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Abstract. Binding-time polymorphism enables a highly flexible binding-
time analysis for offline partial evaluation. This work provides the tools
to translate this flexibility into efficient program specialization in the
context of a polymorphic language.
Following the cogen-combinator approach, a set of combinators is defined
in Haskell that enables the straightforward transcription of a binding-
time polymorphic annotated program into the corresponding program
generator. The typing of the combinators mimics the constraints of the
binding-time analysis. The resulting program generator is safe, tag-free,
and it has no interpretive overhead.

1 Introduction

A polymorphic binding-time analysis empowers an offline partial evaluator to
obtain specialization results on par with those of an online partial evaluator.
However, implemented specializers for polymorphic binding-time analysis so far
do not exploit the efficiency potential of offline partial evaluation. They are
interpreter-based, they pass and interpret binding-time descriptions at special-
ization time, and they use tagging to distinguish ordinary static values from
dynamic values (generated code).

For monomorphic binding-time analysis, there is a well-known approach to
obtain compiled, tag-free program generators that perform offline partial eval-
uation. The cogen approach to partial evaluation [13] explains the direct con-
struction of a program generator from a binding-time annotated program. For
typed languages, this direct generation step is more efficient than going via the
Futamura projections, which can lead to multiple levels of data encoding [11].

For example, the binding-time annotated power function

power xD nS = if n =S 0 then lift 1 else x ∗D power x (n−S 1)

uses the superscripts S and D to indicate static and dynamic operations that
happen at specialization time and at run time, respectively. The lift expression
avoids a binding-time mismatch by converting the static constant 1 into the
required dynamic code at that point. The translation to a program generator
can be done in a compositional way, by specifying a translation for each an-
notated syntactic construct: The constructs annotated with S are translated to



themselves, the constructs annotated with D are translated to expressions that
generate the respective expression tree, and lift maps to the appropriate syntax
constructor. A translation to Haskell would look like this:

data Exp = Const Int | Mul Exp Exp -- and so on

power :: Exp -> Int -> Exp

power x n = if n==0 then Const 1 else Mul x (power x (n-1))

This simple example already demonstrates that the static data is neither encoded
nor tagged and that, consequently, the static expressions execute efficiently.

The methods used so far for translating binding-time annotated programs to
program generators are only suitable for monovariant annotation schemes [1, 2,
18, 20]. They do not cover annotations created by the more precise polyvariant
binding-time analyses [5, 6, 8–10]. A polyvariant binding-time analysis enables
abstraction over concrete binding times. To continue the example, the power
function would receive three additional binding-time parameters that express
the binding times of the arguments x and n and of the result of power, which
must be more dynamic than either argument:

(power :: Int→ Int→ Int) : ∀βγδ.(β ≤ δ, γ ≤ δ)⇒ β
S7→ γ

S7→ δ

power β γ δ x n = if n =γ liftS,γ 0 then liftS,δ 1
else liftβ,δ x ∗δ power β γ x (n−γ liftS,γ 1)

Evidently, the lift expression must be generalized to liftβ,δ which converts a
base-type value of binding time β to binding time δ. This conversion requires
β ≤ δ where the ordering is the least partial order such that S ≤ D. The
other constraint, γ ≤ δ, arises from the conditional. The binding time γ of the
condition is a lower bound of the binding time δ of the result.

The translation of this annotated program to a satisfactory program gen-
erator becomes more tricky. Fig. 1 shows the naive approach, which is hardly
satisfactory. First, binding times have to be passed and tested explicitly in the
generator. Second, the generator relies on run-time tags to identify static and
dynamic values in the Value datatype as evident from the implementations of
pIf and pOp2: An untagged generator could omit stripping off (and reapplying)
the Bool and Exp tags. Indeed, the BT argument would not be needed for the pIf
combinator.3 Third, the generator is not self-checking. Its type does not incor-
porate the constraints from the binding-time annotation, thus it can give rise to
run-time errors because of binding-time mismatches. For example, an invocation
(powergen D D S) can result in a run-time error when attempting to execute
(pLift D S x).

This particular generator has further shortcomings not addressed in this
work. For example, (powergen D D D x n) does not terminate, for any x and
3 Use of the combinator still requires a preceding binding-time analysis because it

expects its e1 and e2 arguments to carry the Exp tag if the condition carries an Exp

tag. Unlike the staged interpreters of Carette and coworkers [3], this pIf combinator
would not be suitable for online partial evaluation because the dynamic version of
the conditional does not convert static values in the branches to dynamic values.
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data Value = Int Int | Bool Bool | Exp Exp

data BT = S | D

powergen :: BT -> BT -> BT -> Value -> Value -> Value

powergen b g d x n =

pIf g (pOp2 g opEqu n (pLift S g (Int 0)))

(pLift S d (Int 1))

(pOp2 d opMul (pLift b d x)

(powergen b g d x (pOp2 g opSub n (pLift S g 1))))

-- lifting values of base type

pLift :: BT -> BT -> Value -> Value

pLift S S (Int i) = Int i

pLift S D (Int i) = Exp (Const i)

pLift D D (Exp e) = Exp e

-- conditional

pIf :: BT -> Value -> Value -> Value -> Value

pIf S (Bool x) v1 v2 = if x v1 else v2

pIf D (Exp e) (Exp e1) (Exp e2) = Exp (If e e1 e2)

-- binary operator

pOp2 :: BT -> Op (Int -> Int -> Int) -> Value -> Value -> Value

pOp2 S op (Int x) (Int y) = Int (opvalue op x y)

pOp2 D op (Exp x) (Exp y) = Exp (opctor op [x, y])

-- operators

data Op t = Op { opvalue :: t, opctor :: [Exp] -> Exp }

opMul = Op (*) (\[x,y] -> Mul x y) :: Op (Int -> Int -> Int)

opSub = Op (-) (\[x,y] -> Sub x y) :: Op (Int -> Int -> Int)

opEqu = Op (==) (\[x,y] -> Equ x y) :: Op (Int -> Int -> Bool)

Fig. 1. Naive generator with binding-time polymorphism.

n, because the recursive call to powergen is implicitly static, that is, it is always
performed at specialization time.

