Program Analysis and Verification ... Using Types
Applied Simply-Typed Lambda Calculus

Albert-Ludwigs-Universitat Freiburg

UNI
1

FREIBURG

Peter Thiemann

University of Freiburg

May 2014

Outline

Introduction

Peter Thiemann

Program Analysis and Verification ...

Usi

May 2014

2/25

UNI

FREIBURG

Terms

UNI
FREIBURG

Static Program Analysis (PA)

Find a safe approximation of program properties without
executing the program.

Peter Thiemann Program Analysis and Verification ... Usi May 2014 3/25

Terms

UNI
FREIBURG

Static Program Analysis (PA)

Find a safe approximation of program properties without
executing the program.

unsafe

Peter Thiemann Program Analysis and Verification ... Usi May 2014 3/25

UNI
FREIBURG

Type-Based Program Analysis

m PA (and verification) using types

m Program is typed =- Program has property
m Dependent types

m PA on top of type structure
m Analysis builds abstraction on a typed program
m Typing improves the precision by eliminating impossible
scenarios
m PA using type inference

m Piggy-back properties on types
m Use inference to propagate properties

Peter Thiemann Program Analysis and Verification ... Usi May 2014 4 /25

Foundation: Type Systems

“Static type systems are the world’s most successful
application of formal methods” (Simon Peyton Jones)

Formally, a type system defines a relation between a set of
executable syntax and a set of types

To express properties of the execution, the typing relation
must be compatible with execution

Type soundness

A type system for analysis must be able to construct a
typing from executable syntax

Type inference

Peter Thiemann Program Analysis and Verification ... Usi May 2014

5/25

UNI

FREIBURG

Outline

Applied Lambda Calculus

Peter Thiemann

Program Analysis and Verification ...

Usi

May 2014

6/25

UNI

FREIBURG

Applied Lambda Calculus

UNI
FREIBURG

Syntax of Applied Lambda Calculus

Let x € Var, a countable set of variables, and n € N.
Exp> e = x|Ax.e|ee][n]|succe

A term is either a variable, an abstraction (with body e), an
application, a numeric constant, or a primitive operation.

Conventions

m Applications associate to the left.
m The body of an abstraction extends as far right as possible.
m Axy.e stands for Ax.Ay.e (and so on).

m Abstraction and constant are introduction forms, application
and primitive operation are elimination forms.

Peter Thiemann Program Analysis and Verification ... Usi May 2014 7/25

Applied Lambda Calculus

Values of Applied Lambda Calculus
Val5 v = Ax.e|[n]

A value is either an abstraction or a numeric constant.
Each value is an expression: Val C Exp.

Peter Thiemann Program Analysis and Verification ... Usi May 2014 8/25

UNI

FREIBURG

Variable Occurrences

Free and Bound Variables

O
(-4
=
-2
zl.l.l
S

The functions FV(-), BV(-) : Exp — P(Var) return the set of free
and bound variables of a lambda term, respectively.

e FV(e) BV(e)
X {x} 0
Ax.e FV(e) \ {x} BV(e) U {x}
e e | Fey) U FV(e1) | BV (ep) U BV(er)
[n] 0 0
succ e FV(e) BV(e)

Var(e) :== FV(e) U BV(e) is the set of variables of e. A lambda
term e is closed (e is a combinator) iff FV(e) = 0.

Peter Thiemann

Program Analysis and Verification ... Usi

May 2014 9 /25

Computation in Applied Lambda Calculus

m Computation defined by term rewriting / reduction

m Three reduction relations

m Alpha reduction (alpha conversion)
m Beta reduction
m Delta reduction

m Each relates a family of redexes to a family of contracta.

Peter Thiemann Program Analysis and Verification ... Usi May 2014

10 / 25

UNI
FREIBURG

Reduction Rules of Lambda Calculus

Alpha Conversion

m Renaming of bound variables
Ax.e —q Ay.e[x — y] y & FV(e)

m Alpha conversion is often applied tacitly and implicitly.

