Compiler Construction 2009/2010
SSA—Static Single Assignment Form

Peter Thiemann

March 15, 2010
Outline

1. Static Single-Assignment Form
2. Converting to SSA Form
3. Optimization Algorithms Using SSA
4. Dependencies
5. Converting Back from SSA Form
Important data structure: **def-use chain**
links definitions and uses to flow-graph nodes

Improvement: SSA form
- Intermediate representation
- Each variable has exactly one (static) definition
Usefulness of SSA Form

- Dataflow analysis becomes simpler
- Optimized space usage for def-use chains
 \(N \) uses and \(M \) definitions of var: \(N \cdot M \) pointers required
- Uses and defs are related to dominator tree
- Unrelated uses of the same variable are made different
SSA Example

straight-line program

\[
\begin{align*}
a & \leftarrow x + y \\
b & \leftarrow a - 1 \\
a & \leftarrow y + b \\
b & \leftarrow x \cdot 4 \\
a & \leftarrow a + b
\end{align*}
\]

program in SSA form

\[
\begin{align*}
a_1 & \leftarrow x + y \\
b_1 & \leftarrow a_1 - 1 \\
a_2 & \leftarrow y + b_1 \\
b_2 & \leftarrow x \cdot 4 \\
a_3 & \leftarrow a_2 + b_2
\end{align*}
\]
\(\phi \)-Functions

CFG with a control-flow join

\[
\begin{align*}
 b & \leftarrow M[x] \\
 a & \leftarrow 0
\end{align*}
\]

\[
\text{if } b < 4
\]

\[
\begin{align*}
 a & \leftarrow b \\
 c & \leftarrow a + b
\end{align*}
\]
\(b_1 \leftarrow M[x_0] \)
\(a_1 \leftarrow 0 \)

\[\text{if } b_1 < 4 \]

\(a_2 \leftarrow b_1 \)

\(a_3 \leftarrow \phi(a_2, a_1) \)
\(c_1 \leftarrow a_3 + b_1 \)
\[b_1 \leftarrow M[x_0] \]
\[a_1 \leftarrow 0 \]
\[\text{if } b_1 < 4 \]
\[a_2 \leftarrow b_1 \]
\[a_3 \leftarrow \phi(a_2, a_1) \]
Program with a loop

- $a \leftarrow 0$
- $b \leftarrow a + 1$
- $c \leftarrow c + b$
- $a \leftarrow b \cdot 2$
- if $a < N$
- return c
\(\phi \)-Functions

… transformed to edge-split SSA form

\[
\begin{align*}
a_3 & \leftarrow \phi(a_1, a_2) \\
b_1 & \leftarrow \phi(b_0, b_2) \\
c_2 & \leftarrow \phi(c_0, c_1) \\
b_2 & \leftarrow a_3 + 1 \\
c_1 & \leftarrow c_2 + b_2 \\
a_2 & \leftarrow b_2 \cdot 2 \\
\text{if } a_2 & < N
\end{align*}
\]

\[
\begin{align*}
a_1 & \leftarrow 0 \\
return c
\end{align*}
\]
Features of SSA Form

- SSA renames variables
- SSA introduces ϕ-functions
 - not “real” functions, just notation
 - implemented by move instruction on incoming edges
 - can often be ignored by optimization
Converting to SSA Form

- Program \rightarrow CFG
- Insert ϕ-functions
 - could add a ϕ-function for each variable at each join point
- Rename variables
- Perform edge splitting
Inserting ϕ-functions

The Path-Convergence Criterion

Add a ϕ-function for variable a at node z of the flow graph iff

1. There is a block x containing a definition of a.
2. There is a block $y \neq x$ containing a definition of a.
3. There is a non-empty path π_{xz} from x to z.
4. There is a non-empty path π_{yz} from y to z.
5. Paths π_{xz} and π_{yz} have only z in common.
6. Node z does not appear in both π_{xz} and π_{yz} prior to the end, but it may appear before in one of them.
Remarks
- Start node contains an implicit definition of each variable
- A ϕ-function counts as a definition
- Compute by fixpoint iteration

Algorithm

while there are nodes x, y, z satisfying conditions 1–5 and z does not contain a ϕ-function for a
do insert $a \leftarrow \phi(a_1, \ldots, a_p)$
where $p =$ number of predecessors of z
Dominance Property of SSA Form

In SSA, each definition dominates all its uses

1. If x is the ith argument of a ϕ-function in block n, then the definition of x dominates the ith predecessor of node n.

