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Abstract

Software Transactional Memory (STM) allows grouping of accesses to shared memory in concurrent
transactions, thus ensuring their atomicity, consistency and isolation.

The Twilight STM introduced in this paper enhances a transaction with twilight code that executes
between the preparation to commit the transaction and its actual commit or abort. Twilight code runs
irrevocably and concurrently with the rest of the program. It can detect and repair potential read in-
consistencies in the state of its transaction and may thus turn a failing transaction into a successful one.
Moreover, twilight code can safely use I/O operations while modifying the transactionally managed
memory.

The Twilight STM keeps a pending transaction committable while running the twilight code, but
without blocking all other transactions, including pending transactions that execute their twilight code
at the same time. Benchmark results show that Twilight performs competitively with state-of-the-art
systems like TL2.



1 Introduction

Transactional Memory (TM) is a promising alternative to lock-based synchronization in multi-threaded pro-
grams. It improves productivity by offering fine-grained mutual exclusion while providing modularity, scal-
ability, and composability [25]. High-performance implementations of TM are being developed in hardware
and software that are competitive with systems implementing other concurrency paradigms.

However, even new code in multi-threaded applications written from scratch cannot rely solely on TM
because the code has to interact with synchronization protocols buried in system calls, libraries, and legacy
code. These code bases rely on handshaking and locking to implement concurrent data structures or to safely
perform I/O and other system services. As neither locking nor non-reversible operations are compatible with
transactions, a flexible mechanism is needed that makes these worlds safely coexist.

Recent proposals in this direction introduce the notions of irrevocable and inevitable transactions [28,
33]. Similar to earlier proposals [32], they have severe limitations because they serialize transactions which
have non-reversible side-effects with a global lock. The serialization requirement rules out handshaking-
based synchronization protocols and locking inside of transactional code as further elaborated in Section 2.

This paper introduces the Twilight STM, an STM implementation that splits the commit operation of a
transaction in two phases, a prepare to commit, which checks the preconditions for a successful commit and
isolates the transaction from other concurrently running transactions, and a finalize commit, which makes
the outcome of the transaction globally visible. As its main novel feature, Twilight allows the programmer to
augment a transaction with twilight code that runs between the commit preparation and the actual commit.
Twilight code is substantially different from the commit and abort hooks of TM systems implemented in
hardware( [16, 19, 30]). While these hooks run in a fixed order after the STM implementation has decided
on the transaction’s fate (commit or abort), the twilight code executes before that decision is taken and can
affect its outcome. To this end, the Twilight API has operations to detect and repair read inconsistencies (a
feature unique to the Twilight STM). The finalize commit operation only finishes the transaction successfully
if the twilight code resolved all inconsistencies. Otherwise it restarts the transaction.

Furthermore, the twilight code is free to perform external operations like invoking system services or
using handshaking- and lock-based protocols (e.g., synchronization barriers). These external operations are
immediately and irrevocably globally visible. To maximize applicability, twilight code may run concur-
rently with other transactions including their twilight code. While the Twilight STM guarantees atomicity,
consistency, and isolation for transactional code and the Twilight API, it cannot prevent misuse of the twi-
light code. That is, the programmer is obliged to ensure freedom of deadlock and races for the external
operations. However, the API guarantees that the twilight code does not affect the transactional properties
of the transaction bodies. Hence, twilight code can implement highly sophisticated contention management
strategies, which may depend on the outcome of external operations.

We have developed two implementations of Twilight STM, a Java implementation and a C implemen-
tation that is based on the TL2 algorithm. We have run benchmarks on the C implementation. The results
show that twilight code does not introduce extra overhead on top of TL2. On the contrary, utilization of the
repair mechanism reduces the abort rates and improves run-time performance.

Contributions. The unique feature of Twilight STM is its facility to augment a transaction with (twilight)
code that can influence the outcome of the transaction by attempting to repair inconsistencies. It is able to
interact with globally visible side-effecting operations and traditional concurrency control mechanisms.

1. We describe our design of the Twilight STM API, which separates the commit operation of a transac-
tion in two phases, commit preparation and commit finalization. It provides the means to run twilight
code in between with a number of unique features.
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• The twilight code of a transaction can execute concurrently with any other kind of thread: outside
of transactions, inside of transactions, or the twilight code of another transaction.

• Standard concurrency control mechanisms, as well as I/O and system calls are available in the
twilight code.

• After a commit preparation, the twilight code can access and modify the state of its pending
transaction. It can turn a failing transaction into a successful one by resolving inconsistencies
detected during a commit preparation.

2. We define the semantics of a transaction with twilight code, which partially relaxes the isolation
property. We prove the transactional properties.

3. We provide two implementations of the Twilight STM. The code is available on the web1.
4. We present experimental results that show how twilight code can be used to advantage for application

specific contention management.

Outline. After discussing related work in Section 2, we motivate the need for the Twilight STM with
examples in Section 3. Section 4 introduces Twilight’s API concentrating on the operations available to
twilight code and Section 5 a detailed explanation of the algorithm. Section 6 defines a semantics for
Twilight STM with proofs of transactional properties. Section 8 presents the implementations and evaluates
some benchmarks before concluding in Section 9.

2 Related Work

TM has a huge design space which is investigated by numerous researchers.
One key issue is the choice between an implementation in hardware (HTM) [1, 8, 18, 21], an implemen-

tation in software (STM) [5, 10, 11, 13, 23, 26]. , or a hybrid approach [4, 14].

HTM Approaches. Although our work is a software-only approach, there are quite a few related HTM-
based efforts that suggest mechanisms to execute irrevocable operations inside a transaction.

