− ? D <:− t

t <:− g

t <:− t′
t1 <:− t′1 t2 <:− t′2

t1 ⊗ t2 <:− t′1 ⊗ t′2
t′1 <:+ t1 t2 <:− t′2

t1 (t2 <:− t′1 (t′2

t <:− t′

!t <:−!t′

Fig. 8. Subtyping rules.

Wadler and Findler also define a transformation to embed untyped programs
into the blame calculus. For our system, an analogous transformation can be
defined for a version of the untyped linear lambda calculus [3]. For details we
refer to the technical report above mentioned in Section 1.

4 Subtyping

The subtyping relation, defined in Figure 8, holds between types that can be cast
without raising blame. Following the subtyping relation for the blame calculus, it
is split into three relations. Positive subtyping characterizes casts that never raise
positive blame, as we show in Section 5. Negative subtyping characterizes casts
that never raise negative blame and the plain subtyping relation characterizes
casts that never raise blame at all.

Ground types, also defined in Figure 8, play a special role in the definition of
subtyping because it turns out that casting into a ground type never raises blame
(viz. the definition of negative subtyping). Ground types increase the scope of
the subtyping relation based on this observation.

The subtyping rules involving D , the base type ?, and the linear function type
are identical to Wadler and Findler’s rules. The rules for pairs and exponentials
are new but analogous to the existing rules: both are covariant and immutable.
They do not give rise to new problems and similar results hold.

Lemma 3 (Factoring subtyping).
t1 <: t2 if and only if t1 <:+ t2 and t1 <:− t2.

The inference rules for t′ <:+ t are syntax-directed which enables the proof
of the following lemma.

10

e sf p , s sf p

t2 <:+ t1 e sf p

〈t1 ⇐ t2〉pe sf p

t2 <:− t1 e sf p

〈t1 ⇐ t2〉p̄e sf p

p 6= q p 6= q̄ e sf p

〈t1 ⇐ t2〉qe sf p

? sf p a sf p · · ·
e sf p

λa. e sf p · · ·

Fig. 9. Blame-safe expressions.

Lemma 4. If D <:+ t then t = D.

We have not considered naive subtyping in this paper as it is not needed for
proving the blame theorem.

5 The Blame Theorem

The slogan of the blame theorem [22] is that “well typed programs can’t be
blamed”. In other words, if a program raises blame, a dynamically typed expres-
sion is responsible.

To prove this theorem, Wadler and Findler define the notion of safe expres-
sions. A safe expression for a specific blame label will never raise that blame
label. This notion of blame safety can only be violated through a cast expression
〈t′ ⇐ t〉pe and it can be derived from the particular subtyping relation which
holds between the types t′ and t. Therefore, given preservation and progress of
the reduction rules with respect to blame safety, the potential for raising blame
is defined by the types used in the individual cast expressions of a program.

We replicate this reasoning for the linear blame calculus by defining blame
safety and showing its preservation and progress for typed configurations. It
is not sufficient to define blame safety just for expressions like in the blame
calculus, because our operational semantics is defined in terms of heap-expression
configurations {H}e. As variables can refer to expressions in the heap, they are
only safe if the referred expressions are safe. A sufficient condition to ensure
safety is therefore to require the entire heap to contain safe expressions for a
particular blame label. The precise definition may be found in the technical
report.

We also explored the idea of making variables safe depending on the expres-
sion that they refer to in the heap. However, this idea turned out to require a lot
more formalism (e.g., formalizing reachability in the heap) because of recursive
bindings in the heap.

Some of the adapted rules for blame safety of expressions are shown in Fig-
ure 9. The complete definition is given in the technical report. The cast expres-
sions are the only places, where blame safety may be violated. The rules for cast
expressions are analogous to those of the blame calculus: a cast is safe for p if it
has label p and its types are related by positive subtyping, if it has label p̄ and its

11

types are related by negative subtyping, or if it has a label unrelated to p. The
remaining rules just propagate the safety requirement to their subexpressions.
Variables, wrapped variables, and the unit value are always safe.

The preservation lemma for blame safety establishes the following fact: The
reduction of a configuration which is safe for a blame label p results in a config-
uration which is again safe for p.

Lemma 5 (Safe configurations: preservation). Suppose that ` H : Θ;Γ
and Θ;Γ ` e : t and {H}e sf p and {H}e→ {H ′}e′ then {H ′}e′ sf p.

The proof is by induction on the reduction relation.
The next essential part to the blame theorem is the fact that blame-free

progress of safe configurations is guaranteed:

Lemma 6 (Progress of safe configurations).
If {H}e sf p then {H}e 6→ ⇑p.

Proof. We actually prove the contraposition “If {H}e → ⇑ p then not e sf p”
by induction on the reduction relation. This induction uses Lemma 4.

Like in Wadler and Findler’s blame calculus the blame theorem is a corollary
of Lemmas 5 and 6:

Corollary 1 (Well typed linear programs can’t be blamed). Let {H}e be
a well typed configuration and 〈t1 ⇐ t2〉pf a subexpression of e or a subexpression
in a binding in H containing the only occurrence of p in any expression reachable
by {H}e. If t2 <:+ t1 then {H}e 6→∗ ⇑ p. If t2 <:− t1 then {H}e 6→∗ ⇑ p̄. If
t2 <: t1 then {H}e 6→∗ ⇑p and {H}e 6→∗ ⇑ p̄.

6 Shortcut Casts

Consider the following simple example:

let f = 〈D ⇐!(int (int)〉!λa. a+ 1 in

let !f1 = 〈!D ⇐ D〉f in 〈int (int ⇐ D〉f1 0

The dynamically typed variable f is used exactly once, but an extra cast and
exponential elimination has to be inserted in the second line to satisfy the type
checker. The problem in this case is that the variable f “hides” a value of type
!(int (int), but the single use of the function requires the unreplicated type
(int (int).

This mismatch can be addressed by extending our system with “subtyping”
of the form !t <: t where the conversion from the left side to the right side
must be made explicit via casting. This notion of subtyping is based on the
observation that each replicable value can serve as a linear value. In a first step,
we only address casting from a dynamic type that wraps a replicated type to
the underlying unreplicated type. To this end, we replace the CastFail-! rule by

12

a rule that directly dereferences the exponential and then retries the cast on the
unwrapped value (after evaluation of x):

FromDyn - !t {H, a = D!(a
′), a′ =!x}〈t⇐ D〉pa → {H}〈t⇐ D〉px if t 6=!t′

With this rule in place, the example above can be rewritten as follows without
explicitly casting f from D to !D :

let f = 〈D ⇐!(int (int)〉!λa. a+ 1 in

〈int (int ⇐ D〉f 0

The linear f , which wraps a value of exponential type, is directly converted to
a linear function. This use of f is more convenient than explicit unwrapping.

Our semantics also handles the unlikely case of a multiply wrapped type like
!!!?. Converting a value of this type into the dynamic type requires let s = 〈D ⇐
!!!?〉!!! ? in . . . whereas using it (once) just requires casting with 〈?⇐ D〉s.

All the results we have so far, type soundness, properties of subtyping, and
the blame theorem, still hold without change.

A less satisfactory consequence is that some sequences of cast expressions
cannot be simplified, anymore. As an example, consider the expression

let f : int (int = . . . in f (〈int ⇐ D〉(〈D ⇐!int〉!42))

This expression is legal in the type system of Section 3 and it executes without
run-time errors in the extended semantics of the current section. In other sys-
tems, it is possible to optimize such a (non-failing) sequence of casts to just a
single cast as in:

f (〈int ⇐!int〉!42)

However, our present system does not permit this reduced cast. In fact, our
operational semantics cannot execute this cast because its left and right side
types are not compatible. This restriction is also enforced by the type system.

This problem can be amended by adding evaluation rules for the evaluation
of casts from an exponential type to a non-dynamic type. The strategy is the
same as for the FromDyn - !t rule: eliminate the exponential and retry the cast.