2. If x is used in a non-ϕ statement in block n, then the definition of x dominates node n.
The Dominance Frontier
A more efficient algorithm for placing ϕ-functions

Conventions
- x strictly dominates y if x dominates y and $x \neq y$.
- Successor and predecessor for graph edges.
- Parent and child for dominance tree edges, ancestor for paths.
- The dominance frontier of a node x is the set of all nodes w such that x dominates a predecessor of w, but does not strictly dominate w.

Dominance Frontier Criterion
If node x contains a definition for some variable a, then any node z in the dominance frontier of x needs a ϕ-function for a.
Domiance Frontier

Consider node 5
The dominance frontier criterion must be iterated: each inserted ϕ-function counts as a new definition.

Theorem

The iterated dominance frontier criterion and the iterated path-convergence criterion specify the same set of nodes for placing ϕ-functions.
Computing the Dominance Frontier

- $DF[n]$, the dominance frontier of n, can be computed in one pass through the dominator tree.
- $DF_{local}[n]$ successors of n not strictly dominated by n.
 \[DF_{local}[n] = \{ y \in succ[n] \mid idom(y) \neq n \} \]
- $DF_{up}[n, c]$ nodes in the dominance frontier of c that are not strictly dominated by c’s immediate dominator n.
 \[DF_{up}[n, c] = \{ y \in DF[c] \mid idom(y) \neq n \} \]
- It holds that
 \[DF[n] = DF_{local}[n] \cup \bigcup_{c \in children[n]} DF_{up}[n, c] \]
Computing the Dominance Frontier

Algorithm

\[\text{computeDF}[n] = \]
\[S \leftarrow \emptyset \]
\[\text{for each node } y \in \text{succ}[n] \text{ do } \{ \text{compute } DF_{\text{local}}(n) \} \]
\[\text{if } \text{idom}(y) \neq n \text{ then} \]
\[S \leftarrow S \cup \{ y \} \]
\[\text{for each child } c \text{ with } \text{idom}(c) = n \text{ do } \{ \text{compute } DF_{\text{up}}(n, c) \} \]
\[\text{computeDF}[c] \]
\[\text{for each } w \in DF[c] \text{ do} \]
\[\text{if } n = w \text{ or } n \text{ does not dominate } w \text{ then} \]
\[S \leftarrow S \cup \{ w \} \]
Inserting ϕ-Functions

Place-ϕ-Functions =

for each node n do

for each variable $a \in A_{\text{orig}}[n]$ do

$\text{defsites}[a] \leftarrow \text{defsites}[a] \cup \{n\}$

for each variable a do

$W \leftarrow \text{defsites}[a]$

while $W \neq \emptyset$ do

remove some node n from W

for each $y \in DF[n]$ do

if $a \not\in A_{\phi}[y]$ then

insert statement $a \leftarrow \phi(a, \ldots, a)$ at top of block y,
where the number of arguments is $|\text{pred}[y]|$

$A_{\phi}[y] \leftarrow A_{\phi}[y] \cup \{a\}$

if $a \not\in A_{\text{orig}}[y]$ then

$W \leftarrow W \cup \{y\}$
Renaming Variables

- Top-down traversal of the dominator tree
- Rename the different definitions (including ϕ) of variable a to a_1, a_2, \ldots
- Rename each use of a in a statement to the closest definition of an a that is above a in the dominator tree
- For ϕ-functions look ahead in the successor nodes
Some analyses and transformations are simpler if no control flow edge leads from a node with multiple successors to one with multiple predecessors.

Edge splitting achieves the unique successor or predecessor property.

If there is a control-flow edge $a \rightarrow b$ where $|\text{succ}[a]| > 1$ and $|\text{pred}[b]| > 1$, then create new, empty node z and replace edge $a \rightarrow b$ by $a \rightarrow z$ and $z \rightarrow b$.
There are efficient, almost linear-time algorithms for computing the dominator tree [Lengauer, Tarjan 1979] [Harel 1985] [Buchsbaum 1998] [Alstrup 1999].

But there are easy variations of the naive algorithm that perform better in practice. [Cooper, Harvey, Kennedy 2006]
Optimization Algorithm Using SSA
Representation of SSA Form

Statement assignment, \(\phi \)-function, fetch, store, branch.
Fields: containing block, previous/next statement in block, variables defined, variables used

Variable definition site, list of use sites

Block list of statements, ordered list of predecessors, one or more successors
SSA: Dead-Code Elimination

SSA Liveness
A variable definition is live iff its list of uses is non-empty.