Blundell et al. [2] simulate a hardware TM design that supports I/O and system calls within transactions.
They allow only one unrestricted transaction, which can perform I/O and system calls, running concurrently
with multiple restricted transactions, which cannot perform I/O. This choice limits concurrency.

Moravan et al. [19] simulate a nested TM in hardware. Their transactions may contain “escape actions”
that execute code outside the transactional scope. To retain the transactional appearance, escape actions
can register actions to run on a successful commit or on restart (compensating actions). Such commit and
compensation actions are also needed in their implementation of open nesting of transactions.

McDonald and coworkers [16] define an instruction set architecture for HTM. Their architecture includes
commit handlers and violation handlers that can continue a transaction in an arbitrary way after a conflict.
However, only the validated outcome of a transaction is visible. There is no provision to compare previously
read values with the current ones.

Volos et al. [30] analyze the problems of using locking operations with TM. They implement transaction-
safe locks on top of a HTM. Their design includes commit actions to obtain locks and compensating actions
to release them. Further tasks can be scheduled at conflicts and escape actions are also supported.

1http://proglang.informatik.uni-freiburg.de/projects/syncstm/
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Conflict Avoidance. Harris and Stipić [12] implement the concept of an abstract nested transaction (ANT)
in a software TM. Failure of an ANT does not cause failure of the enclosing transaction, instead the ANTs
are retried when the enclosing transaction is ready to commit. Side effects like I/O and system calls are
disallowed inside ANTs. ANTs can be implemented with the Twilight API by performing potential retries
in the twilight code.

Ramadan and colleagues [22] enable conflicting transactions to commit. They introduce the notion
of dependency-aware TM where a value written by one transaction is forwarded to another transaction
reading the same variable before the actual commit, thus avoiding a conflict between the transactions and
achieving significant speedups. Twilight STM can also deal with this kind of conflicts by first letting the
writing transaction run to completion and then relying on twilight code to fix the conflicting read in the other
transaction.

STM and Irrevocability. Most closely related to our proposal are extensions of STM with irrevocability
and inevitability, respectively.

Welc et al. [33] propose an irrevocability mechanism to support flexible contention management and
the execution of non-reversible actions (I/O, system calls, precompiled libraries, ...) within transactions.
To ensure safety, they use a protocol with single-owner read locks. A transaction becomes irrevocable by
executing a special statement that tries to acquire locks on the read set so far and all upcoming reads. This
approach enforces that only a single irrevocable transaction can run at a time to avoid deadlocks. The system
is implemented as an extension of the Java-based McRT-STM and uses dynamic method dispatch to enforce
the correct usage and interaction with other language constructs.

Similarly, Spear and coworkers [28] compare five mechanisms which all require that at most one irre-
vocable transaction runs at a time and that these transactions do not abort (they use the term inevitability
instead of irrevocability).

Twilight STM introduces a notion of irrevocability, too. The external operations performed in twilight
code cannot be restarted: if the corresponding transaction has to be restarted, the programmer must first
compensate for such operations explicitly. The main difference is that Twilight allows arbitrarily many
transactions with possibly irrevocable actions to run concurrently.

Ziarek et al. [34] propose a framework where Java’s synchronization monitors can be freely mixed
and combined with atomic blocks. Their system optimistically tries to execute all concurrency primitives
transactionally. In situations where such an execution is infeasible, the implementation irrevocably switches
the execution of the concerned critical region to monitors as specified in the original program and to a
global locking approach for user-defined transactions. Twilight STM does not allow an arbitrary mixing of
synchronized and atomic blocks. It restricts the use of non-transactional synchronization primitives to the
twilight code and never reverts to global locking. The default case is transactional execution.

Welc and coworkers [32] propose a dual-mode implementation of monitors for Java which switches
at run time between a lock-based implementation and a transactional one. The switch is based on the
level of contention where high contention triggers the use of the transactional implementation. To integrate
irrevocable actions, they rely on the same mechanism as in the previously described paper [33]. Here, mode
switching is handled transparently to the programmer. Twilight does not switch modes but offers integration
with lock-based code in the twilight code. It further reduces the conflict potential of transactions by allowing
to inspect and repair read conflicts.

Harris [9] proposes a mechanism to integrate exceptions and side effects with transactions. As a pre-
cursor to ANTs, the proposal relies on a transaction being able to register external actions that execute at
commit-time of the transaction.

Smaragdakis and coworkers [27] integrate side effects in a transaction by essentially committing before
and resuming the transaction afterwards. Volos and coworkers [31] propose a system call interface for use
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1 volatile int counter;
2

3 void threadWorker() {
4 stm_begin(); ///// *** transaction body begins ***
5 // complex computation involving STM operations omitted
6

7 stm_enter_region(COUNTER);
8 int pos = stm_read(counter) + 1; // update counter
9 stm_write(counter, pos);
10 stm_leave_region();
11

12 bool succeeded = stm_prepare(); ///// *** transaction body ends, twilight code begins ***
13

14 if (!succeeded) {
15 stm_reload(); // update variables to consistent state
16 if (stm_only_inconsistent(COUNTER)) {
17 pos = stm_read(counter) + 1; //update counter
18 stm_write(counter, pos);
19 } else {
20 stm_restart();
21 }
22 }
23 printf("TX %i finished at %i.\n", tid, pos);
24 stm_finalize(); ///// *** twilight code ends ***
25 }

Figure 1: I/O and locking in twilight code.

inside transactions. They perform error checking as early as possible and defer the main task of the system
call to commit time. They rely on sentinels to manage concurrent access to resources. Programs have to be
rewritten to use the new interface.