Cast−!− ? {H, a =!x}〈?⇐!t〉pa → {H}〈?⇐ t〉px
Cast−!−⊗ {H, a =!x}〈t1 ⊗ t2 ⇐!t〉pa → {H}〈t1 ⊗ t2 ⇐ t〉px
Cast−!−({H, a =!x}〈t1 (t2 ⇐!t〉pa → {H}〈t1 (t2 ⇐ t〉px

For these casts to be admissible in a program, the compatibility relation needs
to be amended to reflect !t <: t subtyping. By including this subtyping rela-
tion, compatibility is no longer symmetric, but it turns into a reflexive, anti-
symmetric relation. Also the rule for two compatible function types is now con-
travariant in the argument type. Compatibility is not transitive to rule out casts
like 〈? ⇐ t1 ⊗ t2〉 that always fail. Compatibility ensures that casts only fail

13

t . t′

? . ? t . D D . t

t1 . t′1 t2 . t′2
t1 ⊗ t2 . t′1 ⊗ t′2

t′1 . t1 t2 . t′2
t1 (t2 . t′1 (t′2

t . t′

!t .!t′

t . t1 (t2

!t . t1 (t2

t . t1 ⊗ t2
!t . t1 ⊗ t2

t . ?

!t . ?

Fig. 10. Compatibility with shortcut subtyping.

when trying to unwrap a dynamic type. Figure 10 shows the updated defini-
tion of the compatibility relation. It strictly encompasses the original notion of
compatibility. The typing rule for casts must be updated accordingly.

Θ;Γ ` e : t2 t2 . t1
Θ;Γ ` 〈t1 ⇐ t2〉pe : t1

Cast′

With this extended framework in place, we can include a simplification rule for
casts as follows:

〈t1 ⇐ t2〉p〈t2 ⇐ t3〉qe =⇒ 〈t1 ⇐ t3〉pqe if t3 . t1

The blame labels for the two casts have to be combined to cater for a sequence
of casts like

〈int ⊗ int ⇐ int ⊗D〉p〈int ⊗D ⇐ D ⊗D〉qe

where both steps involve an unwrapping of a dynamic type, each of which may
have to be attributed to a different part of the program, that is, either p or q.

Theorem 2. Type soundness holds for the extended calculus with the Cast ′ rule
and the modified operational semantics.

Proof. By extending the proofs of type preservation and progress with the cases
for the four modifications of the reduction rules.

Working towards a blame theorem, the subtyping relations of Figure 8 extend in
a similar way as the compatibility relation. It is sufficient to add the rules that
drop the exponential as long as the target type is neither dynamic nor another
exponential. This choice also keeps the subtyping relations deterministic. As
these rules are identical for all three relations, <:, <:+, and <:−, we only show
them for one relation.

t <:+ ?

!t <:+ ?

t <:+ t′1 (t′2
!t <:+ t′1 (t′2

t <:+ t′1 ⊗ t′2
!t <:+ t′1 ⊗ t′2

The lemmas in Section 4 still hold for the extended subtyping relations. Also the
establishment of the blame theorem and its preliminaries carry over by extending
the proofs with the four cases of the modified reduction rules.

14

7 Related Work

We based our work on Turner and Wadler’s linear lambda calculus [21] and
extended it with recursion as in Lily [6]. We considered other versions of linear
lambda calculus as alternative starting points (for example [2–4]). However, we
chose Turner and Wadler’s because its formalization of linear values as heap
references makes linearity very explicit.

Affine types are closely related to linear types. An affine value must be elimi-
nated at most once, but it may also be discarded. The results of the paper extend
readily to affine systems. Again we refer to the technical report for details.

In the introduction, we refer to a number of papers on statically typed lan-
guages with type Dynamic. Actually, there are different flavors of such languages.
The first (earlier) flavor is the one treated by Abadi and coworkers [1]. It is not
concerned with type casts, but rather has a specific expression to create a dy-
namic value by pairing a standard value with its static type. The corresponding,
type-safe elimination form is a typecase construct that performs pattern match-
ing on the type component and extracts the value in case of a match. There is a
bulk of further work in this area, which we choose not to comment on, because
we do not consider typecase in this work. We conjecture —based on our results—
that linearity is also orthogonal to dynamics in a language with typecase.

The flavor that we are interested in starts with Henglein’s investigation of
dynamic typing [10], which pioneered the ideas of wrapped values and of safe
and unsafe casts in the context of a simply-typed lambda calculus. However,
Henglein does not introduce a subtyping relation that would have enabled him
to prove a blame theorem.

Taha and Siek [14,16] have proposed the use of subtyping to characterize the
potential failure of a cast expression. Their work has been extended by Wadler
and Findler with blame assignment, the marking of cast expressions with unique
labels to determine the program point that caused a cast failure. On this basis,
they proved the blame theorem, which states that errors in a gradually typed
program are always blamed on the untyped (dynamic) part of the program.

Henglein [10] introduces the idea of a coercion calculus in order to reduce
the number of times a type is tested at run time. This idea has been picked
up by a number of researches with different goals: eager reporting of cast errors
[15], improving the efficiency of gradual typing [11], providing streamlined data
structures and algorithms for representing and normalizing coercions [17]. We
only touch on this subject briefly in Section 6 to indicate that our approach is
compatible with coercion calculi.

We are not aware of any work that has explored the interaction of linearity
and gradual typing.

8 Conclusion

We extended a linearly typed lambda calculus with recursion and type Dynamic,
proved type soundness for it, and established a blame theorem a la Wadler and

15

Findler. In comparison to Wadler and Findler’s work, our calculus is more mod-
ular thus making it easy to extend with additional type constructions or with
optimizations as shown in Section 6. As an extension, we integrated a notion
of subtyping that allows single uses of dynamic replicated values not to require
explicit unwrapping of the exponential, but rather just casting from the dynamic
type to the linear target type. Thus, we have shown that linear typing and grad-
ual typing with blame assignment are orthogonal aspects in a lambda calculus
setting. We have also demonstrated the robustness of the concepts established
with the blame theorem by extending the underlying calculus with a notion of
subtyping. Although we have considered a core calculus, adding datatypes and
conditionals would be straightforward.

There are a number of avenues for further work. It would be interesting to
consider the interaction of linearity, polymorphism, and gradual typing to see if
the orthogonality found in this work can be sustained. Because of the modularity
of our approach, we expect the orthogonality to carry over to the context of
session typing and probably also to more general process calculi. Last, instead of
having the dynamic type forget the type structure, it could also forget about the
linearity restriction. Similar ideas have been pursued by Pucella and Tov [19,20]
and they could also be considered for session typing and process calculi.

References

1. M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically
typed language. ACM TOPLAS, 13(2):237–268, Apr. 1991.

2. S. Abramsky. Computational interpretations of linear logic. Theor. Comput. Sci.,
111(1&2):3–57, 1993.

3. S. Alves, M. Fernández, M. Florido, and I. Mackie. Gödel’s system T revisited.
Theoretical Computer Science, 411(11-13):1484–1500, 2010.

4. P. N. Benton, G. M. Bierman, V. de Paiva, and M. Hyland. A term calculus for
intuitionistic linear logic. In M. Bezem and J. F. Groote, editors, TLCA, volume
664 of LNCS, pages 75–90. Springer, 1993.

5. G. M. Bierman, E. Meijer, and M. Torgersen. Adding dynamic types to C#.
In T. D’Hondt, editor, ECOOP, volume 6183 of LNCS, pages 76–100, Maribor,
Slovenia, 2010. Springer.

6. G. M. Bierman, A. M. Pitts, and C. V. Russo. Operational properties of Lily, a
polymorphic linear lambda calculus with recursion. Electr. Notes Theor. Comput.
Sci., 41(3):70–88, 2000.

7. L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In
P. Gastin and F. Laroussinie, editors, CONCUR, volume 6269 of Lecture Notes in
Computer Science, pages 222–236, Paris, France, Aug. 2010. Springer.

8. G. Castagna, editor. Proc. of the 18th ESOP, volume 5502 of LNCS, York, United
Kingdom, Mar. 2009. Springer.

9. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
10. F. Henglein. Dynamic typing: Syntax and proof theory. Science of Computer

Programming, 22:197–230, 1994.
11. D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual typing. In Trends

in Functional Programming (TFP), 2007.

16

12. J. Matthews and R. B. Findler. Operational semantics for multi-language pro-
grams. ACM TOPLAS, 31:12:1–12:44, Apr. 2009.

13. J. Palsberg, editor. Proc. 37th ACM Symp. POPL, Madrid, Spain, Jan. 2010. ACM
Press.

14. J. Siek and W. Taha. Gradual typing for objects. In E. Ernst, editor, 21st ECOOP,
volume 4609 of LNCS, pages 2–27, Berlin, Germany, July 2007. Springer.