Algorithm

\[W \leftarrow \text{list of all variables in SSA program} \]

\[\textbf{while } W \neq \emptyset \textbf{ do} \]

remove some variable \(v \) from \(W \)

\[\textbf{if } v \text{'s list of uses is empty } \textbf{then} \]

let \(S \) be \(v \text{'s defining statement} \)

\[\textbf{if } S \text{ has no side effects other than the assignment to } v \textbf{ then} \]

delete \(S \) from program

\[\textbf{for each variable } x_i \text{ used by } S \textbf{ do} \]

delete \(S \) from list of uses of \(x_i \) \{in constant time\}

\[W \leftarrow W \cup \{x_i\} \]
SSA: Simple Constant Propagation

- If \(v \) is defined by \(v \leftarrow c \) (a constant) then each use of \(v \) can be replaced by \(c \).
- The \(\phi \)-function \(v \leftarrow \phi(c, \ldots, c) \) can be replaced by \(v \leftarrow c \).

Algorithm

\[
W \leftarrow \text{list of all statements in SSA program}
\]

\[
\textbf{while } W \neq \emptyset \textbf{ do}
\]

\[
\begin{align*}
&\text{remove some statement } S \text{ from } W \\
&\textbf{if } S \text{ is } v \leftarrow \phi(c, \ldots, c) \text{ for constant } c \text{ then} \\
&\quad \text{replace } S \text{ by } v \leftarrow c \\
&\textbf{if } S \text{ is } v \leftarrow c \text{ for constant } c \text{ then} \\
&\quad \text{delete } S \\
&\text{for each statement } T \text{ that uses } v \text{ do} \\
&\quad \text{substitute } c \text{ for } v \text{ in } T \\
&W \leftarrow W \cup \{T\}
\end{align*}
\]
SSA: Further Linear-Time Transformations

Copy propagation
If some S is $x \leftarrow \phi(y)$ or $x \leftarrow y$, then remove S and substitute y for every use of x.

Constant folding
If S is $v \leftarrow c \oplus d$ where c and d are constants, then compute $e = c \oplus d$ at compile time and replace S by $b \leftarrow e$.
SSA: Further Linear-Time Transformations

Constant conditions

Let \(\textbf{if } a \neq b \textbf{ goto } L_1 \textbf{ else } L_2 \) be at the end of block \(L \) with \(a \) and \(b \) constants and \(\neq \) a comparison operator.

- Replace the conditional branch by \textbf{goto } L_1 \textbf{ or } \textbf{goto } L_2 depending on the compile-time value of \(a \neq b \)
- Delete the control flow edge \(L \rightarrow L_2 \) (\(L_1 \) respectively)
- Adjust the \(\phi \) functions in \(L_2 \) (\(L_1 \)) by removing the argument associated to predecessor \(L \).

Unreachable code

Deleting an edge from a predecessor may cause block \(L_2 \) to become unreachable.

- Delete all statements of \(L_2 \), adjusting the use lists of the variables used in these statements.
- Delete block \(L_2 \) and the edges to its successors.
Conditional Constant Propagation

\[\begin{align*}
 &i \leftarrow 1 \\
 &j \leftarrow 1 \\
 &k \leftarrow 0 \\
 &\text{if } k < 100 \\
 &\text{if } j < 20 \\
 &j \leftarrow i \\
 &k \leftarrow k + 1 \\
 &\text{return } j \\
 &j \leftarrow k \\
 &k \leftarrow k + 2 \\
 &k \leftarrow k + 1
\end{align*} \]
Conditional Constant Propagation

- does not assume that a block can be executed until there is evidence for it
- does not assume a variable is non-constant until there is evidence for it
Conditional Constant Propagation

Data Structures

Constant Propagation Lattice

- $V[v] = \perp$ no assignment to v has been seen (initially)
- $V[v] = c$ an assignment $v \leftarrow c$ (constant) has been seen
- $V[v] = \top$ conflicting assignments have been seen

Block Reachability

- $E[B] = false$ no control transfer to B has been seen (initially)
- $E[B] = true$ a control transfer to B has been seen
Least upper bound operation
\[\perp \sqcup \alpha = \alpha \sqcup \perp = \alpha \]
\[T \sqcup \alpha = \alpha \sqcup T = T \]
\[a \sqcup b = \begin{cases} a & a = b \\ \top & a \neq b \end{cases} \]