3 The Twilight STM at Work

A range of applications can benefit from the features of the Twilight STM as demonstrated in this section.
The first example combines several twilight features. It uses the twilight code to attach I/O operations to
transactions and it shows how to turn a failing transaction into a successfully committing one. The second
example considers a more realistic setup that combines transactions with I/O operations and locking. The
last subsection surveys further scenarios where twilight code can be used to integrate I/O operations in a
semantics preserving safe manner, to debug applications written in the transactional memory paradigm, or
to increase the overall performance.

All code fragments are presented in a C-like pseudo code.

3.1 Counting Committed Transactions

Operations that perform non-transactional side effects (e.g., I/O) do not mingle well with STM, despite
some partial successes [6, 7, 24]. The problem is that it is impossible to revoke and restart I/O operations
executed inside a transaction if that transaction fails to commit. For the same reason, it is not possible to run
other concurrency control protocols like locking inside a transaction. A common approach is to decouple
I/O operations and STM operations completely and to defer I/O operations after the successful commit.

The Twilight STM allows I/O operations as well as locking-based protocols to be placed in twilight code.
The code in Fig. 1 illustrates the correct use of the Twilight API to attach an I/O operation to a transaction.
It is a fragment of a program that spawns a number of worker threads to speed up a large computation. Each
worker thread runs a separate transaction that performs some operations on shared memory using transac-
tional reads and writes. To trace the application’s execution and to measure its progress, a global variable
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counter assigns each transaction a number indicating at what position in the commit order the transaction
succeeded. As every transaction reads and updates the counter, its presence causes read inconsistencies in
many transactions, each of which would have to abort and restart (i.e., spin-locking).

In this situation, twilight code comes to the rescue. Instead of blindly aborting the transaction, the
twilight code first updates the shared variables to a consistent state (stm_reload) and checks if the counter
was the only problem while validating the read set (and restarts otherwise: stm_restart). Any operation
dominated by stm_reload and from which no stm_restart is reachable, is sure to be part of a successful
commit and hence safe for performing I/O. This condition is easy to check and it holds for the example.

After the stm_reload, the program repeats the update of the counter state in the transaction’s write set.
As the transaction cannot fail anymore, it is safe to output a log message. The resulting output trace contains
the log messages in their commit order. Moving the output statement out of the transaction, either explicitly
or by means of commit hooks, does not guarantee this property.

Alternatively, the counter could be handled as a shared variable outside the control of the transaction
using mutexes or other kinds of locking for guaranteeing exclusive access. Such code could also be placed
in the twilight code and would yield the same results. Of course, in this case, it is the programmer’s respon-
sibility to avoid data races, deadlocks, and other problems related to these synchronization primitives.

The example program also makes good use of consistency regions, another facility of the Twilight API.
This concept allows the easy correlation of inconsistencies with (groups of) variables. At each time during
the execution of a transaction, there is an active region marker, which is administered in a stack-like manner
(cf. stm_enter_region and stm_leave_region in Fig. 1). Every access to a variable is tagged with the
currently active region marker during the transaction’s execution. In the twilight code, inconsistencies can
be checked conveniently by region as demonstrated by stm_only_inconsistent.

3.2 External Locking Protocols

Consider a banking application where transactions are running concurrently to transfer money from one
client’s account to some other accounts. A transaction may contain multiple transfers and multiple transac-
tions may be running simultaneously on behalf of a single client. For performance reasons, all transactions
operate on a fast in-memory model. For durability, a summary of the outcome of each transaction is also
logged to permanent storage using one dedicated file per client. After a crash, the system should be able to
reconstruct its state from these files.

Additionally, the bank runs a background task that regularly compares the state on disk with the state
in memory to detect data corruption caused by faulty hardware or programming errors. As the transfer
information in memory contains the file pointer to its summary on disk, a validation is possible in both
directions. The background task concurrently picks a client c, reads c’s data from memory, scans c’s file,
and checks for mutual consistency.

The major challenge in this scenario is that reading the memory and the file must form one atomic
action, while other transactions can still execute concurrently and without deadlocking. This otherwise
complex problem has a fairly straightforward solution in Twilight STM.

Figure 2 contains the code for a transaction that performs some money transfers. After transferring the
money by reading and writing to the memory, it writes a summary to the file, obtaining location information
that is also written to the in-memory model. There are two subtleties involved in this code. The stm_lock
operation may involve waiting for other transactions to complete their twilight code. As other transactions
may have committed between stm_prepare in the transaction body and the stm_lock, the latter may
discover new inconsistencies. The return value of the stm_lock operation indicates the presence of such
inconsistencies, and the programmer has to deal with them. The second point is that storing the location
information must be prepared with a dummy location in the transaction body because the twilight code must
not write to new global variables. This dummy value is never visible outside the transaction. Section 4
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1 void transactMoney(client c, t_info[] transfers) {
2 stm_begin();
3

4 // change in-memory model
5 for (t_info t: transfers) {
6 transfer(c, t.recipient, t.amount);
7 add_to_summary(t.recipient, t.amount);
8 }
9 store_location_info (c, 0); // dummy value
10

11 stm_prepare();
12

13 // obtain a lock on the client’s file
14 bool consistent = stm_lock(file_lck);
15

16 if (!consistent) {
17 stm_unlock(file_lck);
18 stm_restart();
19 }
20

21 int loc = write_summary_to_file(c);
22 stm_unlock(file_lck);
23

24 // update in-memory model
25 store_location_info(c, loc);
26 // complete the transaction
27 stm_finalize();
28 }

1 void transactVerify(client c) {
2 stm_begin();
3 read_client_data(c);
4 stm_prepare();
5

6 bool consistent = stm_lock(file_lck);
7

8 if (!consistent) {
9 stm_unlock(file_lck);

10 stm_restart();
11 }
12 assert_consistent_with_file(c);
13 stm_unlock(file_lck);
14

15 stm_finalize();
16 }

Figure 2: Banking transactions.

explains these special Twilight API functions in detail.
The code for background verification task follows a similar pattern. The file locks taken in the twilight

zone ensure that the entire transaction forms an atomic with the file access. Hence, the client’s data in
memory matches the contents of the file. This code thus fulfills the application’s requirement.