15. J. G. Siek, R. Garcia, and W. Taha. Exploring the design space of higher-order
casts. In Castagna [8], pages 17–31.

16. J. G. Siek and W. Taha. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop, Sept. 2006.

17. J. G. Siek and P. Wadler. Threesomes, with and without blame. In Palsberg [13],
pages 365–376.

18. K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its
typing system. In C. Halatsis, D. Maritsas, G. Philokyprou, and S. Theodoridis,
editors, 6th International PARLE Conference (Athens, Greece, July 1994), volume
817 of LNCS, pages 398–413. Springer, 1994.

19. J. A. Tov and R. Pucella. Stateful contracts for affine types. In A. D. Gordon,
editor, ESOP 2010, volume 6012 of LNCS, pages 550–569. Springer, 2010.

20. J. A. Tov and R. Pucella. Practical affine types. In Proc. 38th ACM Symp. POPL,
pages 447–458, Austin, TX, USA, Jan. 2011. ACM Press.

21. D. N. Turner and P. Wadler. Operational interpretations of linear logic. Theoretical
Computer Science, 227(1-2):231–248, 1999.

22. P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In Castagna
[8], pages 1–16.

23. A. Wright and M. Felleisen. A syntactic approach to type soundness. Information
and Computation, 115(1):38–94, 1994.

24. T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Östlund, and J. Vitek. Integrating
typed and untyped code in a scripting language. In Palsberg [13], pages 377–388.

17

A Untyped linear lambda calculus

The type system extensions introduced in Section 3 also enable a mixture of
typed and untyped code like in the blame calculus. Figure 11 defines an un-
typed linear lambda calculus. The expression syntax is the same as for the
typed calculus, except that it omits casts and adds the possibility to embed
typed expressions with the form bec.

A well-formedness relation Θ;Γ ` u wf enforces linearity by bookkeeping
about variable usage with type environments that bind all variables to type D .
It is closely related to the untyped linear lambda calculus [3], which just keeps
track of variable occurrences. In our work, the environments are necessary to
support the embedding of typed terms.

Figure 12 defines a transformation due to embed untyped expressions in typed
programs by inserting the required casts (analogous to the blame calculus). A
similar correctness result holds (by induction on the well-formedness relation):

Lemma 7. Θ;Γ ` u wf if and only if Θ;Γ ` due : D

18

Syntax

untyped terms u ::= x | a | λa. u | u u | ? | let ? = u in u |
u⊗ u | let a⊗ a = u in u | !(x = u) | let !x = u in u | bec

Well formed terms Θ;Γ ` u wf

Θ;Γ ` e : D

Θ;Γ ` bec wf Θ; - ` ? wf

Θ;Γ ` u wf Θ;∆ ` u wf

Θ;Γ,∆ ` let ? = u in v wf

Θ; a : D ` a wf

Θ;Γ, a : D ` u wf

Θ;Γ ` λa. u wf

Θ;Γ ` u wf Θ;Γ ` v wf

Θ;Γ,∆ ` u v wf

Θ;Γ ` u wf Θ;∆ ` v wf

Θ;Γ,∆ ` u⊗ v wf

Θ;Γ ` u wf Θ;∆, a : D , b : D ` v wf

Θ;Γ,∆ ` let a⊗ b = u in v wf

Θ, x : D ;Γ ` x wf

Θ, x : D ; - ` u wf

Θ; - `!(x = u) wf

Θ, x : D ;Γ ` u wf Θ, x : D ;∆ ` v wf

Θ;Γ,∆ ` let !x = u in v wf

Fig. 11. Untyped linear lambda calculus.

Embedding due

dae = a

dxe = x

d?e = 〈D ⇐ ?〉p ? p fresh

dlet ? = u in ve = let ? = 〈?⇐ D〉pdue in dve p fresh

dλa. ue = 〈D ⇐ D (D〉p(λa.due) p fresh

du ve = (〈D (D ⇐ D〉pdue) dve p fresh

du⊗ ve = 〈D ⇐ D ⊗D〉p(due ⊗ dve) p fresh

dlet a⊗ b = u in ve = let a⊗ b = 〈D ⊗D ⇐ D〉pdue in dve p fresh

d!(x = u)e = 〈D ⇐!D〉p!(x = due) p fresh

dlet !x = u in ve = let !x = 〈!D ⇐ D〉pdue in dve p fresh

dbece = e

Fig. 12. Embedding transformation.

19

B Expression Safety and Heap Safety

The complete definitions for expression and heap safety are given in Figure 13.

t2 <:+ t1 e sf p

〈t1 ⇐ t2〉pe sf p

t2 <:− t1 e sf p

〈t1 ⇐ t2〉p̄e sf p

p 6= q p 6= q̄ e sf p

〈t1 ⇐ t2〉qe sf p

? sf p a sf p x sf p Dc(a) sf p

e sf p

λa. e sf p

e sf p f sf p

e⊗ f sf p

e sf p

!(x = e) sf p

e sf p f sf p

let ? = e in f sf p

e sf p f sf p

e f sf p

e sf p f sf p

let a1 ⊗ a2 = e in f sf p

e sf p f sf p

let !x = e in f sf p

· sf p

s sf p H sf p

H, a = s sf p

e sf p H sf p

H, x = e sf p

H sf p e sf p

{H}e sf p

Fig. 13. Blame-safe expressions e sf p , s sf p and heaps H sf p .

20

C Affine Systems

The results of the paper extend readily to affine systems. An affine lambda cal-
culus requires that every restricted value is used at most once (whereas linearity
asks for exactly once). Thus, considering affinity involves only a few changes to
the definitions and to the technical results.

The syntax and the semantics of the affine lambda calculus are identical to
the linear lambda calculus. The typing rule (LVar) for linear variables changes
to rule (AVar) to reflect affinity: it admits a non-empty linear type environment.

Θ;Γ, a : t ` a : t
AVar

The lemmas for type preservation and progress need to take into account that
garbage may exist among the linear bindings in the heap. Fortunately, this
garbage is already reflected in the heap type Γ in the type preservation and
progress lemmas.

To transition the untyped calculus from Section A to an affine calculus, the
only affected well-formedness rule is the one for linear variables, again:

Θ;Γ, a : D ` a wf

Again, its modification admits additional linear garbage bindings in the heap.
The rest of the technical results that regard subtyping, safety of configura-

tions, and the actual blame theorem do not require any modifications.

21

D Proof of Lemma 6 (blame-safe progress)

Lemma 6 is established by proving its contraposition by induction on the reduc-
tion rules. Only the rules the CastFail - c and the ContextFail rule are considered,
as those are the only ones that raise blame.

D.1 Case CastFail - ?

The considered rule is

{H, a = D?(a′)}〈t⇐ D〉pa→ ⇑p

The assumptions are

t 6= D (1)

t 6= ? (2)

As positive subtyping is syntax-directed it follows that

If not t1 <:+ t2 then 〈t2 ⇐ t1〉pe is not safe for p (3)

From (1) and lemma 4 is follows that D <:+ t does not hold so using (3) it
follows that 〈t⇐ D〉pa is not safe for p.

�

The cases CastFail - ⊗, CastFail - (and CastFail - ! work analogously.

D.2 Case ContextFail

The considered rule is

{H}e→ ⇑p
{H}E[e]→ ⇑p ContextFail

The induction assumption can be directly applied:

e is not safe for p

Inspecting the rules for blame-safety, it is evident, that e sf p is a requirement
for deriving blame-safety for all possible contexts.

�

22

E Additional lemmas

This section states lemmas that are used in the proofs in the following sections.
Most proofs for these lemmas are straight forward and therefore only indicated.
Otherwise the proofs are given in later sections as noted.

E.1 Lemmas about heap types

Lemma 8 (Heap typing: linear). If ` H, a = s : Θ;Γ, a : t then there exist
∆ such that
` H : Θ;Γ,∆ and Θ;∆ ` s : t

The proof is an induction on the derivation of ` H, a = s : Θ;Γ, a : t. This is a
result from the original definition of heap typing for the linear lambda calculus
by Turner and Wadler [21].

Lemma 9 (Heap typing: non-linear). If ` H,x = e : Θ, x : t;Γ then
Θ, x : t; - ` e : t.

The proof is an induction on the derivation of ` H,x = e : Θ, x : t;Γ . It is a
slight variation of the result presented in Turner and Wadler’s work [21].

Lemma 10 (Heap contains linear values). If ` H : Θ;Γ, a : t then there
exists s and ∆ such that H = H ′, a = s and Θ;∆ ` s : t.

The proof is an easy induction on the derivation of ` H : Θ;Γ, a : t.