The present work is the first to address the construction of efficient program
generators with polymorphic binding times. Because it applies to languages with
ML-style polymorphism, it paves the way for efficient program specialization for
Haskell. It addresses all shortcomings of the naive generator.

1. No interpretive overhead. Binding-time descriptions are passed at run
time but they are never tested. Due to laziness they have virtually no cost.

2. Tag-free. The generator requires no tagging, neither type tags nor tags to
distinguish static from dynamic values.

3. Safety. The typing of the generator ensures that binding-time inconsisten-
cies in the input of the generator are caught by the type checker before
starting the specialization.

The main contribution is a set of combinators that enables the construction of
tag-free program generators via a simple type-directed translation from a poly-
morphic binding-time type derivation to a Haskell program using these combi-
nators. The starting point is the polyvariant binding-time analysis for ML-style
polymorphic languages by Glynn and coworkers [6].
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powergen :: (...) => (forall a. a -> dx a) -> (forall a. a -> dn a)

-> (forall a. a -> dz a)

-> R Int (dx Int) -> R Int (dn Int) -> R Int (dz Int)

powergen dx dn dz x n =

cIf (dn bool) (dz int)

(cOp2 sEqInt oEqInt n (cSub (St int) (dn int) (R 0)))

(cSub (St int) (dz int) (R 1))

(cOp2 sMult oMult

(cSub (dx int) (dz int) x)

(powergen dx dn dz

x (cOp2 sMinus oMinus n (cSub (St int) (dn int) (R 1)))))

where { sEqInt = bop2 dn int int bool; sMinus = bop2 dn int int int;

sMult = bop2 dz int int int }

Fig. 2. Tagfree generator for specializations of power. The type signature is truncated
to save space.

The implementation is in Haskell [15] with various extensions (e.g., type
functions [17], multi parameter type classes, rank-2 types [16], GADTs) as im-
plemented by GHC. For lack of space, we assume familiarity with the language
and the extensions.

2 Tagfree Polymorphic Program Generation

Figure 2 contains the tag free variant of the polymorphic generator for the power
function shown in Fig. 1. Before delving into a detailed explanation of the com-
binators, let’s introduce some preliminaries and run the generator on examples.

Like the previous generator, the new generator receives three binding-time
parameters and two value parameters. Binding times are represented by poly-
morphic functions that construct binding-time descriptions (bt descriptions),
which are passed to the combinators. A bt description has the same structure as
the underlying type but alternates binding times with regular type constructors.
Binding times are represented by two data types, St and Dy.

newtype St a = St a -- static annotation

newtype Dy a = Dy a -- dynamic annotation

For example, (St int :: St Int) describes a static integer and (St (St Int
-> Dy Bool)) is the type of a description of a static function with static input
and dynamic output. Descriptions are reified type arguments, which are never
evaluated.

Depending on the instantiation of the binding time parameters, powergen ex-
hibits dramatically different behaviors as shown and labeled in Fig. 3. The non-
termination of the third example is the expected behavior because the recursion
in powergen is always static. The error message for the last example accurately
reflects the failing constraints of the binding-time analysis (§2.1, §2.3).

The computation of the generator happens in terms of a representation type
R t btd, which depends on the underlying type t and its bt description btd.
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> -- an all static run computes the power function

> unR (powergen St St St (R 2) (R 5))

32

> -- a run with dynamic basis performs specialization

> toString $ unR $ powergen Dy St Dy (R (EVar "x")) (R 5)

"EOp2 (*) (EVar x) (EOp2 (*) (EVar x) (EOp2 (*) (EVar x)

(EOp2 (*) (EVar x) (EOp2 (*) (EVar x) (EInt 1)))))"

> -- nonterminating specialization

> toString $ unR $ powergen Dy Dy Dy (R (EVar"x")) (R (EVar"n"))

"EIf (EOp2 (==) (EVar n) (EInt 0)) (EInt 1) (EOp2 (*) (EVar x)

(EIf (EOp2 (==) (EOp2 (-) (EVar n) (EInt 1)) (EInt 0)) (EInt 1) (EOp2 (*) (EVar x)

(EIf (EOp2 (==) Interrupted.

> -- binding-time mismatch

> powergen Dy Dy St

No instances for (CIF Dy St, CSUB (Dy Int) (St Int) Int)

Fig. 3. Running powergen.

Any value that is passed into (out of) the generator must first be wrapped
(unwrapped). As R is an isomorphism, its use does not amount to tagging.4

-- representation type

newtype R t btd = R { unR :: ImpT t btd }

-- implementation type

type family ImpT t btd

--

type instance ImpT Int (St Int) = Int

type instance ImpT Bool (St Bool) = Bool

type instance ImpT [a] (St [ba]) = [ImpT a ba]

type instance ImpT (a -> b) (St (ba -> bb)) = ImpT a ba -> ImpT b bb

--

type instance ImpT a (Dy aa) = Exp a

The argument to the R constructor must have the implementation type, computed
by the type function ImpT. For type constructors with static bt descriptions, ImpT
rebuilds the type constructors and translates components of the type recursively.
This strategy implies that static computations are implemented by themselves.
If the translation hits a dynamic annotation, then well-formedness dictates that
further components of the type carry a dynamic annotation, too. Hence, any
value of dynamic type a is implemented as an expression of type Exp a. The
latter type is a GADT with the usual definition (see appendix).