3.3 Further Scenarios

Complex applications Distributed systems, like multi-player online games, require a multitude of differ-
ent concurrent tasks. To ensure scalability, every participating node is responsible for modeling a
fragment of the world consisting of a number of entities (e.g., monsters) that act autonomously in the
virtual world. Furthermore, every node drives a GUI and processes commands entered by the player.
Finally, the node receives status update messages from neighboring nodes.

Sweeney [29] suggests that each of these tasks can be assigned to its own thread that modifies the
internal state of the node, which is shared between the threads. However, each thread also sends
information about the state of its monster to the neighboring nodes. A mutual exclusion protocol with
semaphores guarantees safe multiplexing of different TCP connections. The communication should
not happen outside the atomic region to prevent the transmission of inconsistent state information.

In this scenario it is essential that multiple threads can execute the communication phase in the twilight
code at the same time, as a game model may contain 10,000 active game-play object and maintain
connections to 10-20 neighbors. The Twilight STM may be employed to obtain a high degree of
concurrency.

Debugging As the Twilight STM guarantees the atomic execution of the I/O actions in combination with
the corresponding memory operations, it is particularly suited to debugging STM applications. For
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example, we used it in our benchmark programs to determine the reasons for restart for memory
locations with high contention.

Lock-based protocols Although contrary to the spirit of STM, it is sometimes advantageous to provide
some means of direct communication between threads. Handshake protocols that are locked-based
can easily be integrated into the twilight code. In a similar vein, legacy code that is unaware of
transactions can also be integrated with transactional code without compromising safe execution of
the transactions.

Contention management In a situation with high contention, a restart gives rise to more even more con-
tention. Twilight STM can be used to employ a sophisticated, application specific contention man-
agement to prevent the application from spin-locking in this situation.

4 The Twilight API

Many operations of the Twilight API (stm_begin, stm_read, stm_write, etc.) behave as in conventional
STMs with weak atomicity. Thus, this section concentrates on the operations of the Twilight API that are
new or changed with respect to other STMs. While the correct working of the discussed API relies on
programming conventions, the appendix A sketches a language extension which rules out incorrect uses of
the API.

We use the following terminology in this paper: A (global) variable is a location in global, shared
memory. The read set (write set) of a transaction is the set of variables read from (written to) during the
transaction. We maintain additional meta data about variables in the read set, including a timestamp, region
marker, and the latest value read. The write set additionally records the last value written to each variable.
To precisely specify the semantics of the operations, a notion of time is needed, which is further elaborated
in Sec. 6. For some time t, a read set is t-consistent if all variables in it are t-consistent. A variable is
t-consistent in read set R if and only if its value in R is equal to its value in the global memory at time t.

Twilight STM performs write operations lazily. Inside the transaction it only records the new values
locally in the write set. These write operations get published to the shared memory on completion of the
transaction.

4.1 Demarcating regions

Regions can be used to split the read set into non-overlapping groups of variables. They are denoted by
integer markers, and are valid for the extent of one transaction. Regions are not semantically nested:
they are handled in a stack-like manner with the topmost marker serving as the current region marker.
stm_enter_region(i) puts the marker i on the stack, stm_leave_region() pops it from this stack. Each
variable has a unique region marker, which is determined by the region of its first read. If the marker stack
is empty, variables are placed in a default region.

In the twilight code, the programmer can use the regions to determine which variables were marked as
inconsistent and compensate for them as applicable (cf. Sec. 3.1).

4.2 Preparing and finalizing the commit

Reminiscent of a two-phase commit in the database world, the Twilight STM splits the commit operation
into operations stm_prepare and stm_finalize as indicated in Fig. 3. The return value of stm_prepare
indicates if the transaction’s read set is inconsistent because of other transactions committing since the
transaction’s start. However, the decision on the outcome of the transaction is left to the following twilight
code.
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stm_restart

tx body twilight codestm_begin stm_prepare stm_finalize

Figure 3: Work flow of a Twilight transaction.

The twilight code can observe and modify the state of the transaction with twilight operations. Sub-
sequently, the code can either restart the transaction (stm_restart), or it can fix the inconsistencies and
finalize the transaction (stm_finalize). In the latter case, the values in the write set are published to shared
memory.

4.3 Twilight operations

The following operations must not be used outside of twilight code.

• stm_reload(): Atomically reloads a consistent snapshot of the read set. Afterwards, the programmer
is obliged to update the write set to reflect the new values in the read set or to restart the transaction.
This operation is always needed if the twilight code is entered with an inconsistent read set. Otherwise,
the transaction cannot commit.

• stm_inconsistent(region): Indicates whether the region contains at least one inconsistent variable.
• stm_only_inconsistent(region): Indicates whether the region contain at least one inconsistent

variable, and all other regions do not contain inconsistencies.
• stm_inconsistencies(): Returns all inconsistent regions.
• stm_lock(lck): Serves as wrapper for lock acquisition method of an external lock. To prevent dead-

locking with other twilight zones, the locks on the write set entries are temporarily released such that
other transactions that have entered their twilight zones and need to validate their read set can proceed.
After the acquisition of the lock, the read set gets reloaded atomically. The return value of stm_lock
indicates if the read set has become inconsistent.

• stm_unlock(lck): Serves as wrapper for the release operation of an external lock.