Lemma 11 (Heap contains non-linear values). If ` H : Θ, x : t;Γ then
there exists e such that H = H ′, x = e.

The proof is an easy induction on the derivation of ` H : Θ, x : t;Γ .

E.2 Lemmas about expression types

Lemma 12. If Θ;Γ ` e : t then e defines the last applied rule in the derivation.
In particular:

– If Θ;Γ ` x : t then Θ = Θ′, x : t and Γ = -
– If Θ;Γ ` a : t then Γ = a : t
– If Θ;Γ ` ? : then Γ = -
– If Θ;Γ ` let ? = e in f : t then Θ;Γ ′ ` e : ? and Θ;∆ ` f : t and
Γ = Γ ′, ∆

– If Θ;Γ ` e⊗ f : t then Θ;Γ ′ ` e : te and Θ;∆ ` f : tf and t = te ⊗ tf and
Γ = Γ ′, ∆.

– If Θ;Γ ` let a⊗b = e in f : tf then Θ;Γ ′ ` e : ta⊗tb and Θ;∆, a : ta, b : tb ` f : tf
and Γ = Γ ′, ∆

– If Θ;Γ ` λa. e : t then Θ;Γ, a : ta ` e : te and t = ta(tb
– If Θ;Γ ` e f : te then Θ;Γ ′ ` e : tf (te and Θ;∆ ` f : tf and Γ = Γ ′, ∆

23

– If Θ;Γ `!e : t then Θ; - ` e : te and t =!te and Γ = -
– If Θ;Γ ` let !x = e in f : tf then Θ;Γ ′ ` e :!te and Θ, x : te;∆ ` f : tf

and Γ = Γ ′, ∆
– If Θ;Γ ` 〈t⇐ t′〉pe : t then Θ;Γ ` e : t′ and t ∼ t′

The proof is pattern matching on the derivation rules for Θ;Γ ` e : t.

Lemma 13. The type-compatibility t ∼ t′ relation is syntax-directed. In partic-
ular:

– If t1 ⊗ t2 ∼ t′1 ⊗ t′2 then t1 ∼ t′1 and t2 ∼ t′2
– If t1 (t2 ∼ t′1 (t′2 then t1 ∼ t′1 and t2 ∼ t′2
– If !t ∼!t′ then t ∼ t′

The proof is pattern matching on the derivation rules for t ∼ t′

Lemma 14 (Type preservation under substitution (non-linear)).
If Θ,Θ′, x : t;Γ ` e : t′ and Θ′; - ` f : t then Θ,Θ′;Γ ` e[x/f] : t′.

The proof is by induction on the derivation of Θ,Θ′, x : t;Γ ` e : t′.

E.3 Lemmas about blame-safety

Lemma 15 (Expression safety derivation is unique). If e sf p then e
defines the last applied rule in the derivation. In particular:

– If λa. e sf p then e sf p
– If e⊗ f sf p then e sf p and f sf p
– If !e sf p then e sf p
– If let ? = e in f sf p then e sf p and f sf p
– If e f sf p then e sf p and f sf p
– If let a⊗ b = e in f sf p then e sf p and f sf p
– If let !x = e in f sf p then e sf p and f sf p
– If 〈t′ ⇐ t〉pe sf p then e sf p and t <:+ t′

– If 〈t′ ⇐ t〉p̄e sf p then e sf p and t <:− t′

– If 〈t′ ⇐ t〉q̄e sf p, q 6= p then e sf p and t <:− t′

The proof is pattern matching on the derivation rules for e sf p.

Lemma 16 (Heap safety derivation is unique).

– If H, a = s sf p then H sf p and s sf p
– If H,x = e sf p then H sf p and e sf p

The proof is pattern matching on the derivation rules for H sf p.

Lemma 17 (Safety under substitution). If e sf p and f sf p then e[a/f] sf p

The proof is an induction on the derivation of e sf p

24

E.4 Lemmas about subtyping

Lemma 18 (Positive subtyping derivation is unique). If t <:+ t′ then t
and t′ define the last rule applied in the derivation. In particular:

– If t1 ⊗ t2 <:+ t′1 ⊗ t′2 then t1 <:+ t′1 and t2 <: t′2
– If t1 (t2 <:+ t′1 (t′2 then t′1 <:− t1 and t2 <:+ t′2
– If !t <:+!t′ then t <:+ t′

The proof is pattern matching on the derivation rules for t <:+ t′.

Lemma 19 (Negative subtypes of D). If t <:− D then t = D or t <:− g
for some ground-type g

The proof is pattern matching on the derivation rules for t <:− D .

Lemma 20 (Constructed negative subtypes).

1. If t1 (t2 <:− g then t1 = D and t2 <:− D
2. If t1 ⊗ t2 <:− g then t1 <:− D and t2 <:− D
3. If !t <:− g then t <:− D

The proof is an induction on the respective subtyping derivations (see section
J).

Lemma 21. If t <:− g for some ground type g, then t <: g′ for some ground
type g′ or t = D

The proof is an induction on the respective subtyping derivations (see section
K).

25

F Proof of preservation

Like Turner and Wadler, we need to strengthen the preservation statement for
the induction:

Lemma 22 (Invariance). If {H}e→ {H ′}e′ and ` H : Θ;Γ,∆ and Θ;Γ ` e :
t then there exist Θ′ and Γ ′ such that ` H ′ : Θ,Θ′;Γ ′, ∆ and Θ,Θ′;Γ ′ ` e′ : t.

The original preservation statement is a direct consequence of the invariance
statement. The proof in an induction over the derivation of {H}e → {H ′}e′.
As the reduction rules for introduction and elimination of pairs, functions and
units as well as most of the context cases are identical to those in Turner and
Wadler’s work, they will not be proven here. Instead the only rules considered
are those for the cast expressions and for non-linear expressions and recursion.
The lemma about unique derivations (12, 13) is used implicitly in the proofs.

F.1 Case Context , 〈t⇐ t′〉p[]

The considered rule is

{H}e→ {H ′}e′

{H}〈t1 ⇐ t2〉pe→ {H ′}〈t1 ⇐ t2〉pe′

Inverting the Cast rule and using the assumption Θ;Γ ` 〈t1 ⇐ t2〉pe : t1 yields

Θ;Γ ` e : t2 (4)

t1 ∼ t2 (5)

With the assumption ` H : Θ;Γ,∆ and (4) the induction assumption can be
used to derive

` H : Θ,Θ′;Γ ′, ∆ (6)

Θ,Θ′;Γ ′ ` e′ : t2 (7)

The heap type is given by (6) and the expression type can be derived:

(7) (5)

Θ,Θ′;Γ ′ ` 〈t1 ⇐ t2〉pe′ : t1
Cast

�

F.2 Case WrapDyn - ⊗

The considered rule is

{H}〈D ⇐ D ⊗D〉pa→ {H, a′ = D⊗(a)}a′

26

The assumptions are

` H : Θ;Γ,∆ (8)

Θ;Γ ` 〈D ⇐ D ⊗D〉pa : D (9)

By inverting the type rule Cast it follows with assumption (9) that

Θ;Γ ` a : D ⊗D

so
Γ = a : D ⊗D

The assumption about the heap type can be therefore rewritten:

` H : Θ; a : D ⊗D , ∆ (10)

A heap type can be derived:

(10) Θ; a : D ⊗D ` D⊗(a) :
DynVal - ⊗

` H, a′ = D⊗(a) : Θ;∆, a′ : D
Value

And also an expression type:

Θ; a′ : D ` a′ : D :
Var

�

The cases WrapDyn - ?, WrapDyn - (and WrapDyn - ! work similarly.

F.3 Case CastDyn - ⊗

The considered rule is

{H}〈D ⇐ t1 ⊗ t2〉pa→ {H}〈D ⇐ D ⊗D〉p〈D ⊗D ⇐ t1 ⊗ t2〉pa

The assumptions are

` H : Θ; a : t1 ⊗ t2, ∆ (11)

Θ; a : t1 ⊗ t2 ` 〈D ⇐ t1 ⊗ t2〉pa : D (12)

By inverting the type rule Cast it follows from (12) that

Θ; a : t1 ⊗ t2 ` a : t1 ⊗ t2 (13)

The heap type is directly given by (11). The expression type can be derived:

(13)

D ∼ t1 D ∼ t2
D ⊗D ∼ t1 ⊗ t2

Θ; a : t1 ⊗ t2 ` 〈D ⊗D ⇐ t1 ⊗ t2〉pa : D ⊗D
Cast

D ∼ D ⊗D
Θ; a : t1 ⊗ t2 ` 〈D ⇐ D ⊗D〉p〈D ⊗D ⇐ t1 ⊗ t2〉pa : D

Cast

�

The cases CastDyn - (, CastDyn - ! work similarly.

