
T-diagrams

“Mommy, where do compilers come 
from?”



T-diagrams

�Different diagrams for different kinds of programs
�Visual explanation of interactions involving compilers 

and interpreters



Programs

�Program P written in 
language L

�Example: Sort program 
written in Java

L
P

Java
sort



Machines

�Machine executing language 
M

�Example: Sun workstation 
executing sparc machine 
code

M sparc



Executing Programs

�Program implementation language must match 
machine

sparc
sort

sparc



Interpreters

�Interpreter executing 
language L written in 
language M

�Example: Lisp interpreter 
running on sparc

L
M

Lisp
sparc



Interpreting Programs

�Interpreter mediates between program language and 
machine language

Lisp
sort

sparc

Lisp
sparc



Virtual Machines

�Interpreter creates a “virtual machine”

Lisp
sort

sparc

Lisp
sparc

Lisp
sort

Lisp



Compilers

�Compiler translating from 
source language S to 
target language T 
implemented in M

�Example: C compiler for 
sparc platform

S ��� T
M

C ��� sparc
sparc



Compiling Programs

�Compiler inputs program in source language, outputs 
in target language

C
sort

C ��� sparc
sparc

sparc
sort

sparc

sparc
sort

sparc



Java Programming Environment

�Javac: Java to Java byte code (JBC) compiler
�Java: Java Virtual Machine byte code interpreter

Java ��� JBC
M

Java
P

JBC
P

JBC
P

M
M

JBC
M“javac” “java”



Where Do Compilers Come From?

1. Write it in machine code

L ��� M
M

A lot of work



Where Do Compilers Come From?

1. Write it in machine code
2. Write it in a lower level language and compile it 

using an existing compiler

L ��� M
C C ��� M

M

L ��� M
M

But Mom where did the C compiler come from?



Where Do Compilers Come From?

1. Write it in machine code
2. Write it in a lower level language and compile it 

using an existing compiler
3. Write it in the same language that it compiles and 

bootstrap

L ��� M
L



Bootstrapping a Compiler

�Write the compiler in its own language (#0)
�Write a no-frills native compiler (#1)
�Use compiler #1 to compile #0 to get native compiler 

with more frills (#2)
�Repeat as desired



Bootstrapping a Compiler

L ��� M
L L --> M

M

L ��� M
M#0 (the real 

thing)

#1 (no frills)

#2 (real thing
compiled)



Bootstrapping a Compiler, Stage 2

L ��� M
L L ��� M

M

L ��� M
M#0 (the real 

thing)

#2 (the real thing compiled)

#3 (compiled with
the real thing)

Correctness test: #2 = #3 literally



Porting a Compiler

1. Rewrite back end to target new machine

4. Compile on new machine

L ��� M
C

L ��� N
C



Porting a Compiler

1. Rewrite back end to target new machine

4. Compile on new machine

L ��� N
C C ��� N

N

L ��� N
N



Porting a Compiler II

�Rewrite back end to target new machine
�Compile using native compiler

L ��� N
L L ��� M

M

L ��� N
M “cross 

compiler”



Cross Compilers

�A cross compiler compiles to a target language 
different from the language of the machine it runs on



Porting a Compiler II

�Rewrite back end to target new machine
�Compile using native compiler
�Recompile using cross compiler

L ��� N
L L ��� N

M

L ��� N
N