Beta Reduction

m Only computation step

m Intuition: Function call

(Ax.e) f —pge[x—f]

Peter Thiemann Program Analysis and Verification ... Usi May 2014

11/ 25

UNI

FREIBURG

Reduction Rules, cont'd

Delta Reduction

m Operations on built-in types

succ [n] —g [n+1]

Peter Thiemann Program Analysis and Verification ... Usi May 2014 12 / 25

UNI

FREIBURG

Reduction Rules, cont'd

Delta Reduction

m Operations on built-in types

succ [n] —g [n+1]

Reduction in Context

In Lambda Calculus, the reduction rules may be applied anywhere
in a term. Execution in a programming language is more
restrictive. It is usually reduces according to a reduction strategy:

m call-by-name or

m call-by-value

Peter Thiemann Program Analysis and Verification ... Usi May 2014 12 / 25

UNI

FREIBURG

Reduction Rules, cont'd

Call-by-Name Reduction

BETA AprpPL SuccL DELTA
e —g e f—,f e—, e e—s e
e—, e fe—o,fe succ e —p, succ e’ e —, e

Peter Thiemann Program Analysis and Verification ... Usi May 2014 13 / 25

UNI

FREIBURG

Reduction Rules, cont'd

Call-by-Value Reduction

BETA-V

(Ax.e) v —, e[x — V]

Peter Thiemann

AprPL
f—, f
fe—,f
SuccL
e —, €

succ e —, succ €

Program Analysis and Verification ...

@

DELTA

VAPPR
e —, €

ve—,ve

e—s e

/

e —y e

Usi

May 2014

14 / 25

UNI

FREIBURG

Computation in Lambda Calculus

Computation = lterated Reduction

Let x € {n, v}.

e —y € e —%é

*x I
e— e

Outcomes of Computation

Starting a computation at e may lead to
m Nontermination: Ve', e —% € exists e’ such that ¢/ —, €”

m Termination: 3¢/, e —% €’ such that for all €”, &' /A €”
e’ is irreducible.
If ¢’ is a value, then it is the result of the computation.

Peter Thiemann Program Analysis and Verification ... Usi May 2014 15 / 25

UNI

FREIBURG

Examples of Irreducible Forms

[42]
Axy.fxy
[1] Ax.x
[1] [2]
succ Ax.x

Peter Thiemann

Program Analysis and Verification ...

Usi

May 2014

16 / 25

UNI

FREIBURG

Examples of Irreducible Forms

UNI
FREIBURG

[42]
Axy.fxy
[1] Ax.x
[1] [2]
SUCC AX.X

Expected Benefits of a Type System

m 1-2 are values

m 3-5 contain elimination forms that try to eliminate
non-variables without a corresponding rule (run-time errors)

m should be ruled out by a type system

Peter Thiemann Program Analysis and Verification ... Usi May 2014 16 / 25

Outline

Simple Types for the Lambda Calculus

Peter Thiemann

Program Analysis and Verification ...

Usi

May 2014

17 / 25

UNI

FREIBURG

Simple Types for the Lambda Calculus

m Language of types

Ti=a|Nat |7 =T
m Typing environment (function from variables to types)
Me=-|Mx:t

m Typing judgment (relation between terms and types):
In typing environment [, e has type 7

[Fe:T

Peter Thiemann Program Analysis and Verification ... Usi May 2014

18 / 25

UNI
FREIBURG

Inference Rules for STLC

Va LAM
R Fx:the:7
M= x:T(x) y
lN-Mx.e:7—r1
App
Tke:7— 7 TFe :7
FlFeyep:7
Succ
Num - e:Nat
I [n] : Nat
[+ succ e : Nat
Peter Thiemann Program Analysis and Verification ... Usi May 2014

19 / 25

UNI
FREIBURG

Example Inference Tree

UNI
FREIBURG

. Ffia—=«a L E X«

. Ffia—=a

LLEFfxa
fra—ax:akf(fx): «

fra—=abAx.f(fx):a—«

EFAM A (Fx)i(a—=a)ma—a

Peter Thiemann Program Analysis and Verification ... Usi May 2014 20 / 25

Type Soundness

UNI
FREIBURG

Type Preservation

If - -e:7and e —, €, then - e :r.