Further, the read and write operations behave differently in the twilight zone:

• stm_read(var): Returns the value of variable var as it is recorded in the read set. It is an error if
the variable is still inconsistent or if the variable is not in the read set. Extending the read set is
allowed via stm_extend_readset. It checks whether the variable is currently updated by another
transaction or has been updated since the begin of the transaction. If so, its return value indicates that
the transactions state is not consistent any more.

• stm_write(var,val): Updates the recorded value of variable var with value val. It is an error if the
variable is not in the write set. Extending the write set is not allowed.

5 Algorithm

The basic STM algorithm resembles closely TL2. Figure 4 contains pseudo code for the most important
operations of the Twilight API. It relies on a global counter/timer T2. Each shared variable is associated

2Incorporating techniques as used in SkySTM [15] reduce the contention on T. For the sake of clarity, we refrain from doing so
in this paper.
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1 stm_begin(){
2 tinit ← sample T
3 read set ← ∅
4 write set ← ∅
5 region ← stack(0) // default region
6 inTwiZone ← false
7 consistent ← true
8 }
9

10 stm_enter_region(r){
11 push(region,r)
12 }
13

14 stm_leave_region(){
15 pop(region)
16 }
17

18 stm_read(var){
19 if contains(write set,var)
20 return lookup(write set,var)
21 if consistent
22 if contains(read set,var) or inTwiZone
23 return lookup(read set,var)
24 (val,tvar) ← load var
25 if var locked or tinit < tvar

26 stm_restart()
27 add(read set,var,(val,tvar,top(region)))
28 return val
29 else error
30 }
31

32 stm_write(var,val){
33 if inTwiZone
34 update(write set,var,val)
35 else
36 add(write set,var,val)
37 }
38

39 stm_prepare(){
40 succeeded ← false
41 while !succeeded
42 wait till S ≤ 0 and decrement S
43 succeeded ← try lock write set
44 increment S
45 validate_readset()
46 inTwiZone ← true
47 return consistent
48 }
49

50 validate_readset(){
51 consistent ← true
52 for (var,(_,tvar,r)) in read set
53 (val,t′var) ← load var
54 if tvar 6= t′var or
55 (!contains(write set,var) and var locked)
56 consistent ← false
57 }
58

59 stm_finalize(){
60 if !consistent
61 stm_restart()
62

63 tcommit ← sample T
64 publish(write set,tcommit)
65 unlock write set
66 }

1 stm_extend_readset(var){
2 (val,tvar) ← load var
3 add(read set, var,(val,tvar,top(region)))
4 if var locked by other transaction or tinit < tvar

5 consistent ← false
6 return false
7 else
8 return true
9 }

10

11 stm_lock(lck){
12 stm_exposed( {acquire_lock(lck)} )
13 }
14

15 stm_unlock(lck){
16 release_lock(lck)
17 }
18

19 stm_try_reload(){
20 for (var,(val,tvar,r)) in read set
21 (val’,t′var) ← load var
22 add(read set, var,(val’,t′var,r))
23 return validate_readset()
24 }
25

26 stm_reload(){
27 stm_exposed( {} )
28 }
29

30 stm_exposed(delegate){
31 wait till S ≥ 0 and increment S
32 unlock write set
33

34 delegate()
35

36 validate_readset()
37 if consistent
38 lock write set
39 decrement S
40 return true
41 else
42 lock read and write set
43 decrement S
44

45 reread the read set
46 unlock read set
47 return false
48 }
49

50 stm_inconsistencies(){
51 regionset ← ∅
52 for (var,(_,tvar,r)) in read set
53 if (tinit < tvar)
54 add(regionset,r)
55 return regionset
56 }
57

58 stm_inconsistent(region){
59 return contains(stm_inconsistencies(),region)
60 }
61

62 stm_only_inconsistent(regions){
63 return subset(stm_inconsistencies(),regions)
64 }

Figure 4: Pseudo code of operations from the Twilight API.
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with a version number — the time of its last modification. The first (transactional) read of a variable creates
an entry in the read set comprising the variable, its value, and its version number at the time of the read
operation. Write operations to shared variables are performed lazily. They are first recorded locally in the
transaction’s write set.

At its beginning, a transaction reads the timer to obtain tinit. To prevent zombie transactions, Twilight
restarts a transaction if it tries to read from a variable with a time stamp more recent than tinit.

When the transaction attempts to commit, it invokes the method stm_prepare. The protocol associates
with each global variable v a lock which grants exclusive access to v. A semaphore S acts as a sentinel
that manages the permission to start executing twilight code. Initially, S is 0. As an unusual feature, S
can assume integer values including negative ones. If S is not zero, some transaction is in the process of
acquiring the locks. In particular, if S < 0 then at least one transaction executes stm_prepare and if S > 0,
then at least one transaction executes stm_exposed (either from stm_reload or from stm_lock). Before
entering its twilight code, a transaction waits until S ≤ 0. Similarly, it may only proceed with stm_reload
or stm_lock if S ≥ 0.

After acquiring exclusive access to the variables in the write set, the transaction validates the read set
by checking that the current version numbers of the read set entries are still less than or equal to tinit. The
validation collects the inconsistent entries with a version number more recent than tinit.

In this state, the transaction enters its twilight code, which may contain the twilight operations from
Sec. 4 as well as other operations. If the twilight code wants to correct inconsistent reads and related writes,
it can only do so after obtaining a consistent read set with stm_reload or stm_lock and then performing
some stm_write operations. In the end, the transaction is either restarted, or the commit is completed by
calling stm_finalize. The latter operation first checks that the read set is consistent. It restarts if this is not
the case. Otherwise, it publishes the write set by writing the new values to the shared variables and setting
their version numbers to the current time tcommit. In any case, the transaction releases the exclusive access
to the shared variables.

