
Program Analysis and Verification . . . Using Types
Applied Simply-Typed Lambda Calculus

Albert-Ludwigs-Universität Freiburg

Peter Thiemann

University of Freiburg

May 2014

Outline

1 Introduction

2 Applied Lambda Calculus

3 Simple Types for the Lambda Calculus

4 Type Inference for the Simply-Typed Lambda Calculus

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 2 / 25

Terms

Static Program Analysis (PA)

Find a safe approximation of program properties without
executing the program.

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 3 / 25

Terms

Static Program Analysis (PA)

Find a safe approximation of program properties without
executing the program.

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 3 / 25

Terms

Type-Based Program Analysis

PA (and verification) using types

Program is typed ⇒ Program has property
Dependent types

PA on top of type structure

Analysis builds abstraction on a typed program
Typing improves the precision by eliminating impossible
scenarios

PA using type inference

Piggy-back properties on types
Use inference to propagate properties

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 4 / 25

Foundation: Type Systems

“Static type systems are the world’s most successful
application of formal methods” (Simon Peyton Jones)

Formally, a type system defines a relation between a set of
executable syntax and a set of types

To express properties of the execution, the typing relation
must be compatible with execution

⇒ Type soundness

A type system for analysis must be able to construct a
typing from executable syntax

⇒ Type inference

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 5 / 25

Outline

1 Introduction

2 Applied Lambda Calculus

3 Simple Types for the Lambda Calculus

4 Type Inference for the Simply-Typed Lambda Calculus

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 6 / 25

Applied Lambda Calculus

Syntax of Applied Lambda Calculus

Let x ∈ Var, a countable set of variables, and n ∈ N.

Exp 3 e ::= x | λx.e | e e | dne | succ e

A term is either a variable, an abstraction (with body e), an
application, a numeric constant, or a primitive operation.

Conventions

Applications associate to the left.

The body of an abstraction extends as far right as possible.

λxy.e stands for λx.λy.e (and so on).

Abstraction and constant are introduction forms, application
and primitive operation are elimination forms.

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 7 / 25

Applied Lambda Calculus

Values of Applied Lambda Calculus

Val 3 v ::= λx.e | dne

A value is either an abstraction or a numeric constant.
Each value is an expression: Val ⊆ Exp.

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 8 / 25

Variable Occurrences
Free and Bound Variables

The functions FV(·),BV(·) : Exp→ P(Var) return the set of free
and bound variables of a lambda term, respectively.

e FV(e) BV(e)

x {x} ∅
λx.e FV(e) \ {x} BV(e) ∪ {x}
e0 e1 FV(e0) ∪ FV(e1) BV(e0) ∪ BV(e1)
dne ∅ ∅

succ e FV(e) BV(e)

Var(e) := FV(e) ∪ BV(e) is the set of variables of e. A lambda
term e is closed (e is a combinator) iff FV(e) = ∅.

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 9 / 25

Computation in Applied Lambda Calculus

Computation defined by term rewriting / reduction

Three reduction relations

Alpha reduction (alpha conversion)
Beta reduction
Delta reduction

Each relates a family of redexes to a family of contracta.

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 10 / 25

Reduction Rules of Lambda Calculus

Alpha Conversion

Renaming of bound variables

λx .e →α λy .e[x 7→ y] y 6∈ FV(e)

Alpha conversion is often applied tacitly and implicitly.

Beta Reduction

Only computation step

Intuition: Function call

(λx .e) f →β e[x 7→ f]

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 11 / 25

Reduction Rules, cont’d

Delta Reduction

Operations on built-in types

succ dne →δ dn + 1e

Reduction in Context

In Lambda Calculus, the reduction rules may be applied anywhere
in a term. Execution in a programming language is more
restrictive. It is usually reduces according to a reduction strategy:

call-by-name or

call-by-value

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 12 / 25

Reduction Rules, cont’d

Delta Reduction

Operations on built-in types

succ dne →δ dn + 1e

Reduction in Context

In Lambda Calculus, the reduction rules may be applied anywhere
in a term. Execution in a programming language is more
restrictive. It is usually reduces according to a reduction strategy:

call-by-name or

call-by-value

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 12 / 25

Reduction Rules, cont’d

Call-by-Name Reduction

Beta
e →β e ′

e →n e ′

AppL
f →n f ′

f e →n f ′ e

SuccL
e →n e ′

succ e →n succ e ′

Delta
e →δ e ′

e →n e ′

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 13 / 25

Reduction Rules, cont’d

Call-by-Value Reduction

Beta-V

(λx.e) v →v e[x 7→ v]

AppL
f →v f ′

f e →v f ′ e

VAppR
e →v e ′

v e →v v e ′

SuccL
e →v e ′

succ e →v succ e ′

Delta
e →δ e ′

e →v e ′

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 14 / 25

Computation in Lambda Calculus

Computation = Iterated Reduction

Let x ∈ {n, v}.

e →∗x e
e →x e ′ e ′ →∗x e ′′

e →∗x e ′′

Outcomes of Computation

Starting a computation at e may lead to

Nontermination: ∀e ′, e →∗x e ′ exists e ′′ such that e ′ →x e ′′

Termination: ∃e ′, e →∗x e ′ such that for all e ′′, e ′ 6→x e ′′

e ′ is irreducible.
If e ′ is a value, then it is the result of the computation.