27

F.4 Case FromDyn - ⊗

The considered rule is

{H, a = D⊗(a′)}〈t1 ⊗ t2 ⇐ D〉pa→ {H}〈t1 ⊗ t2 ⇐ D ⊗D〉pa′

The assumptions are

` H, a = D⊗(a′) : Θ; a : D , ∆ (14)

Θ; a : D ` 〈t1 ⊗ t2 ⇐ D〉pa : t1 ⊗ t2 (15)

By inverting the type rule Cast it follows from (15) that

Θ; a : D ` a : D (16)

Using the lemma 8 with (14) yields

` H : Θ;∆,Γ ′ (17)

Θ;Γ ′ ` D⊗(a′) : D (18)

It follows from (18) and inverting the type rule DynVal - ⊗ that

Γ ′ = a′ : D ⊗D

so the expression type can be derived:

Θ; a′ : D ⊗D ` a′ : D ⊗D

t1 ∼ D t2 ∼ D

t1 ⊗ t2 ∼ D ⊗D

Θ; a′ : D ⊗D ` 〈t1 ⊗ t2 ⇐ D ⊗D〉pa′ : t1 ⊗ t2

The heap type is given by (17).

�

The cases FromDyn - ?, FromDyn - (and FromDyn - ! work similarly.

F.5 Case Cast - (

The considered rule is

{H}〈t′1 (t′2 ⇐ t1 (t2〉pa→ {H}λa′. 〈t′2 ⇐ t2〉p(a (〈t1 ⇐ t′1〉p̄a′))

The assumptions are

` H : Θ; a : t1 (t2, ∆ (19)

Θ; a : t′1 (t′2 ` 〈t′1 (t′2 ⇐ t1 (t2〉pa : t′1 (t′2 (20)

From (20) it follows that t′1 (t′2 ∼ t1 (t2. This yields

t′1 ∼ t1 (21)

t′2 ∼ t2 (22)

28

An expression type can directly be derived:

Θ; a : t1 (t2 ` a : t1 (t2

Θ; a′ : t′1 ` a′ : t′1
LVar

(21)

Θ; a′ : t′1 ` 〈t1 ⇐ t′1〉p̄a′ : t1
Cast

Θ; a : t1 (t2, a
′ : t′1 ` (a (〈t1 ⇐ t′1〉p̄a′) : t2

(-E
(22)

Θ; a : t1 (t2, a
′ : t′1 ` 〈t′2 ⇐ t2〉p(a (〈t1 ⇐ t′1〉p̄a′) : t′2

Cast

Θ; a : t1 (t2 ` λa′. 〈t′2 ⇐ t2〉p(a (〈t1 ⇐ t′1〉p̄a′)) : t′1 (t′2
(-I

The heap type is given by (19).

�

The cases Cast - ⊗, Cast - !, Cast - ? and Cast - D work similarly.

F.6 Case !-I

The considered rule is

{H}!(x = e)→ {H, b =!y, y = e[x/y]}b

The assumptions in this case are

` H : Θ;Γ,∆ (23)

Θ; - `!(x = e) :!t (24)

Inversion of assumption (24) yields

Θ, x : t; - ` e : t

Using this with lemma 14 and the axiom y : t; - ` y : t yields

Θ, y : t; - ` e[x/y] : t (25)

Now the heap type can be derived:

(23) (25)

` H, y = e[x/y] : Θ, y : t;Γ,∆
Closure

Θ, y : t; b :!t ` b :!t
LVar

` H, y = e[x/y], b =!y : Θ, y : t;Γ, b :!t,∆
V alue

The expressions typing is immediatly given by rule LVar :

Θ, y : t; b :!t ` b :!t

29

F.7 Case !-E

The considered rule is

{H, b =!y}let !x = b in e→ {H}e[x/y]

The assumptions in this case are

` H, b =!y : Θ;Γ, b :!t,∆ (26)

Θ;Γ, b :!t ` let !x = b in e : t′ (27)

Using assumption (26) with lemma 8 yields that there exists Γ ′ such that

` H : Θ;Γ,∆, Γ ′ (28)

Θ;Γ ′ `!y :!t (29)

It follows from result (29) that

Γ ′ = - (30)

Θ = Θ′, y : t (31)

The desired heap typing is given by result (28). It follows from assumption (27)
and results (29) (31) that

Θ′, y : t, x : t;Γ ` e : t′

and therefore with lemma 14 that

Θ′, y : t;Γ ` e[x/y] : t′

which is the desired expression typing.

F.8 Case Var

The considered rule is

{H,x = e}x→ {H,x = e}e

The assumptions in this case are

` H,x = e : Θ, x : t;∆ (32)

Θ, x : t;x ` t : (33)

The heap typing is directly given by assumption (32). It follows from assumption
(32) and lemma 9 that

Θ, x : t; - ` e : t

which is the desired expression typing.

30

G Proof of type progress (Lemma 2)

The proof is an induction on the derivation of Θ;Γ ` e : t.

G.1 Case Var

The assumptions are

Θ′, x : t;Γ ` x : t (34)

` H : Θ′, x : t;Γ,∆ (35)

Using (35) with lemma 11 yields

H = H ′, x = e

Thus, the reduction rule Var can be applied.

�

G.2 Case LVar

In this case e = a so the lemma is trivially satisfied.

G.3 Case ?-I

In this case e = ?, so the reduction rule ?-I can be applied

�

The cases (-I and !-I work similarly.

G.4 Case ⊗-I

The assumptions are

Θ;Γ ` e1 : t1 (36)

Θ;∆ ` e2 : t2 (37)

` Θ : Θ;Γ,∆,∆′ (38)

Using (36) and (38) with the induction assumption yields one of the following
cases

1. there exist H ′ and e′1 such that {H}e1 → {H ′}e′1
2. {H}e1 → ⇑p, or
3. e1 is a linear variable a

31

Case 1 Apply reduction rule Context .

�

Case 2 Apply reduction rule ContextFail .

�

Case 3 Using (37) and (38) with the induction assumption yields one of the
following cases

1. there exist H ′ and e′2 such that {H}e2 → {H ′}e′2
2. {H}e2 → ⇑p, or
3. e2 is a linear variable b

Case 3.1 Apply reduction rule Context .

�

Case 3.2 Apply reduction rule ContextFail .

�

Case 3.3 Reduction rule ⊗-I can be applied

�

G.5 Case ⊗-E

The assumptions are

Θ;Γ ` e : ta ⊗ tb (39)

Θ;∆ ` f : tf (40)

` H : Θ;Γ,∆,∆′ (41)

Using (39) and (41) with the induction assumption yields one of the following
cases

1. there exist H ′ and e′ such that {H}e→ {H ′}e′
2. {H}e→ ⇑p, or
3. e is a linear variable a′′

Case 1 Apply reduction rule Context .

�

32

Case 2 Apply reduction rule ContextFail .

�

Case 3 From (39) and the fact that e = a′′ in this case it follows that Γ = a′′ : ta ⊗ tb.
Using this with lemma 10 and (41) yields

H = H ′, a′′ = s

and

Θ;∆′′ ` s : ta ⊗ tb

By the syntactic definition of s it is evident that it has to have the form

s = a′ ⊗ b′

to have type ta ⊗ tb. Consequently the reduction rule ⊗-E can be applied.

�

The cases (-E, !-E, and ?-E work similarly.

G.6 Case Cast

The assumptions are

Θ;Γ ` 〈t⇐ t′〉pe : t (42)

Θ;Γ ` e : t′ (43)

` H : Θ;Γ,∆′ (44)

t′ ∼ t (45)

Using (43) and (44) with the induction assumption yields one of the following
cases

1. there exist H ′ and e′ such that {H}e→ {H ′}e′
2. {H}e→ ⇑p, or
3. e is a linear variable a

Case 1 Apply reduction rule Context .

�

Case 2 Apply reduction rule ContextFail .

�

33

Case 3 Make a case distinction on the form of t′ and t where t ∼ t′:

Case t = D One of the CastDyn - c, WrapDyn - c or the Cast - D rules can be
used.