The operation stm_reload updates the read set atomically. To improve performance, the reload of the
read set only happens if the current read set is inconsistent.

The operation stm_reload is guaranteed to succeed, but it can be quite expensive because it obtains ex-
clusive access to the read set, drops the locks on the write set’s variables, and uses the semaphore S to ensure
a successful outcome. To avoid this expense, the API also includes a lock-free variant stm_try_reload
that does not perform these safeguards and simply tries to reload the read set’s variables. On the upside,
stm_try_reload may run concurrently with stm_prepare, but on the downside, it may not always pro-
duce a consistent read set (e.g., when there is high contention). It fails when it encounters a locked variable
as this variable is then (likely) locked by another transaction for modification.

The Twilight API operations rely on a locking protocol that maintains the following invariants:

1. Transactions that execute twilight code concurrently have disjoint write sets.
2. A transaction has exclusive access to the variables in its write set from stm_prepare to stm_finalize.
3. The Twilight API is deadlock-free.

The locking protocol facilitates a form of collaboration between transactions that has a low overhead
at the expense of concurrency. No transactions can pass through stm_prepare while another transac-
tion is obtaining its write locks through stm_reload. However, in practice, transactions only need to use
stm_reload in the rare cases when stm_try_reload fails.
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6 Properties of Twilight STM

Twilight STM provides operations to the programmer which relax the isolation of transactions in a controlled
way. As Twilight supports concurrent execution of twilight code, single global lock semantics [17] is not
appropriate. Subsection 6.1 specifies suitably relaxed properties and Subsection 6.2 proves that the Twilight
transactions fulfill them.

6.1 Properties of Twilight Transactions

Twilight’s semantics is captured by the following properties:

Weak Atomicity. Transactional writes and reads appear to take place atomically at a single global time,
tcommit.

Consistency. The values in the read set are consistent with respect to tinit during the execution of the trans-
action and with respect to tcommit in the twilight code.

Progress. All Twilight API operations terminate if the execution of twilight code does not involve waiting
for other transactions for non-transactional synchronization.

Irrevocability. A transaction executing its twilight code can always finish successfully.

Independence. Transactions executing their twilight code concurrently have disjoint write sets.

The first two properties specify the transactional behavior. The consistency property guarantees that
out-dated values are consistently re-read. Results from computations on them can only be out-dated, but
not wrong as the algorithm prevents inconsistent memory snapshots. Furthermore, the transaction can also
observe the current values and has a chance to adjust its results.

The last three properties are related to the twilight code. Irrevocability ensures that twilight code can
perform I/O and other irrevocable actions safely, and independence enables it to adjust the outcome of
the transaction without further re-validation. Progress implies deadlock freedom for the correct use of the
Twilight API operations.

Twilight transactions implement weak atomicity. However, unique to Twilight STM is that twilight code
can access transactional and non-transactional memory locations in the same place. Therefore, demanding
that transactional data is only accessed by means of transactions is not a strong restriction. The transaction
is then made atomic with respect to other operations by combining stm_exposed operation (which deter-
mines the point in time the transaction’s actions place) with another form of synchronization (i.e. invoking
stm_exposed in combination with obtaining exclusive access to some resource). Using stm_exposed cre-
ates an ordering among transactions, and it ensures that this order does not conflict with external forms of
synchronization used in the twilight code.

6.2 Proofs

This section contains the formal statements and proofs of the properties from Section 6.1.

6.2.1 Weak Atomicity

Theorem 6.1. Transactional writes and reads appear to take place atomically at a single global time,
tcommit.
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Proof. Assume that the transaction succeeded and finished with stm_finalize, and consider the associated
time stamp tcommit. Because the transaction does not read any updates after stm_prepare and possibly
stm_exposed, it operates on a consistent memory snapshot without observing interferences from other
transactions. Hence, the transaction’s writes are published atomically with respect to a consistent read
set.

6.2.2 Consistency

The entries in the read set consist of a local copy of the value of each read variable together with its version
number and the region marker. Further, a flag marks whether a transaction is in a consistent state. A value
can only be read from the read set (through stm_read) when it is marked as consistent, and each read
operation checks for consistency.

Theorem 6.2. The values in the read set are consistent with respect to tinit during the execution of the
transaction and to tcommit in the twilight code.

Proof. Before entering stm_prepare, values are stored in the read set only if they have a version num-
ber smaller than or equal to tinit (to prevent zombie transactions). Otherwise the transaction is restarted.
Therefore, the values in the read set are consistent with respect to tinit.

After stm_prepare, during execution of the twilight code, the only way to change entries in the read
set is by means of stm_exposed or stm_try_reload. In the case of stm_exposed, all entries in the read
set are reread atomically such that they are consistent. As no intermediate updates can be seen till the call
of stm_finalize, the read set maintains its consistency until tcommit. Similarly, for stm_try_reload, it
holds that either a value has been updated successfully, or some of the variables were locked. In the latter
case, the transaction is marked as inconsistent, and the values are thus not accessible (i.e., stm_read fails
on these variables).

6.2.3 Progress

The progress property essentially states deadlock freedom and absence of starvation. The underlying as-
sumption is that the sentinel S is biased towards stm_exposed and that there is a fair scheduling of pro-
cesses.

Theorem 6.3. All Twilight API operations terminate if the execution of twilight code does not involve wait-
ing for other transactions for non-transactional synchronization.