Primitive operation
\[\perp \hat{\oplus} \alpha = \alpha \hat{\oplus} \perp = \perp \]
\[T \hat{\oplus} \alpha = \alpha \hat{\oplus} T = T \]
\[a \hat{\oplus} b = (a \oplus b) \]
Conditional Constant Propagation
Algorithm Initialization

1. Initialize $V[v] = \bot$ for all variables v and $E[B] = false$ for all blocks B
2. If v has no definition, then set $V[v] \leftarrow \top$ (must be input or uninitialized)
3. The entry block is reachable: $E[B_0] \leftarrow true$
For each B with $E[B]$ and B has only one successor C, then set $E[C] = true$.

For each reachable assignment $v \leftarrow x \oplus y$ set $V[v] \leftarrow V[x] \oplus V[y]$.

For each reachable assignment $v \leftarrow \phi(x_1, \ldots, x_p)$ set $V[v] \leftarrow \bigcup\{V[x_j] \mid j$th predecessor is reachable$\}$

For each reachable assignment $v \leftarrow M[\ldots]$ or $v \leftarrow CALL(\ldots)$ set $V[v] \leftarrow \top$

For each reachable branch if $x\#y$ goto L_1 else L_2 consider $\beta = V[x] \oplus V[y]$.

- If $\beta = true$, then set $E[L_1] \leftarrow true$.
- If $\beta = false$, then set $E[L_2] \leftarrow true$.
- If $\beta = \top$, then set $E[L_1], E[L_2] \leftarrow true$.
Conditional Constant Propagation

Example

\[
\begin{align*}
 \mathit{i}_1 & \leftarrow 1 \\
 \mathit{j}_1 & \leftarrow 1 \\
 \mathit{k}_1 & \leftarrow 0 \\
 \mathit{j}_2 & \leftarrow \phi(\mathit{j}_4, \mathit{j}_1) \\
 \mathit{k}_2 & \leftarrow \phi(\mathit{k}_4, \mathit{k}_1) \\
 & \text{if } \mathit{k}_2 < 100 \\
 & \text{if } \mathit{j}_2 < 20 \\
 \mathit{j}_3 & \leftarrow \mathit{j}_1 \\
 \mathit{k}_3 & \leftarrow \mathit{k}_2 + 1 \\
 \mathit{j}_5 & \leftarrow \mathit{k}_2 \\
 \mathit{k}_5 & \leftarrow \mathit{k}_2 + 2 \\
 \mathit{j}_4 & \leftarrow \phi(\mathit{j}_3, \mathit{j}_5) \\
 \mathit{k}_4 & \leftarrow \phi(\mathit{k}_3, \mathit{k}_5) \\
 & \text{return } \mathit{j}_2
\end{align*}
\]
Conditional Constant Propagation

Example after propagation

\[k_2 \leftarrow \phi(k_4, 0) \]
\[\text{if } k_2 < 100 \]
\[\text{return 1} \]

\[k_3 \leftarrow k_2 + 1 \]

\[k_4 \leftarrow \phi(k_3) \]
Conditional Constant Propagation

Example after cleanup

\[k_3 \leftarrow k_2 + 1 \]

\[k_2 \leftarrow \phi(k_3, 0) \]

if \(k_2 < 100 \)

return 1
Dependencies Between Statements

B depends on A

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read-after-write</td>
<td>A defines variable v and B uses v</td>
</tr>
<tr>
<td>Write-after-write</td>
<td>A defines variable v and B defines v</td>
</tr>
<tr>
<td>Write-after-read</td>
<td>A uses v and then B defines v</td>
</tr>
<tr>
<td>Control</td>
<td>A controls whether B executes</td>
</tr>
</tbody>
</table>

In SSA form

- all dependencies are Read-after-write or Control
- Read-after-write is evident from SSA graph
- Control needs to be analyzed
Memory Dependence

- Memory does not enjoy the single assignment property
- Consider

\[M[i] \leftarrow 4 \]
\[x \leftarrow M[j] \]
\[M[k] \leftarrow j \]

Depending on the values of \(i, j, \) and \(k \)
- 2 may have a read-after-write dependency with 1 (if \(i = j \))
- 3 may have a write-after-write dependency with 1 (if \(i = k \))
- 3 may have a write-after-read dependency with 2 (if \(j = k \))

so 2 and 3 may not be exchanged

Approach

- No attempt to track memory dependencies
- Store instructions always live
- No attempt to reorder memory instructions
Control Dependence Graph

Control Dependence

- Node y is control dependent on x if
 1. x has successors u and v
 2. there exists a path from u to exit that avoids y
 3. every path from v to exit goes through y

- The control-dependence graph (CDG) has an edge from x to y if y is control dependent on x.