Proof by induction on e — ¢’

Progress

If - - e: 7, then either e is a value or there exists e’ such that
e —, e

Proof by inductionon ' e : 7

Type Soundness

If -~ e: 7, then either
exists v such that e =} v or
for each €/, such that e =} €’ there exists €” such that
/ /!
e =y e

Peter Thiemann Program Analysis and Verification ... Usi May 2014 21 /25

Outline

Type Inference for the Simply-Typed Lambda Calculus

Peter Thiemann Program Analysis and Verification ... Usi May 2014

22/ 25

UNI

FREIBURG

Type Inference for the Simply-Typed Lambda Calculus
(STLC)

UNI
FREIBURG

Typing Problems

m Type checking: Given environment ', a term e and a type T,
is [= e : 7 derivable?

m Type inference: Given a term e, are there [and 7 such that
I+ e: 7 is derivable?

Peter Thiemann Program Analysis and Verification ... Usi May 2014 23 /25

Type Inference for the Simply-Typed Lambda Calculus
(STLC)

UNI
FREIBURG

Typing Problems

m Type checking: Given environment ', a term e and a type T,
is [e : 7 derivable?

m Type inference: Given a term e, are there [and 7 such that
I+ e: 7 is derivable?

Typing Problems for STLC

m Type checking and type inference are decidable for STLC

m Moreover, for each typable e there is a principal typing
' e : 7 such that any other typing is a substitution
instance of the principal typing.

Peter Thiemann Program Analysis and Verification ... Usi May 2014 23 /25

Prerequisites for Type Inference for STLC

Unification

Let £ be a set of equations on types.

Unifiers and Most General Unifiers

m A substitution S is a unifier of £ if, for each 7 =7/ € &, it
holds that ST = S7/.

m A substitution S is a most general unifier of £ if S is a
unifier of £ and for every other unifier S’ of £, there is a
substitution T such that S’ = T o S.

Peter Thiemann Program Analysis and Verification ... Usi May 2014 24 / 25

2
=)

O
&
2
[~}
i
o
S5

Prerequisites for Type Inference for STLC

Unification

O
(-4
=
-2
zl.l.l
S

Let £ be a set of equations on types.

Unifiers and Most General Unifiers

m A substitution S is a unifier of £ if, for each 7 =7/ € &, it
holds that ST = S7/.

m A substitution S is a most general unifier of £ if S is a
unifier of £ and for every other unifier S’ of £, there is a
substitution T such that S’ = T o S.

Unification

There is an algorithm U/ that, on input of &, either returns a most
general unifier of £ or fails if none exists.

Peter Thiemann Program Analysis and Verification ... Usi May 2014 24 / 25

Principal Type Inference for STLC

The algorithm (due to John Mitchell) transforms a term into a principal
typing judgment for the term or fails if no typing exists.

P(x)
P(Ax.e) =

P(eo e1)

Peter Thiemann

return x : o x : «
letTHe: 7+« P(e)in
if x:7elthenreturn N, FAx.e:7 > 7
else choose « ¢ Var(l',7) in
return [- Ax.e:a— T
let Mo ey : 7m0« Peg) in
let 1 Fe:m 73(61) in
with disjoint type variables in (g, 70) and (1, 1)
choose « ¢ Var(ly, 1,7, 71) in
let S (—Z/[(ro = rl,TO =7 — Oé) in
return SToU ST - e €1 : Sa
return - - [n] : Nat
letTHe:7+« P(e)in
let S < U(T =Nat) in
return ST I succ e : Nat

Program Analysis and Verification ... Usi May 2014 25 /25

UNI

FREIBURG

	Introduction
	Applied Lambda Calculus
	Simple Types for the Lambda Calculus
	Type Inference for the Simply-Typed Lambda Calculus