2.1 Basic Combinators

Continuing the analysis of the code in Fig. 2, the cIf combinator takes two bt
descriptions, one (dn bool) describing the binding time of the condition and one
4 The reader may wonder why R t btd is needed as it is isomorphic to ImpT t btd.

However, when type inference equates R t1 b1 = R t2 b2 it can deduce that t1 =

t2 and b1 = b2. It cannot deduce these equalities from ImpT t1 b1 = ImpT t2 b2.
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(dz int) fixing the binding time of the result of the conditional. The remaining
arguments stand for the condition, the true-branch, and the false-branch, where
the two branches have the same representation type. cIf is overloaded such
that there are instances for either static dn and arbitrary dz or for dynamic dn
and dz. The type checker rejects any other combination of binding times (via
unresolved instance), thus enforcing the constraints of the binding-time analysis.
The definition shows that the bt descriptions are not touched.

class CIF bb bt where

cIf :: bb Bool -> bt shp

-> R Bool (bb Bool) -> R t (bt shp) -> R t (bt shp) -> R t (bt shp)

instance CIF St bt where

cIf _ _ b x y = if (unR b) then x else y

instance CIF Dy Dy where

cIf _ _ b x y = R (EIf (unR b) (unR x) (unR y))

The combinator cOp2 for binary primitive operations takes a bt description
for the type of the operation, the operation itself, and its two arguments. It is
implemented in terms of a more general operator cConst, which injects constants
into a generator, and function application cApp. Again, the overloading of these
combinators enables the dual use of static and dynamic operations.

data Op a = Op { opname :: String, opvalue :: a }

cOp2 btd op x y = cApp undefined (cApp btd (cConst btd op) x) y

Instead of examining the unwieldy type of cOp2, it is simpler and more general to
look at the cConst operator (but see Appendix C). To safely embed a constant
of arbitrary type in a generator requires that the constant’s bt description is
uniform, that is, it is either completely static or completely dynamic [19]. This
requirement is stronger than the usual well-formedness (see §3.4), which can be
enforced locally. Uniformity is asserted with a two-parameter type class Uniform.

class Uniform t btd => CONST t btd where

cConst :: btd -> Op t -> R t btd

instance (AllStatic t aa) => CONST t (St aa) where

cConst btd op = R (toImpT btd (opvalue op))

instance (AllDynamic aa) => CONST t (Dy aa) where

cConst _ op = R (EConst op)

The dynamic case is straightforward, but the static case has a slight complica-
tion. Because of the recursive definition of ImpT for static bt descriptions, the
type checker needs a proof that t is equal to ImpT t btd if btd is fully static.
The class Uniform defines identities providing this proof in the usual way.5

class Uniform t btd where

toImpT :: btd -> t -> ImpT t btd

fromImpT :: btd -> ImpT t btd -> t

5 See the appendix for the full definitions of Uniform, AllStatic, and AllDynamic.
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2.2 Function Combinators

The encoding of functions follows the ideas of higher-order abstract syntax as
in previous work [3, 18, 20]. Thus, the generator represents bound variables by
metavariables so that the cLam combinator for abstraction takes a function from
representation type to representation type as an argument.

class CLAM bf bs bt where

cLam :: bf (bs as -> bt at)

-> (R s (bs as) -> R t (bt at)) -> R (s -> t) (bf (bs as -> bt at))

instance CLAM St bs bt where

cLam _ f = R $ (unR . f . R)

instance CLAM Dy Dy Dy where

cLam _ f = R $ ELam (unR . f . R)

The two instances for the overloaded cLam combinator reflect exactly the binding-
time constraints: a static function does not restrict the binding time of its ar-
gument and result, whereas a dynamic function requires dynamic argument and
result. The function ELam is the constructor for the typed (higher-order) abstract
syntax (see Appendix A).

The definitions of the combinators cApp for function application and cFix
for the fixpoint follow a similar scheme and are thus relegated to Appendix D.

2.3 Subtyping

Subtyping is the final important ingredient of binding-time analysis. This sub-
typing does not take part on the value level, but on the level of bt descriptions
and expresses conversions between binding times. For example, a static integer
can be converted into one of unknown binding time by the coercion (cSub (St
int) (dz int) (R 1)) from Fig. 2.

In general, a coercion (cSub bfrom bto v) takes two bt descriptions and
converts value v from binding time bfrom to binding time bto. The function
cSub is defined in type class CSUB.

class CSUB b1 b2 t where

cSub :: b1 -> b2 -> R t b1 -> R t b2

The instances of this class follow the inductive definition of the subtyping relation
in the binding-time analysis (see §3.4). For base types, it corresponds to the well-
known lifting operation.