Case t 6= D and t′ = D It follows from (43) and the fact that e = a that
Γ = a : t′. So, using lemma 10 with (44) yields

H = H ′, a = s

and

Θ;∆′′ ` s : D

By the syntactic definition of s it is evident that it has to have the form

s = Dc(a
′)

for some type constructor c. Thus one of the rules UnwrapDyn - c, FromDyn - c
and or CastFail - c can be applied.

Case t 6= D and t′ 6= D Either Cast - ?, Cast - ⊗, Cast - (or Cast - ! can be
applied.

�

34

H Proof of safety preservation

Lemma 5 is proven by induction on the reduction rules {H}e → {H ′}e′. The
lemmas about unique derivations (15, 16, 12, 18) are used implicitly in the proofs.

H.1 Case Context

Case []⊗ e The considered rule is

{H}e→ {H ′}e′

{H}e⊗ f → {H ′}e′ ⊗ f

The assumptions are

{H}e→ {H ′}e′ (46)

` H : Θ;Γ ′, ∆′, ∆ (47)

Θ;Γ ′, ∆′ ` e⊗ f : te ⊗ tf (48)

e⊗ f sf p (49)

H sf p (50)

It follows from (49)

e sf p (51)

f sf p (52)

It follows from (48) that

Θ;Γ ′ ` e : te (53)

With (51), (47), (50) and (53) the inductions assumption applies:

e′ sf p (54)

H ′ sf p (55)

Blame-safety for the heap is given by (55). The blame-safety for the expression
can be derived:

(54) (52)

e⊗ f sf p

�

The Context cases a ⊗ [], [] e, a [], let a ⊗ b = [] in e, let !x = [] in e,
let ? = [] in e work similarly.

35

Case 〈t1 ⇐ t2〉p[] The considered rule is

{H}e→ {H ′}e′

{H}〈t1 ⇐ t2〉pe→ {H ′}〈t1 ⇐ t2〉pe′

The assumptions are

` H : Θ;Γ,∆ (56)

Θ;Γ ` 〈t1 ⇐ t2〉pe : t1 (57)

〈t1 ⇐ t2〉pe sf p (58)

H sf p (59)

It follows from (58) that

e sf p (60)

t2 <:+ t1 (61)

It follows from (57) that

Θ;Γ ` e : t2 (62)

t1 ∼ t2 (63)

Using (56), (62), (60) and (59) the induction assumption applies:

e′ sf p (64)

H ′ sf p (65)

Blame-safety for the heap is given by (65). The blame-safety for the expression
can be derived:

(61) (64)

〈t1 ⇐ t2〉pe′ sf p

�

The context cases 〈t1 ⇐ t2〉p̄[] and 〈t1 ⇐ t2〉q[], q 6= p work similarly.

H.2 Case (-I

The considered rule is

{H}λa. e→ {H, b = λa. e}b b fresh

The assumptions are

` H : Θ;Γ,∆ (66)

Θ;Γ ` λa. e : ta(te (67)

λa. e sf p (68)

H sf p (69)

36

The blame-safety for the expression is immediate:

b sf p

And the blame-safety for the heap can be derived:

(68) (69)

H, b = λa. e sf p

�

The cases ⊗-I and !-I work similarly.

H.3 Case (-E

The considered rule is

{H, b = λa. e}b a′ → {H}e[a/a′]

The assumptions are

` H, b = λa. e : Θ; b : ta(te, a
′ : ta, ∆ (70)

Θ; b : ta(te, a
′ : ta ` b a′ : ta(te (71)

b a′ sf p (72)

H, b = λa. e sf p (73)

It follows from (72) that

b sf p (74)

a′ sf p (75)

It follows from (73) that

λa. e sf p (76)

H sf p (77)

Result (76) yields

e sf p

Finally, using this with lemma 17 yields blame-safety for the expression:

e[a/a′] sf p

Blame-safety for the heap is given by (77).

�

The cases ⊗-E, Var and !-E work similarly.

37

H.4 Case CastDyn - (

Case 〈D ⇐ t1 (t2〉pa The considered rule is

{H}〈D ⇐ t1 (t2〉pa→ {H}〈D ⇐ D (D〉p〈D (D ⇐ t1 (t2〉pa

The assumptions are

` H : Θ; a : t1 (t2, ∆ (78)

Θ; a : t1 (t2 ` 〈D ⇐ t1 (t2〉pa : D (79)

〈D ⇐ t1 (t2〉pa sf p (80)

H sf p (81)

The blame-safety for the expression can be derived:

D (D <:+ D

D <:− t2 t1 <:+ D

t1 (t2 <:+ D (D a sf p

〈D (D ⇐ t1 (t2〉pa sf p

〈D ⇐ D (D〉p〈D (D ⇐ t1 (t2〉pa sf p

The blame-safety for the heap is given by (81).

�

The case for 〈D ⇐ t1 (t2〉q where q 6= p works similarly.

Case 〈D ⇐ t1 (t2〉p̄a The considered rule is

{H}〈D ⇐ t1 (t2〉p̄a→ {H}〈D ⇐ D (D〉p̄〈D (D ⇐ t1 (t2〉p̄a

The assumptions are

` H : Θ; a : t1 (t2, ∆ (82)

Θ; a : t1 (t2 ` 〈D ⇐ t1 (t2〉p̄a : D (83)

〈D ⇐ t1 (t2〉p̄a sf p (84)

H sf p (85)

It follows from (84) that
t1 (t2 <:− D

The only way to derive this negative subtype relation is by the rule

t <:− g

t <:− t′

This implies that

t1 (t2 <:− tg (86)

38

for a ground type tg. The blame-safety for the expression can be derived:

D <:− D D <:+ D

D (D <:− D (D

D (D <:− D

(86)

t1 (t2 <:− D (D a sf p

〈D (D ⇐ t1 (t2〉p̄a sf p

〈D ⇐ D (D〉p̄〈D (D ⇐ t1 (t2〉p̄a sf p

The blame-safety for the heap is given by (85).

�

The cases CastDyn - ⊗ and CastDyn - ! work similarly.

H.5 Case WrapDyn - ⊗

Case 〈D ⇐ D ⊗D〉pa The considered rule is

{H}〈D ⇐ t1 ⊗ t2〉pa→ {H, a′ = D⊗(a)}a′ a′ fresh

The assumptions are

` H : Θ; a : t1 ⊗ t2, ∆ (87)

Θ; a : t1 ⊗ t2 ` 〈D ⇐ t1 ⊗ t2〉pa : D (88)

〈D ⇐ t1 ⊗ t2〉pa sf p (89)

H sf p (90)

The blame-safety for the expression can be derived immediately:

a′ sf p

The blame-safety for the heap can be derived:

D⊗(a) sf p (90)

H, a′ = D⊗(a) sf p

�

The cases 〈D ⇐ D ⊗D〉p̄a and 〈D ⇐ D ⊗D〉qa where q 6= p work analogously.
The cases WrapDyn - (, WrapDyn - ! and WrapDyn - ? work analogously.

H.6 Case Cast - ?

The considered rule is
{H}〈?⇐ ?〉qa→ {H}a

The assumptions are

H sf p

39

which directly yield blame safety for the heap. The blame safety for the expres-
sion is also trivial:

a sf p

�

The case Cast - D works analogously.

H.7 Case Cast - (

Case 〈t′1 (t′2 ⇐ t1 (t2〉pa The considered rule is

{H}〈t′1 (t′2 ⇐ t1 (t2〉pa→ {H}λa′. 〈t′2 ⇐ t2〉p(a (〈t1 ⇐ t′1〉p̄a′)) a′ fresh

The assumptions are

` H : Θ; a : t1 (t2, ∆ (91)

Θ; a : t1 (t2 ` 〈t′1 (t′2 ⇐ t1 (t2〉pa : t′1 (t′2 (92)

〈t′1 (t′2 ⇐ t1 (t2〉pa sf p (93)

H sf p (94)

It follows from (93) that

a sf p (95)

t1 (t2 <:+ t′1 (t′2 (96)

From (96) it follows that

t′1 <:− t1 (97)

t2 <:+ t′2 (98)

The blame-safety for the expression can be derived:

(98)

(95)

(97) a′ sf p

〈t1 ⇐ t′1〉p̄a′ sf p

a (〈t1 ⇐ t′1〉p̄a′) sf p

〈t′2 ⇐ t2〉p(a (〈t1 ⇐ t′1〉p̄a′)) sf p

λa′. 〈t′2 ⇐ t2〉p(a (〈t1 ⇐ t′1〉p̄a′)) sf p

The blame-safety for the heap is given by (94)

�

40

Case 〈t′1 (t′2 ⇐ t1 (t2〉p̄a The considered rule is

{H}〈t′1 (t′2 ⇐ t1 (t2〉p̄a→ {H}λa′. 〈t′2 ⇐ t2〉p̄(a (〈t1 ⇐ t′1〉pa′)) a′ fresh

The assumptions are

〈t′1 (t′2 ⇐ t1 (t2〉p̄a sf p (99)

H sf p (100)

It follows from (99) that

t1 (t2 <:− t′1 (t′2 (101)

a sf p (102)

(103)

Because of its syntactic form, result (101) could only be derived by two rules:

t <:− g

t <:− t′ (104)

or

t′1 <:+ t1 t2 <:− t′2
t1 (t2 <:− t′1 (t′2 (105)

In both cases, blame safety for the heap is given by (100).