Proof. There are only two operations that may involve waiting: stm_prepare and stm_exposed. All other
operations have their execution time bounded by a polynomial in the size of read and write set. Each of these
two operations may need to wait for another transaction that either executes stm_prepare or stm_exposed,
or some non-Twilight API code. We examine the relevant combinations.

stm_prepare needs to acquire shared access from S and exclusive access to the variables in its write
set. This exclusive access is obtained in a fixed order, which rules out deadlocks with another transactions’
stm_prepare. Dead-locks with stm_exposed are ruled out due to the semaphore S.

A transaction executing twilight code is never dependent on a transaction which is executing its trans-
action body. Therefore, while some stm_prepare is waiting for a lock in its write set, the transaction
executing twilight code that prevents the stm_prepare from obtaining a lock, will eventually release the
lock.

stm_exposed never has to wait for an stm_prepare as the semaphore S rules this out. As the exclusive
access to write and read set entries is obtained in a fixed order, dead locks are ruled out. The stm_exposed
which obtains the locks first can continue and will release them eventually: locks on the read set entries
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are released at the end of this stm_exposed, locks on the write set either when finishing (or restarting) the
transaction or during another invocation of stm_exposed.

6.2.4 Irrevocability

After stm_prepare a transaction is in principle committable. The reason is that a transaction has exclusive
access to the variables in its write set. No other transaction can therefore interfere in the transaction’s commit
process.

Theorem 6.4. A transaction executing its twilight code can always finish successfully.

Proof. To finish successfully, the transaction has to invoke in the end stm_finalize while having a con-
sistent read set. If the read set was discovered to be inconsistent during stm_prepare, the transaction can
execute stm_reload to obtain consistency. Due to the progress property, stm_reload terminates success-
fully in finite time, so it can be invoked prior to stm_finalize.

As a side note, invoking stm_finalize directly after stm_reload ignores the new values that were
written before starting the twilight code, but after their variables were read by the transaction. Essentially,
it confirms that the values in the write set (computed from the old values) are correct, independent of any
updates. In practice, such ignorance is the exception. Instead, a programmer wants to inspect the incon-
sistencies and recompute the values in the write set or even restart. Twilight empowers the programmer to
choose the most appropriate decision.

6.2.5 Independence

Theorem 6.5. Transactions executing their twilight code have disjoint write sets.

Proof. The operation stm_prepare ensures that a transaction entering its twilight code has exclusive access
to the variables in its write set. This exclusive access is obtained while having entrance permission from the
sentinel S. Hence, all successful concurrent executions of stm_prepare must yield disjoint write sets. As
further S > 0 while obtaining the write locks, there cannot be another transaction with temporarily dropped
access rights as this would require this other transaction to be in the process of executing stm_exposed.
However, this other transaction would have established S < 0, which contradicts the assumption that S > 0.
Thus, the write sets are always disjoint.

7 Open-Nested Transactions

A twilight transaction may only be a top-level or open-nested transaction. Closed-nested transactions are
not allowed to use twilight-functionality.

Following the argumentation and proposal of Moss [20], open nested child transactions do not observe
their parents’ local state. This restriction prevents them from unintentionally publishing intermediate states.
Child transactions have their own read and write sets, separate from their parents’ read and write sets. To
prevent parents from restarting due to conflicts induced by the children, we update the parents’ values with
the corresponding values as published by the children. This write-through leads to a inversion of control flow
as a child transaction gets executed independently before the parent. Although this choice seems startling at
first glance, it inhibits surprising behavior when nesting with twilight code.
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Figure 5: Vacation benchmark with parameters -n4 -q60 -u90 -r1048576 -t4194304.

8 Evaluation

To evaluate Twilight’s usability and performance, we provide two implementations. The first one is a con-
servative extension of the TL2 algorithm [5] written in C. This implementation is library-based and it can
be used with any platform supporting pthreads. Its correctness hinges on programming conventions, which
are neither checked nor statically enforced.

A program not using twilight code has the same guarantees for execution inside a transaction as before.
Like TL2, Twilight requires exclusive access to the transaction’s variables during the commit. Twilight’s
functionality can be integrated into other STMs that have the same requirement.

There is also an unoptimized reference implementation in Java, which is object-based and which pro-
vides a more user-friendly API: a transaction body is represented as an object implementing two methods,
transactional() and twilight(). Executing such a transaction body means to open a transaction, run
transactional(), prepare to commit (and restart if needed), and run the twilight() method, which leads
to a commit or a restart. The body object also serves as a container to communicate values between the
transactional code and the twilight code.

8.1 Benchmarks

Twilight STM is intended for situations where a transaction is not allowed to restart, in particular when I/O
operations are involved. This feature is powerful, but it cannot be measured meaningfully. Another typical
use is contention management based on insight into the system’s state dynamics. Thus, the experiments for
evaluating the Twilight STM concentrate on the contention management aspect. To show the competitive-
ness of Twilight STM, we compare the performance of Twilight STM (the C implementation, both with and
without twilight code) with the TL2 reference implementation [5].

For this purpose, we added twilight code to the vacation application from the STAMP benchmark [3].
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Figure 6: Vacation benchmark with parameters -n100 -q90 -u90 -r200 -t4194.

The application implements a multi-threaded enterprise server. Each thread simulates a client that makes
reservations for hotel rooms, cars, or flights. These bookings lead to updates of the available items, which
are represented with hash maps. Access to the data in these collections is wrapped into transactions.

We assigned group identifiers to each STM operation to be able to recover from the following cases of
inconsistency during a commit:

• An internal restructuring of a hash map caused by deletion or addition of entries may cause some
inconsistency on the path to a data item, but it does not invalidate the data item itself. We ignore these
benign inconsistencies as they do not affect the application logic.

• If some other client’s booking interrupts our booking and there are still enough items available, we
recalculate the new available amount and update it directly instead of performing a restart.