-- reflexivity

instance CSUB a a t where

cSub _ _ = id

-- base

instance CSUB (St Int) (Dy Int) Int where

cSub _ _ = R . EInt . unR

instance CSUB (St Bool) (Dy Bool) Bool where

cSub _ _ = R . EBool . unR

For function types, the code for the instances also follows the inductive definition,
but it requires extra type annotations for technical reasons. Appendix E contains
the full definitions.
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2.4 List Operations

Using the same principles as for functions, it is straightforward to develop com-
binators that support partially static operations on recursive data types. The
signature for list-processing combinators serves as an example. Appendix F con-
tains their implementations.

class L d da where

-- d : bt of list, da : bt of elements

cNil :: d [da s] -> R [a] (d [da s])

cCons :: d [da s] -> R a (da s) -> R [a] (d [da s]) -> R [a] (d [da s])

cHead :: d [da s] -> R [a] (d [da s]) -> R a [da s]

cTail :: d [da s] -> R [a] (d [da s]) -> R [a] [da s]

cNull :: d [da s] -> R [a] (d [da s]) -> R Bool (d Bool)

3 From Binding-Time Analysis to Tagfree Program
Generators

This section defines a translation that maps a polymorphic binding-time type
derivation generated by the polymorphic binding-time analysis of Glynn and
coworkers [6] into a valid Haskell program that uses the combinators from §2.
Precluding a formal correctness argument, we argue informally that the Haskell
types express the binding-time constraints and, thus, that Haskell’s type sound-
ness guarantees specialization soundness. Furthermore, our automatic transla-
tion scheme relieves the programmer from the cumbersome task of writing tag-
free program generators by hand.

Before we formalize the type-directed translation scheme, we recapitulate
the essentials of Glynn’s and coworkers polymorphic binding-time analysis and
establish connections to our set of combinators.

3.1 Underlying Type System

We consider the translation of an ML-style let-polymorphic typed language with
base types Int and Bool. For brevity, the formalization omits structured data
types, but the implementation supports them (§2.4).

Types t ::= α | Int | Bool | t→ t
Type Schemes σ ::= t | ∀ᾱ.t
Expressions e ::= x | λx.e | e e | let x = e in e

The vector notation ᾱ represents a sequence α1, . . . αn of type variables. Con-
structors for numerals and Boolean values are recorded in some initial type
environment.

The treatment of Haskell’s advanced language feature such as type classes is
possible but postponed to future work. For instance, Glynn’s and coworkers poly-
morphic binding-time analysis is performed on GHC’s internal System F style
type language CORE where type classes have already been ’removed’ via the
dictionary-passing translation. Hence, we would require combinators operating
on GHC’s CORE language directly to properly deal with type classes.
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∆ ` b : Int ∆ ` b : Bool
(β : α) ∈ ∆
∆ ` β : α

∆1 ` τ1 : t1 ∆2 ` τ2 : t2

∆1 ∪∆2 ` τ1
b7→ τ2 : t1 → t2

Fig. 4. Shape Rules

3.2 Binding-Time Descriptions

On top of the underlying type structure we impose a binding-time (type) de-
scription structure which reflects the structure of the underlying type system.
For instance, S S7→ D describes a static function that takes a static value of base
type as an argument and returns a dynamic value of base type.

Annotations b ::= δ | S | D
Binding-Time Descriptions τ ::= β | b | τ b7→ τ

Binding-Time Type Schemes η ::= τ | ∀β̄, δ̄.C ⇒ τ
Constraints C ::= (τ ≤ τ) | wft(τ) | C ∧ C

The grammar distinguishes annotation variables δ, which may only be instan-
tiated to S or D, from binding-time type variables β, which may be instantiated
to any τ , including δ. Constraints are described in §3.4.

3.3 Shapes

The binding-time description of an expression must generally have the same
’shape’ as its underlying type, in particular in the presence of polymorphism.
For this purpose, a shape environment ∆ maps a polymorphic binding-time
description variable to its corresponding underlying polymorphic type variable.
The judgment ∆ ` τ : t states that under shape environment ∆ the binding-
time description τ has shape t. A judgment ∆ ` η : σ is valid if it can be derived
by the shape rules in Figure 4. For brevity, we omit the straightforward rule for
quantified types.

The combinator system in §2 detects ill-shaped types via unresolved in-
stances. For example, the (ill-shaped) type R (a -> b) (St Int) yields the
unresolved type function application ImpT (a -> b) (St Int).

3.4 Binding-Time Constraints

A subtype constraint (x ≤ y) is read as “y is at least as dynamic as x”. It comes
in various flavors: an ordering on annotations (· ≤a ·), a structural ordering
(· ≤s ·) on bt descriptions, and an auxiliary ordering (· ≤f ·), which is used
in combination with the ’well-formed’ constraint wft() to rule out ’ill-formed’
constraints such as S D7→ S. Figure 5 summarizes the constraint rules.

9



(Sta) C ` (S ≤a b) (Dyn) C ` (b ≤a D)

(Hyp) C1, (b1 ≤a b2), C2 ` (b1 ≤a b2)

(Refl) C ` (b ≤a b) (Trans)
C ` (b1 ≤a b2) C ` (b2 ≤a b3)

C ` (b1 ≤a b3)

(Basw) C ` wft(b) (Arroww)

C ` (b3 ≤f τ1) C ` wft(τ1)

C ` (b3 ≤f τ2) C ` wft(τ2)

C ` wft(τ1
b37→ τ2)

(Basf )
C ` (b1 ≤a b2)

C ` (b1 ≤f b2)
(Arrowf )

C ` (b1 ≤a b2)

C ` (b1 ≤f τ1
b27→ τ3)

(Bass)
C ` (b1 ≤a b2)

C ` (b1 ≤s b2)
(Arrows)

C ` (b2 ≤a b5)

C ` (τ4 ≤s τ1) C ` (τ3 ≤s τ6)

C ` (τ1
b27→ τ3 ≤s τ4

b57→ τ6)

Fig. 5. Binding-Time Constraint Rules

Our combinator system detects ill-formed constraints via unresolved instances.
For example, the irreducible constraint CLAM Dy St St corresponds to the ill-
formed description S

D7→ S. A binding-time description is only well-formed if
a dynamic annotation at the top of a binding-time description implies that all
its components are dynamic, too, because nothing can be known about them.
Hence, the above constraint is ill-formed.