Case (104) The rule requires t1 (t2 <:− g for some ground-type g. By lemma
20 it follows that

t1 = D (106)

t2 <:− D (107)

From (106) it follows that

t′1 <:+ t1 (108)

From (107) it follows with lemma 19 that t2 = D or t2 <:− g′ for some ground-
type g′. In both cases we have

t2 <:− t′2 (109)

by

D <:− t′2 or

t2 <:− g′

t2 <:− t′2

The blame safety for the expression can now be derived:

(109)

(102)

(108) a′ sf p

〈t1 ⇐ t′1〉pa′ sf p

a (〈t1 ⇐ t′1〉pa′) sf p

〈t′2 ⇐ t1〉p̄(a (〈t2 ⇐ t′1〉pa′)) sf p

λa′. 〈t′2 ⇐ t2〉p̄(a (〈t1 ⇐ t′1〉pa′)) sf p

41

Case (105) The assumptions of this rule are

t′1 <:+ t1 (110)

t2 <:− t′2 (111)

From this the blame safety for the expression can be derived:

(111)

(95)

(110) a′ sf p

〈t1 ⇐ t′1〉pa′ sf p

a (〈t1 ⇐ t′1〉pa′) sf p

〈t′2 ⇐ t2〉p̄(a (〈t1 ⇐ t′1〉pa′)) sf p

λa′. 〈t′2 ⇐ t2〉p̄(a (〈t1 ⇐ t′1〉pa′)) sf p

�

The cases Cast - ⊗ and Cast - ! work similarly.

H.8 Cast FromDyn - (

Case 〈t1 (t2 ⇐ D〉pa The considered rule is

{H, a = D((a′)}〈t1 (t2 ⇐ D〉pa→ {H}〈t1 (t2 ⇐ D (D〉pa′

The assumptions are

〈t1 (t2 ⇐ D〉pa sf p (112)

from which it follows that
D <:+ t1 (t2

By lemma 4, this is not satisfiable. Thus this case trivially satisfies the lemma,
as it reduces an unsafe expression.

�

Case 〈t1 (t2 ⇐ D〉p̄a The considered rule is

{H, a = D((a′)}〈t1 (t2 ⇐ D〉p̄a→ {H}〈t1 (t2 ⇐ D (D〉p̄a′

The assumptions are

H, a = D((a′) sf p (113)

It follows by inversion of heap blame safety that H sf p which yields the blame
safety of the heap directly. The blame safety of the expression can also be derived:

D <:+ D D <:− D

D (D <:− D (D

D (D <:− t1 (t2 a sf p

〈t1 (t2 ⇐ D (D〉p̄a′ sf p

�

42

Case 〈t1 (t2 ⇐ D〉qa , q 6= p ∧ q 6= p̄ The considered rule is

{H, a = D((a′)}〈t1 (t2 ⇐ D〉qa→ {H}〈t1 (t2 ⇐ D (D〉qa′

The assumptions are

H, a = D((a′) sf p (114)

q 6= p ∧ q 6= p̄ (115)

It follows by inversion of heap blame safety that H sf p which yields the blame
safety of the heap directly. The blame safety of the expression can also be derived:

(115) a sf p

〈t1 (t2 ⇐ D (D〉q〈D (D ⇐ D〉qa sf p

�

The cases FromDyn - ⊗, FromDyn - ? and FromDyn - ! work similarly.

43

I Proof of subtype factoring (Lemma 3)

The proof are inductions on the subtype derivations. The lemmas about unique
derivations (18) are used implicitly in the proofs.

I.1 If t <:+ t′ and t <:− t′ then t <: t′

This direction is proven by an induction on the derivation of t <:+ t′.

Case ? <:+ ? Immediately the subtype relation can be derived:

? <: ?

�

Case t <:+ D The assumptions are

t <:− D (116)

Using this with lemma 19 yields

t <:− g or t = D

for some ground type g.

Case t = D Derive the subtype relation by

D <: D

Case t 6= D ∧ t <:− g Using lemma 21 yields

t <: g′ (117)

Derive the subtype relation by
(117)

t <: D

�

Case t1 ⊗ t2 <:+ t′1 ⊗ t′2 The assumptions are

t1 ⊗ t2 <:− t′1 ⊗ t′2 (118)

t1 <:+ t′1 (119)

t2 <:+ t′2 (120)

44

Assumption (118) could only be derived by two rules:

t1 <:− t′1 t2 <:+ t′2
t1 ⊗ t2 <:− t′1 ⊗ t′2 (121)

or

t1 ⊗ t2 <:− g

t1 ⊗ t2 <:− t′1 ⊗ t′2 (122)

for some ground-type g.

Case (121) We have t1 <:− t′1 and t2 <:− t′2. Using this with (119) and (120)
and the induction assumption yields

t1 <: t′1 (123)

t2 <: t′2 (124)

Derive the subtype relation by:

(123) (124)

t1 ⊗ t2 <: t′1 ⊗ t′2

Case (122) We have t1 ⊗ t2 <:− g for some ground-type g. Using this with
lemma 20 yields

t1 <:− g′ or t1 = D (125)

t2 <:− g′′ or t2 = D (126)

for some ground types g′, g′′. From (125) it follows that

t1 <:− t′1 (127)

by deriving either
t1 <:− g′

t1 <:− t′1

or

D <:− t′1

Similarly it follows from (126) that

t2 <:− t′2 (128)

Using (127), (128), (119), (120) and the induction assumptions yields

t1 <: t′1 (129)

t2 <: t′2 (130)

and the subtype relation can be derived by:

(129) (130)

t1 ⊗ t2 <: t′1 ⊗ t′2

45

�

The case !t <:+!t′ works similarly.

Case t1 (t2 <:+ t′1 (t′2 The assumptions are

t1 (t2 <:− t′1 (t′2 (131)

t′1 <:− t1 (132)

t2 <:+ t′2 (133)

Assumption (131) could only be derived by two rules:

t′1 <:+ t1 t2 <:− t′2
t1 (t2 <:− t′1 (t′2 (134)

or

t1 (t2 <:− g

t1 (t2 <:− t′1 (t′2 (135)

for some ground-type g.

Case (134) We have t′1 <:+ t1 and t2 <:− t′2. Using this with (132) and (133)
and the induction assumption yields

t′1 <: t1 (136)

t2 <: t′2 (137)

Derive the subtype relation by:

(136) (137)

t1 (t2 <: t′1 (t′2

Case (135) We have t1 (t2 <:− g for some ground-type g. Using this with
lemmas 20 and 19 yields

t1 = D (138)

t2 <:− g′ or t2 = D (139)

for some ground types g′. From (139) it follows that

t2 <:− t′2 (140)

by deriving either
t2 <:− g′

t2 <:− t′2

46

or

D <:− t′2

It follows from (138) that

t′1 <:+ t1 (141)

by deriving

t′1 <:+ D

Using (140), (141), (132), (133) and the induction assumptions yields

t′1 <: t1 (142)

t2 <: t′2 (143)

and the subtype relation can be derived by:

(142) (143)

t1 (t2 <: t′1 (t′2

I.2 If t <: t′ then t <:+ t′ and t <:− t′

This direction is proven by an induction on the derivation of t <: t′

Case ? <: ? Derive negative and positive subtypes directly:

? <:− ?

? <:+ ?