The benchmark machine is powered by a Quad-Core AMD Opteron at 2.3 GHz with caches 4 x L1 64
KB, 4 x L2 512 KB, and L3 2048 KB shared. It runs OpenSuSE 10.2 and gcc 4.2.2.

Figure 5 displays graphs where each entry is the average taken from 10 runs of the vacation application
using the parameters for high contention [3]. The “Aborts” graph shows the number of aborted transactions
(in 1000Tx; the highest mark indicates more than 300,000 aborts) and the “Saved” graph shows the number
of transactions saved by twilight code (in 1000Tx; highest mark >5,000). The proportion of saved to aborted
transactions shows that the twilight code can only rescue a transaction in a small number of cases. The ratio
of aborts to saves is around 100:11 for 2 threads, 100:10 for 4 threads, 100:5 for 8 threads). The Twilight
STM both with and without twilight code show similar performance. Apparently, already this small number
of transactions is sufficient to pay for the extra overhead of performing the twilight code’s computations.
Furthermore, Twilight performs slightly better than TL2. TL2 aborts in its preparation phase as soon as it
discovers that a variable that it reads from is locked. This strategy can lead to multiple restarts. In contrast,
Twilight STM waits until the variable’s lock is released as it might fix the arising inconsistency in the twilight
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code. This strategy results in significantly fewer aborts and leads to marginally better performance in case
of high contention.

For Figure 6 we increased the contention even more by performing a higher number of actions per trans-
action and acting on a lower number of different items to see if the contention management is effective.
Here, the effectiveness of the contention management is revealed. By increasing the contention, the op-
portunity to save transactions is also increased. The ratio of aborts to saves is approximately 100:830 for
2 threads, 100:270 for 4 threads and 100:115 for 8 threads. Furthermore, the transactions perform more
work, so that restarting a transaction introduces a substantial loss in performance. The execution time of
TL2 and Twilight STM without twilight code is comparable. However, Twilight STM with twilight code is
significantly faster.

9 Conclusion and Future Work

Twilight STM is an implementation of software transactional memory that extends the commit phase with
twilight code. This code may perform irrevocable actions that execute I/O operations, run lock-based proto-
cols with other peers and concurrently executing transactions, or implement sophisticated contention man-
agement. Twilight STM guarantees a seamless integration of these potentially unsafe actions into a transac-
tional setting. It preserves the transactional semantics while imposing only mild restrictions on the twilight
code. The additional flexibility offered by Twilight STM gives the programmer fine-grained control over the
application’s concurrent behavior. Experimental results show that the Twilight implementation is competi-
tive with a state-of-the-art STM implementation.

There are several directions for future work:

• Abstract nested transactions [12] are a highly useful abstraction which should be easily implementable
with Twilight STM.

• Static enforcement of API constraints give improved language support for creating a safe STM API
such that operations cannot be easily misused as shown in Appendix A.
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A Higher-level syntax
The Twilight API given in Section 4 provides the bare essentials for fixing inconsistencies before committing. However, more ex-
pressiveness is needed when Twilight operations are used in a practical setting. For standard transactional data structures (e.g., lists
and trees), there should be a library of easy-to-use recovery functionality. Recovery should be specified in a local and composable
way, without corrupting the structure of the program. To this end, an abstraction layer has to be built on top of the bare essentials.
This layer can be obtained by using a language extension that enforces programming conventions and increases usability.

1

2 atomic {
3 region (r) {
4 /* ... stm statements */
5 }
6 recovery(r) {
7 /* ... recompute */
8 }
9 }
10

11 twilight {
12 acquire {
13 /* ... acquire/lock external resources */
14 }
15 if (main.isConsistent()
16 && !r.isConsistent()) {
17 r.applyRecovery();
18 /* ... more recovery */
19 }
20 /* ... perform irrevocable I/O */
21 /* ... release external resources */
22 }

Figure 7: Example of higher-level syntax for Twilight.

Figure 7 sketches such a language extension. Some of the ideas were already used for the twilight code in the vacation
benchmark (Section 8). For example, the grouping feature was valuable to quickly discover frequently occurring inconsistencies
and to easily pinpoint recoverable situations later on. Future work addresses the proper design of a suitable language extension.

A twilight transaction is defined using the standard atomic syntax, with a twilight block attached. Twilight transactions may
be nested with open-nested semantics (Sec. 7). A nested transaction without a twilight block becomes a close-nested transaction.
An atomic-block may occur inside the twilight-block. Twilight-blocks, however, may not be nested.

A region block attaches a region object to a number of STM statements. region blocks may be nested, in which case the
innermost group is attached to the statements. Also, closures of the recover blocks are registered with the region. Inconsistencies
in a region can be recovered by checking the condition of a recover block and applying it if possible. This style enables a local
(and composable) definition of recovery, while orchestrating the whole recovery process in the twilight block.

A atomic block in the twilight code requires as precondition a consistent read set. If this is not the case, the recover blocks
are consulted to recover the read set if possible. If this cannot be done, the else block is executed, and otherwise execution
continues in the atomic block. An atomic-block inside the twilight code can be regarded a close-nested transaction with some
restrictions. Writes may only range over variables in the write set, and reads over variables not in the read set may require a restart
of the atomic block. Under the hood, this involves re-establishing the precondition by running stm_reload again and applying
recovery if possible.

A recover block may also occur without a atomic block attached. In that case, an empty atomic block is assumed to be
prefixed.

The syntax allows for a number of static checks. For example, a warning could be issued when there exists an execution path on
which an expose block is not followed up by a atomic block or a recover block. A flow analysis could warn about assignments
to global variables not in the write set or reads from variables which are not recorded in the read set outside an atomic block.

20