The remaining binding-time subtype relations are expressed via the type
class CSUB and its instances (§2.3). The instance bodies construct the necessary
coercions among binding-time values.

To be honest, the Haskell encoding leads to a slightly inferior system for the
following reasons. First, the transitivity rule (Trans) cannot be easily expressed
because the straightforward encoding in Haskell

instance (CSUB a b t, CSUB b c t) => CSUB a c t

requires guessing the intermediate type b during type class instance resolution. A
second short-coming of the Haskell encoding is that out of CSUB (St (a -> b))
(St (a -> c)) (Int -> Int) we cannot extract the proof term (a.k.a. dictio-
nary) connected to CSUB b c Int. The reverse direction is of course possible.
Hence, if a program text requires CSUB (St (a -> b)) (St (a -> c)) (Int
-> Int) but the surrounding context only provides CSUB b c Int, Haskell’s
type inference will fail. A simple workaround for both problems is to provide
additional constraints which either mimic application of the transitivity rule or
supply the necessary proof terms.
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3.5 Type-Directed Translation from BTA to Program Generators

Now everything is in place to describe the automatic construction of program
generators based on our combinators out of Glynn and coworkers binding-time
analysis. The construction is achieved via a type-directed translation scheme
and relies on judgments of the form C, Γ ` (e :: t) : τ  (eH CH) where C is
a binding-time constraint, Γ a binding-time environment, e an expression well-
typed in the underlying system with type t, τ is a binding-time description, eH
is the Haskell expression derived from e instrumented with program generator
combinators and CH is a Haskell constraint which contains all the requested
combinator instances including subtype (coercion) constraints.

Figure 6 contains the (non-syntax directed) translation rules. It is an easy
exercise to make them syntax directed, following Glynn and coworkers [6].

In rule (Sub), C  CH denotes the translation of binding-time subtype con-
straints (τ1 ≤ τ2) to Haskell type class constraints CSUB τ1 τ2 t for some appropri-
ate t.6 Ill-formed binding-time descriptions are caught via unresolved instances.
Hence, the translation simply drops the well-formed constraint wft(τ). The trans-
lation of the judgment C ` (τ2 ≤s τ1) to the Haskell setting may not hold any
more, unless C contains redundant constraints as discussed in §3.4. Hence, we
assume from now on that such redundant constraints are present in C. In the
resulting (Haskell) program text, the expression eH is coerced to the expected
bt description τ1 by inserting the combinator call cSub τ2 τ1. Descriptions such
as τ1 occurring in expressions are short-hands for undefined :: τ1 where vari-
ables appearing in τ1 are bound by lexically scoped type annotations.7 Recall
that binding-time descriptions passed at run-time are never inspected. Thanks
to laziness they have virtually no cost.

Rule (Abs) and (App) are straightforward and do not contain any surprises.
The rule (Let) additionally abstract over the binding-time descriptions β̄ and δ̄
which then will be supplied with arguments at the instantiation site (see rule
(∀E)). The function inst computes the corresponding binding-time description
instances for each underlying type instance. Let ∆ be a shape environment, t̄
a sequence of underlying types, and ᾱ a sequence of underlying type variables.
Let inst(∆, t̄, ᾱ) = τ̄ where τ̄ are fresh binding-time types of appropriate shape:
Each element of τ̄ is related to the corresponding element of β̄ by the shape
environment ∆. That is, ∆, ti ` τij where ∆ ` βij : αi.

The last rule (Fix) deals with polymorphic recursion (in the binding-time
descriptions). A fixpoint iteration is required to compute the set of combinator
instances CIF etc. The constraints resulting from (e :: t) are split into those,
which are not connected to δ̄ (C1H), and those which constrain δ̄ (C2H). The
fixpoint operator F starts with C2H plus the Haskell equivalent C2

′
H of the

subtype constraints in C2 and iterates until a fixpoint C3H is found. The exact

6 In a syntax-directed inference system the program text determines the type t.
7 The alternative is to build an explicit term of type τ1 as in Fig. 2.
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definition of F is as follows:

F(Γ ∪ {x : ∀δ̄.C2H ⇒ τ}, e :: t)
= F(Γ ∪ {x : ∀δ̄.C2H ∧ C3H ⇒ τ}, e :: t) if C2H 6=set C3H

= C2H otherwise

where Γ ∪ {x : ∀δ̄.C2H ⇒ τ} ` (e :: t) : τ  (eH C3H).
The following example serves to illustrate the fixpoint iteration.

f x y = if x == 0 then 1 else f y (x-1)

Function f’s most general binding time description is

∀bx, by, b.(bx ≤ b) ∧ (by ≤ b)⇒ bx
S7→ by

S7→ b

Binding-time polymorphism is required in the subexpression f y (x-1) for
building the instance by

S7→ bx
S7→ b.

The first step of the translation yields the following (Haskell) constraints
from the program text:

SUB bx b Int, SUB by b Int,

CIF bx b,

CLAM St by b, CLAM St bx (by->b),

CAPP St b x b, CAPP St by (bx->b)

These constraints are not sufficient for the resulting program to type check. For
example, at the instantiation site f y (x-1) the constraint CIF by b is needed
but there is only CIF bx b. Another iteration starting with the above constraints
leads to the fixpoint:8

SUB bx b Int, SUB by b Int,

CIF bx b, CIF by b,

CLAM St by b, CLAM St bx (by->b), CLAM St bx b, CLAM St by (bx->b),

CAPP St bx b, CAPP St by (bx->b), CAPP St by b, CAPP St bx (by->b)

The fixpoint iteration must terminate because it only iterates over annota-
tions whose shape is fixed/bound by the underlying type. Hence, the number of
instances arising is finite.