Case D <: D Derive negative and positive subtypes directly:

D <:− D

D <:+ D

Case t <: D when t <: g The assumptions are

t <: g (144)

for some ground-type g. Using the induction assumptions with (144) yields

t <:− g (145)

which enables the derivation of the negative subtype relation:

(145)

t <:− D

The positive subtype relation can be derived directly:

t <:+ D

�

47

Case t1 ⊗ t2 <: t′1 ⊗ t′2 From the assumptions

t1 <: t′1

t2 <: t′2

it follows by induction assumptions that

t1 <:+ t′1 (146)

t1 <:− t′1 (147)

t2 <:+ t′2 (148)

t2 <:− t′2 (149)

The negative subtype relation can be derived:

(147) (149)

t1 ⊗ t2 <:− t′1 ⊗ t′2

The positive subtype relation can be derived:

(146) (148)

t1 ⊗ t2 <:+ t′1 ⊗ t′2

�

The cases t1 (t2 <: t′1 (t′2 and !t <:!t′ work similarly.

48

J Proof of Lemma 20

The proof is an induction on the derivation of t <:− g, where g is a ground type.
It is done here for the first statement of the lemma, t1 (t2 <:− g, the other
proofs work similarly.

The rules to consider in this case are

? <:− ?
(1)

D <:− g
(2)

t <:− g

t <:− t′
(3)

t1 <:− D t2 <:− D

t1 ⊗ t2 <:− D ⊗D
(4)

D <:+ t1 t2 <:− D

t1 (t2 <:− D (D
(5)

t <:− D

!t <:−!D
(6)

Rules (1), (2), (4) and (6) do not fit the assumption t1 (t2 <:− g syntactically.

J.1 Case (3)

The assumptions in this case are

t1 (t2 <:− g′

for some ground-type g′. Applying the induction assumption yields the desired
result to satisfy the lemma.

J.2 Case (4)

As D (D is the only suitable ground-type in this case, the assumptions in this
case are

D <:+ t1 (150)

t2 <:− D (151)

Lemma 4 with (150) yields t1 = D . The result (151) could only be derived by
rule (2) or rule (3). In case of rule (2) we have t2 = D immediately. In case of
rule (3) we have t2 <:− g for some ground-type g as the requirement.

�

49

K Proof of Lemma 21

The proof is an induction on t <:− g for a ground type g. The rules to consider
in this case are

? <:− ?
(1)

D <:− g
(2)

t <:− g′

t <:− g
(3)

t1 <:− D t2 <:− D

t1 ⊗ t2 <:− D ⊗D
(4)

D <:+ t1 t2 <:− D

t1 (t2 <:− D (D
(5)

t <:− D

!t <:−!D
(6)

where g′ is a ground-type.

K.1 Case (1)

Derive subtype relation immediately:

? <: ?

�

K.2 Case (2)

t = D immediately satisfied.

K.3 Case (3)

The assumption in this case is t <:− g′. Applying the induction assumption
immediately yields the desired result.

K.4 Case (5)

The assumptions are

D <:+ t1 (152)

t2 <:− D (153)

Using lemma 4 with (152) yields

t1 = D

from which it follows

t1 <: D (154)

by deriving

D <: D

50

Using lemma 19 with (153) yields

t2 = D or t2 <:− g′′

for some ground-type g′′. From this result it follows that

t2 <: D (155)

by either deriving

D <: D

when t2 = D or by using the induction assumption when t2 <:− g′′. Now the
subtype relation can be derived:

(154) (155)

t1 (t2 <: D (D

�

The cases (4) and (6) work similarly.

51

L Proof Extensions for Shortcut Casts

In the following section we give the additional proof cases that arise when adding
the reduction rules for shortcut casts, the modified compatibility and the added
subtyping rules.

L.1 Additional Lemmas

Lemma 12 (Invertible typing rules) The last case about the inversion of
the Cast rule has to be modified to:

If Θ;Γ ` 〈t⇐ t′〉pe : t then Θ;Γ ` e : t′ and t′ . t

The proof remains straightforward.

Lemma 13 (Invertible compatibility) Type compatibility is still syntax
directed. All rules are invertible.

Lemma 14 (Typing preservation under substitution) Also the substitu-
tion lemma is straightforwardly preserved with the modified compatibility.

Lemma 18 (Positive subtyping is unique) The applicability of the added
rules for positive subtyping does not overlap with the standard rules. The cases
are extended to

4. If !t <:+ ? then t <:+ ?
5. !t <:+ t′1 (t′2 then t <:+ t′1 (t′2
6. !t <:+ t′1 ⊗ t′2 then t <:+ t′1 ⊗ t′2

Lemma 20 (Constructed negative subtypes) The result still holds. The
additional cases for !t <:− g are

t <:− ?

!t <:− ?

t <:− t1 (t2
!t <:− t1 (t2

t <:− t1 ⊗ t2
!t <:− t1 ⊗ t2

In all cases it follows that t <:− g and therefore t <:− D can be derived.
In presence of the extended rules an additional result can be shown for the

case !t <:− g.

Lemma 23. If !t <:− g then t <:− g or t = D.

Proof. By induction on the derivation of !t <:− g. In case

t <:− D

!t <:−!D

52

it follows by lemma 19 that t = D or t <:− g′ for a ground type g′. In the latter
case, t <:−!D can be derived.

In case

!t <:− g′

!t <:− g

it follows by the induction assumptions that t = D or t <:− g′. In the latter case
t <:− g can be derived.

In the other cases, the result follows directly.

Lemma 21 In all additional cases we can follow from !t <:− g for a ground type
g that t <:− g by inverting the corresponding negative subyting rule. It then
follows by induction assumption that t <: g. The results !t <: g then follows
from the corresponding additional rule for subtyping.

L.2 Type Preservation

Cases Cast - (, Cast - ⊗, Cast - ! These cases work analogously, also
with the modified compatibility relation, as compatibility is contravariant in the
(case and covariant in the ! and ⊗ cases. This is exactly as required by the
typing derivation that concludes each of the cases.

Case FromDyn - !t The considered rule is

{H, a = D!(a
′), a′ =!x}〈t⇐ D〉pa → {H}〈t⇐ D〉px if t 6=!t′

The assumptions are

` H, a = D!(a
′), a′ =!x : Θ; a : D,∆ (156)

Θ; a : D ` 〈t⇐ D〉pa : t (157)

It follows from assumption (156) and lemma 8 that there exists ∆′ such that

` H, a′ =!x : Θ;∆′, ∆ (158)

Θ;∆′ ` D!(a
′) : t′ (159)

It follows from (159) that ∆′ = a′ :!D and t′ = D. Now, using result (156) with
lemma 8 yields that there exists ∆′′ such that

` H : Θ;∆′′, ∆ (160)

Θ;∆′′ `!x : t′′ (161)

It follows from (161) that ∆′′ = - and t =!D and Θ = Θ′, x : D and

Θ′, x : D; - ` x : D (162)

. Heap typing is therefore given by (161) and expression typing can be derived:

(162) t . D

Θ,Θ′, x : D; - ` 〈t⇐ D〉px : t

53

Cases Cast - ! - ?, Cast - ! - (, and Cast - ! - ⊗ These cases work
similarly as the regular !− E - case. The cast is well-typed by the extended
compatibility relation.

L.3 Typing Progress

The only cases affected by the extensions are the cast expressions 〈t′ ⇐!t〉pa,
where t′ is either t′1 (t′2, t′1 ⊗ t′2 or ?, and 〈!t ⇐ D〉pa. In the former case it
follows by lemma 10 that the heap can provide a !x binding for a, and therefore
one of the Case - ! − c rules can be applied for reduction. In the latter case it
follows by 10 that the heap provides some dynamic value s = Dc(a

′). In case
c 6=! the respective Cast - Fail - c rule can be applied. In case c =! it follows by
10 that there exists s′ =!x. Thus rule From - Dyn - ! can be applied.

L.4 Preservation of Blame Safety

In case of the From - Dyn - ! the cast is preserved by the reduction and its
arguments are variables, thus the result is safe. In case of the Case - ! - c rules,
the respective subtyping relations are preserved in the casts as subtyping was
appropriately extended.

L.5 Subtype Factoring

The previously established cases remain valid as the additional lemmas about
subtyping all still hold. In the case

t <:+ t′1 (t′2
!t <:+ t′1 (t′2

we have !t <:− t′1 (t′2 or !t <:− g for some ground type g. The former case
the induction assumption directly yields t <: t′1 (t′2 which allows to derive
!t <: t′1 (t′2. In the latter case it follows by lemma 23 that t = D or t <:− g.
The case t = D can be excluded by the assumptions and lemma 4. It follows
from t <:− g that t <:− t′1 (t′2 which enable the induction assumption. The
other cases work similarly.

The opposite direction of factoring also follows straightforwardly.

54