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 15 / 25

Examples of Irreducible Forms

1 d42e
2 λfxy.f x y

3 d1e λx.x

4 d1e d2e
5 succ λx.x

Expected Benefits of a Type System

1–2 are values

3–5 contain elimination forms that try to eliminate
non-variables without a corresponding rule (run-time errors)

should be ruled out by a type system

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 16 / 25

Examples of Irreducible Forms

1 d42e
2 λfxy.f x y

3 d1e λx.x

4 d1e d2e
5 succ λx.x

Expected Benefits of a Type System

1–2 are values

3–5 contain elimination forms that try to eliminate
non-variables without a corresponding rule (run-time errors)

should be ruled out by a type system

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 16 / 25

Outline

1 Introduction

2 Applied Lambda Calculus

3 Simple Types for the Lambda Calculus

4 Type Inference for the Simply-Typed Lambda Calculus

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 17 / 25

Simple Types for the Lambda Calculus

Language of types

τ ::= α | Nat | τ −→ τ

Typing environment (function from variables to types)

Γ ::= · | Γ, x : τ

Typing judgment (relation between terms and types):
In typing environment Γ, e has type τ

Γ ` e : τ

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 18 / 25

Inference Rules for STLC

Var

Γ ` x : Γ(x)

Lam
Γ, x : τ ` e : τ ′

Γ ` λx.e : τ −→ τ ′

App
Γ ` e0 : τ −→ τ ′ Γ ` e1 : τ

Γ ` e0 e1 : τ ′

Num

Γ ` dne : Nat

Succ
Γ ` e : Nat

Γ ` succ e : Nat

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 19 / 25

Example Inference Tree

. . . ` f : α −→ α
. . . ` f : α −→ α . . . ` x : α

. . . ` f x : α

f : α −→ α, x : α ` f (f x) : α

f : α −→ α ` λx.f (f x) : α −→ α

· ` λf .λx.f (f x) : (α −→ α) −→ α −→ α

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 20 / 25

Type Soundness

Type Preservation

If · ` e : τ and e →x e ′, then · ` e ′ : τ .

Proof by induction on e → e ′

Progress

If · ` e : τ , then either e is a value or there exists e ′ such that
e →x e ′.

Proof by induction on Γ ` e : τ

Type Soundness

If · ` e : τ , then either

1 exists v such that e →∗x v or

2 for each e ′, such that e →∗x e ′ there exists e ′′ such that
e ′ →x e ′′.

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 21 / 25

Outline

1 Introduction

2 Applied Lambda Calculus

3 Simple Types for the Lambda Calculus

4 Type Inference for the Simply-Typed Lambda Calculus

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 22 / 25

Type Inference for the Simply-Typed Lambda Calculus
(STLC)

Typing Problems

Type checking: Given environment Γ, a term e and a type τ ,
is Γ ` e : τ derivable?

Type inference: Given a term e, are there Γ and τ such that
Γ ` e : τ is derivable?

Typing Problems for STLC

Type checking and type inference are decidable for STLC

Moreover, for each typable e there is a principal typing
Γ ` e : τ such that any other typing is a substitution
instance of the principal typing.

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 23 / 25

Type Inference for the Simply-Typed Lambda Calculus
(STLC)

Typing Problems

Type checking: Given environment Γ, a term e and a type τ ,
is Γ ` e : τ derivable?

Type inference: Given a term e, are there Γ and τ such that
Γ ` e : τ is derivable?

Typing Problems for STLC

Type checking and type inference are decidable for STLC

Moreover, for each typable e there is a principal typing
Γ ` e : τ such that any other typing is a substitution
instance of the principal typing.

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 23 / 25

Prerequisites for Type Inference for STLC
Unification

Let E be a set of equations on types.

Unifiers and Most General Unifiers

A substitution S is a unifier of E if, for each τ
.

= τ ′ ∈ E , it
holds that Sτ = Sτ ′.

A substitution S is a most general unifier of E if S is a
unifier of E and for every other unifier S ′ of E , there is a
substitution T such that S ′ = T ◦ S .

Unification

There is an algorithm U that, on input of E , either returns a most
general unifier of E or fails if none exists.

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 24 / 25

Prerequisites for Type Inference for STLC
Unification

Let E be a set of equations on types.

Unifiers and Most General Unifiers

A substitution S is a unifier of E if, for each τ
.

= τ ′ ∈ E , it
holds that Sτ = Sτ ′.

A substitution S is a most general unifier of E if S is a
unifier of E and for every other unifier S ′ of E , there is a
substitution T such that S ′ = T ◦ S .

Unification

There is an algorithm U that, on input of E , either returns a most
general unifier of E or fails if none exists.

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 24 / 25

Principal Type Inference for STLC

The algorithm (due to John Mitchell) transforms a term into a principal
typing judgment for the term or fails if no typing exists.

P(x) = return x : α ` x : α
P(λx.e) = let Γ ` e : τ ← P(e) in

if x : τx ∈ Γ then return Γx ` λx.e : τx → τ
else choose α /∈ Var(Γ, τ) in

return Γ ` λx.e : α→ τ
P(e0 e1) = let Γ0 ` e0 : τ0 ← P(e0) in

let Γ1 ` e1 : τ1 ← P(e1) in
with disjoint type variables in (Γ0, τ0) and (Γ1, τ1)
choose α /∈ Var(Γ0, Γ1, τ0, τ1) in
let S ← U(Γ0

.
= Γ1, τ0

.
= τ1 → α) in

return SΓ0 ∪ SΓ1 ` e0 e1 : Sα
P(dne) = return · ` dne : Nat
P(succ e) = let Γ ` e : τ ← P(e) in

let S ← U(τ
.

= Nat) in
return SΓ ` succ e : Nat

Peter Thiemann Program Analysis and Verification . . . Using Types May 2014 25 / 25

	Introduction
	Applied Lambda Calculus
	Simple Types for the Lambda Calculus
	Type Inference for the Simply-Typed Lambda Calculus