An alternative translation scheme could employ the cFix combinator also
provided by the library. It corresponds to a monomorphic (Fix) rule, which
requires no fixpoint iteration.

In summary, the type-directed translation scheme builds a tight correspon-
dence between the typing of the combinators and the typing rules of the binding-
time analysis. It might be stated as a slogan in the following way.

Proposition 1. Let True, ∅ ` (e :: t) : τ  (eH CH). Then, the resulting
expression eH is well-typed in Haskell with type R t τ under constraints CH .
8 The fixpoint iteration requires a variant of the (∀E) rule which also infers the required

instantiation constraints, rather than simply checking if the provided constraints
imply the instantiation constraints. For reasons of space, we omit the straightforward
details.
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We have no proof for this proposition, although it is easy in many cases to match
the typing of a single combinator with its corresponding typing rule. An attempt
to prove it would have to overcome the shortcomings discussed in the preceding
text and it would have to draw on a formalization of a large subset of Haskell’s
type system. Both tasks are out of scope of the present work.

4 Related Work and Conclusion

Among the large body of related work on partial evaluation (see the respec-
tive overviews [7, 11]), there are only few works which consider offline partial
evaluation based on a polymorphic binding-time analysis for polymorphic lan-
guages [6,8,9]. None of them consider the direct construction of program gener-
ators. Only Heldal and Hughes [8] deal with the pragmatics of constructing the
specializer. Other works that consider polymorphism concentrate either on poly-
morphic binding-time analysis for monomorphic languages [5, 10] or monomor-
phic analysis for polymorphic languages [4, 12,14].

Closely related are previous constructions of combinators that perform spe-
cialization by the first author [18, 20] as well as combinators by Carette and
coworkers [3] that can be statically configured (either via overloading or via the
ML module language) to perform evaluation, compilation, or (online) partial
evaluation. Two main differences to the latter work are (1) that our combinators
are geared towards offline partial evaluation and require a preceding binding-
time analysis and (2) that our combinators are dynamically configured by type
passing.

The present work complements the earlier work of Glynn and coworkers [6]
and puts it into practice. Our combinators solve the open question of obtaining
safe and efficient (tag-free) program generators for ML-style languages based
on a polymorphic binding-time analysis. Our proof-of-concept implementation
relies on GHC’s advanced (source) typing features and allows us to experiment
with smaller examples.

There are many opportunities for future work. We doubt that there an anal-
ogous set of combinators that can be implemented in ML, but it is an interesting
question to consider. We believe that the approach is extensible to typing features
of Haskell beyond ML. We further believe that the approach can be extended
to cater for typical partial evaluation features like program point specialization,
multi-level specialization, or continuation-based specialization.
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(Var)
(x : η) ∈ Γ ∆ ` η : σ C  CH

C, Γ ` (x :: σ) : η  (x CH)

(Sub)
C, Γ ` (e :: t) : τ2  (eH CH) C ` (τ2 ≤s τ1) C ` wft(τ1)

C, Γ ` (e :: t) : τ1  (cSub τ2 τ1 eH CH ∧ CSUB τ2 τ1 t)

(Abs)

C, Γ ∪ {x : τ1} ` (e :: t2) : τ2  (eH CH)

C ` wft(τ1) ∆ ` τ1 : t1

C, Γ ` (λx.e :: t1 → t2) : τ1
S7→ τ2

 

(cLam ST(τ1 7→ τ2) (λx.eH) CH ∧ CLAM ST τ1 τ2})

(App)

C1, Γ ` (e1 :: t1 → t2) : (τ1
b7→ τ2) (e1H C1H)

C2, Γ ` (e2 :: t1) : τ1  (e2H C2H)

C1 ∧ C2, Γ ` (e1 e2 :: t2) : τ2

 

(cApp (b (τ1 7→ τ2)) e1H e2H C1H ∧ C2H ∧ CAPP b τ1 τ2)

(Let)

C1, Γ ` (e1 :: t1) : τ1  (e1H C1H)

∆ ` τ1 : t1 β̄, δ̄ ⊆ fv(C1, τ1)\fv(Γ )

where ∆ ` βij : αi

C2, Γ ∪ {x : ∀β̄δ̄.C1 ⇒ τ1} ` (e2 :: t2) : τ2  (e2H C2H)

C2, Γ ` (let x = (e1 :: ∀ᾱ.t1) in e2 :: t2) : τ2

 

(let x = (λβ̄.λδ̄.e1H :: ∀ᾱβ̄δ̄.C1H ⇒ R t1 τ1) in e2H C2H)

(∀E)

C, Γ ` (e :: ∀ᾱ.t) : ∀β̄, δ̄.D ⇒ τ  (eH CH)

∆ ` τ : t inst(∆, t̄, ᾱ) = τ̄

C ` [τ̄ /β̄, b̄/δ̄]D

C,Γ ` (e :: [t̄/ᾱ]t) : [τ̄ /β̄, b̄/δ̄]τ  (eH τ̄ b̄ CH)

(Fix)

η = ∀δ̄.C2 ⇒ τ C2  C2
′
H

C1 ∧ C2, Γ ∪ {x : η} ` (e :: t) : τ  (eH C1H ∧ C2H)

C1 ∧ C2 ` wft(τ) ∆ ` η : t

fv(C1H) ∩ δ̄ = ∅ fv(C2H) ⊆ δ̄
F(Γ ∪ {x : ∀δ̄.C2

′
H ∧ C2H ⇒ τ}, e :: t) = C3H

C1, Γ ` ((fix x :: t in e) :: t) : η

 

(let x = (λδ̄.eH :: ∀δ̄.C3H ⇒ R t τ) in x C1H)

Fig. 6. Type-direction translation rules
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This appendix contains additional material for scrutiny by the in-
terested reviewer. The source code of the combinators is available on-
line at http://proglang.informatik.uni-freiburg.de/projects/polyspec/

A Expression Datatype

data Exp t where

EVar :: String -> Exp t

EBool :: Bool -> Exp Bool

EInt :: Int -> Exp Int

EIf :: Exp Bool -> Exp t -> Exp t -> Exp t

EConst :: Op t -> Exp t

EOp1 :: Op (a -> t) -> Exp a -> Exp t

EOp2 :: Op (a -> b -> t) -> Exp a -> Exp b -> Exp t

ELam :: (Exp a -> Exp b) -> Exp (a -> b)

EApp :: Exp (a -> b) -> Exp a -> Exp b

EFix :: Exp (a -> a) -> Exp a

ENil :: Exp [a]

ECons :: Exp a -> Exp [a] -> Exp [a]

EHead :: Exp [a] -> Exp a

ETail :: Exp [a] -> Exp [a]

ENull :: Exp [a] -> Exp Bool
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B Uniform Binding-Time Descriptions

class Uniform t sh_t where

toImpT :: sh_t -> t -> ImpT t sh_t

fromImpT :: sh_t -> ImpT t sh_t -> t

toImpT = undefined

fromImpT = undefined

instance AllStatic t aa => Uniform t (St aa) where

toImpT ~(St sh) v = toImpT’ sh v

fromImpT ~(St sh) v = fromImpT’ sh v

instance AllDynamic aa => Uniform t (Dy aa)

class AllStatic t sh where

toImpT’ :: sh -> t -> ImpT t (St sh)

toImpT’ = error "toImp’: AllStatic instance missing"

fromImpT’ :: sh -> ImpT t (St sh) -> t

fromImpT’ = error "fromImpT’: AllStatic instance missing"

instance AllStatic Int Int where

toImpT’ _ v = v

fromImpT’ _ v = v

instance AllStatic Bool Bool where

toImpT’ _ v = v

fromImpT’ _ v = v

instance AllStatic’ t aa => AllStatic [t] (Con1 aa) where

toImpT’ ~(Con1 sh) vs = map (toImpT’’ sh) vs

fromImpT’ ~(Con1 sh) vs = map (fromImpT’’ sh) vs

instance (AllStatic’ s aa, AllStatic’ t ab)

=> AllStatic (s -> t) (Con2 aa ab) where

toImpT’ ~(Con2 sh_s sh_t) f = toImpT’’ sh_t . f . fromImpT’’ sh_s

fromImpT’ ~(Con2 sh_s sh_t) f = fromImpT’’ sh_t . f . toImpT’’ sh_s

class AllStatic’ t sh where

toImpT’’ :: sh -> t -> ImpT t sh

fromImpT’’ :: sh -> ImpT t sh -> t

instance AllStatic t aa => AllStatic’ t (St aa) where

toImpT’’ ~(St sh) v = toImpT’ sh v

fromImpT’’ ~(St sh) v = fromImpT’ sh v

class AllDynamic aa

instance AllDynamic Int

instance AllDynamic Bool

instance AllDynamic’ aa => AllDynamic [aa]

instance (AllDynamic’ aa, AllDynamic’ ab) => AllDynamic (aa -> ab)

class AllDynamic’ aa

instance AllDynamic aa => AllDynamic’ (Dy aa)
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C Primitive Operators

-- construct bt description for function types

fun :: a -> b -> (a -> b)

fun = undefined

-- binary operators

-- bt description for uniformly annotated types of the form a -> b -> c

type BOP2 bt aa ab ac = bt ((bt aa) -> (bt ((bt ab) -> (bt ac))))

bop2 :: (forall a. a -> bt a) -> aa -> ab -> ac -> BOP2 bt aa ab ac

bop2 bt aa ab ac = bt (fun (bt aa) (bt (fun (bt ab) (bt ac))))

cOp2

:: (CONST

(ta -> tb -> tc)

(bt ((bt aa) -> (bt ((bt ab) -> (bt ac))))),

CAPP bt bt bt) =>

BOP2 bt aa ab ac

-> Op (ta -> tb -> tc)

-> R ta (bt aa)

-> R tb (bt ab)

-> R tc (bt ac)

cOp2 sh op x y =

cApp undefined (cApp sh (cConst sh op) x) y

-- unary operators

-- bt description for uniformly annotated types of the form a -> b

type BOP1 bt aa ab = bt ((bt aa) -> (bt ab))

bop1 :: (forall a. a -> bt a) -> a1 -> a2 -> BOP1 bt a1 a2

bop1 bt a1 a2 = bt (fun (bt a1) (bt a2))

cOp1 :: (CAPP bt bt bt, CONST (a -> b) (bt ((bt aa) -> (bt bb))))

=> BOP1 bt aa bb -> Op (a -> b) -> R a (bt aa) -> R b (bt bb)

cOp1 sh op x =

cApp sh (cConst sh op) x
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D Function Application and Fixpoint

class CAPP bt ba bb where

cApp :: (LE bt ba, LE bt bb)

=> bt (Con2 (ba aa) (bb ab))

-> R (ta -> tb) (bt (Con2 (ba aa) (bb ab)))

-> (R ta (ba aa) -> R tb (bb ab))

instance CAPP St ba bb where

cApp _ f x = R $ unR f (unR x)

instance CAPP Dy Dy Dy where

cApp _ f x = R $ EApp (unR f) (unR x)

--

class CFIX bt ba where

cFix :: (LE bt ba)

=> (bt (Con2 (ba aa) (ba aa)))

-> R (ta -> ta) (bt (Con2 (ba aa) (ba aa)))

-> R ta (ba aa)

instance CFIX St ba where

cFix _ f = R $ fix (unR f)

instance CFIX Dy Dy where

cFix _ f = R $ EFix (unR f)

fix :: (a -> a) -> a

fix f = f (fix f)
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E Subtyping for Functions

E.1 Static Functions

instance (CSUB b3 b1 t1, CSUB b2 b4 t2)

=> CSUB (St (Con2 b1 b2)) (St (Con2 b3 b4)) (t1->t2) where

cSub _ _ f = subStArrowContra (subStArrowCo f)

-- subStArrowCo casts result type

-- subStArrowContra casts argument type

-- we could of course merge both functions

-- we require lexically scoped type annotations to resolve ambiguities

subStArrowCo :: forall t1 t2 b1 b2 b4.

CSUB b2 b4 t2

=> R (t1->t2) (St (Con2 b1 b2)) -> R (t1->t2) (St (Con2 b1 b4))

subStArrowCo f = R $ (\x ->

let r1 :: ImpT (t1->t2) (St (Con2 b1 b2))

r1 = unR f

r2 :: ImpT t2 b2

r2 = r1 x

r3 :: R t2 b2

r3 = R r2

r4 :: R t2 b4

r4 = cSub undefined undefined r3

r5 :: ImpT t2 b4

r5 = unR r4

in r5)

--subStArrowCo f = R $ (\x -> unR (cSub (R ((unR f) x))))

subStArrowContra :: forall t1 t2 b1 b2 b3.

CSUB b3 b1 t1

=> R (t1->t2) (St (Con2 b1 b2)) -> R (t1->t2) (St (Con2 b3 b2))

subStArrowContra f = R $ (\x ->

let r1 :: R t1 b3

r1 = R x

r2 :: R t1 b1

r2 = cSub undefined undefined r1

r3 :: ImpT t1 b1

r3 = unR r2

r4 :: ImpT (t1->t2) (St (Con2 b1 b2))

r4 = unR f

r5 :: ImpT t2 b2

r5 = r4 r3

in r5)

-- subStArrowContra f = R $ (\x -> (unR f) (unR (cSub (R x))))
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E.2 Dynamic Functions

-- CSUB (St (b1’ -> b2)) (Dy (b3’ -> b4’)) (t1->t2)

-- implies due to wft that b3’ and b4’ dynamic

-- CSUB b3’ b1’ implies b1’ dynamic, hence, we obtain

-- the following

instance (CSUB (Dy b3) (Dy b1) t1, CSUB b2 (Dy b4) t2)

=> CSUB (St (Con2 (Dy b1) b2)) (Dy (Con2 (Dy b3) (Dy b4))) (t1->t2) where

cSub _ _ f = subDyArrowContra (subDyArrowCo f)

subDyArrowCo :: forall t1 t2 b1 b2 b4.

CSUB b2 (Dy b4) t2

=> R (t1->t2) (St (Con2 (Dy b1) b2)) -> R (t1->t2) (St (Con2 (Dy b1) (Dy b4)))

subDyArrowCo f = R $ (\x ->

let r1 :: ImpT (t1->t2) (St (Con2 (Dy b1) b2))

r1 = unR f

r2 :: ImpT t2 b2

r2 = r1 x

r3 :: R t2 b2

r3 = R r2

r4 :: R t2 (Dy b4)

r4 = cSub undefined undefined r3

r5 :: ImpT t2 (Dy b4)

r5 = unR r4

in r5)

--subDyArrowCo f = R $ ELam $ (\x -> unR (cSub (R ((unR f) x))))

subDyArrowContra :: forall t1 t2 b1 b2 b3.

CSUB (Dy b3) (Dy b1) t1

=> R (t1->t2) (St (Con2 (Dy b1) (Dy b2)))

-> R (t1->t2) (Dy (Con2 (Dy b3) (Dy b2)))

subDyArrowContra f = R $ ELam $ (\x ->

let r1 :: R t1 (Dy b3)

r1 = R x

r2 :: R t1 (Dy b1)

r2 = cSub undefined undefined r1

r3 :: ImpT t1 (Dy b1)

r3 = unR r2

r4 :: ImpT (t1->t2) (St (Con2 (Dy b1) (Dy b2)))

r4 = unR f

r5 :: ImpT t2 (Dy b2)

r5 = r4 r3

in r5)

-- subStArrowContra f = R $ Elam $ (\x -> (unR f) (unR (cSub (R x))))
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F List Processing

instance L St da where

cNil _ = R []

cCons _ = \(R x) (R y) -> R ( x:y )

cHead _ = R . head . unR

cTail _ = R . tail . unR

cNull _ = R . null . unR

instance L Dy Dy where

cNil _ = R ENil

cCons _ (R x) (R y) = R $ ECons x y

cHead _ (R x) = R $ EHead x

cTail _ (R x) = R $ ETail x

cNull _ = R . ENull . unR
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