- y postdominates v if y is on every path from v to exit, i.e., if y dominates v in the reverse CFG.
Construction of the CDG

Let G be a CFG

1. Add new entry node r to G with edge $r \rightarrow s$ (the original start node) and an edge $r \rightarrow \text{exit}$.

2. Let G' be the reverse control-flow graph with the same nodes as G, all edges reversed, and with start node exit.

3. Construct the dominator tree of G' with root exit.

4. Calculate the dominance frontiers $DF_{G'}$ of G'.

5. The CDG has edge $x \rightarrow y$ if $x \in DF_{G'}[y]$.
Use of the CDG

A must be executed before B if there is a path $A \rightarrow B$ using SSA use-def edges and CDG edges. I.e., there are data- and control dependencies that require A to be executed before B.
Construction of the CDG

Example

\[
\begin{align*}
 &i \leftarrow 1 \\
 &j \leftarrow 1 \\
 &k \leftarrow 0
\end{align*}
\]

if \(k < 100 \)

\[
\begin{align*}
 &i \leftarrow 1 \\
 &j \leftarrow 1 \\
 &k \leftarrow 0
\end{align*}
\]

if \(j < 20 \)

\[
\begin{align*}
 &j \leftarrow i \\
 &k \leftarrow k + 1
\end{align*}
\]

return \(j \)

\[
\begin{align*}
 &j \leftarrow k \\
 &k \leftarrow k + 2
\end{align*}
\]
Construction of the CDG

CFG and reverse CFG
Construction of the CDG
Postdominators and CDG
Aggressive Dead-Code Elimination

- Application of the CDG
- Consider

\[k_2 \leftarrow \phi(k_3, 0) \]
\[\text{if } k_2 < 100 \]

\[k_3 \leftarrow k_2 + 1 \]

return 1

- \(k_2 \) is live because it is used in defining \(k_3 \)
- \(k_3 \) is live because it is used in defining \(k_2 \)
Aggressive Dead-Code Elimination

Algorithm

Exhaustively mark a live any statement that

1. Performs I/O/, stores into memory, returns from the function, calls another function that may have side effects.
2. Defines some variable v that is used by another live statement.
3. Is a conditional branch, on which some other live statement is control dependent.

Then delete all unmarked statements.

- Result on example: return 1; loop is deleted
Outline

1. Static Single-Assignment Form
2. Converting to SSA Form
3. Optimization Algorithms Using SSA
4. Dependencies
5. Converting Back from SSA Form
Converting Back from SSA Form

- \(\phi \)-functions are not executable and must be replaced to generate code
- \(y \leftarrow \phi(x_1, x_2, x_3) \) is interpreted as
 - move \(x_1 \) to \(y \) if arriving from predecessor \#1
 - move \(x_2 \) to \(y \) if arriving from predecessor \#2
 - move \(x_3 \) to \(y \) if arriving from predecessor \#3
- Insert these instructions at the end of the respective predecessor (possible due to edge-split assumption)
- Next step: register allocation
Liveness Analysis for SSA

LivenessAnalysis() =
 for each variable \(v \) do
 \(M \leftarrow \emptyset \)
 for each statement \(s \) using \(v \) do
 if \(s \) is a \(\phi \)-function with \(i \)th argument \(v \) then
 let \(p \) be the \(i \)th predecessor of \(s \)'s block
 LiveOutAtBlock(\(p, v \))
 else
 LiveInAtStatement(\(s, v \))
 \(\)\(\)\(\)
 LiveOutAtBlock(\(n, v \)) =
 \{ \(v \) is live-out at \(n \)\}
 if \(n \not\in M \) then
 \(M \leftarrow M \cup \{ n \} \)
 let \(s \) be the last statement in \(n \)
 LiveOutAtStatement(\(s, v \))
Liveness Analysis for SSA

LiveInAtStatement(s, v) =
{v is live-in at s}
if s is first statement of block n then
{v is live-in at n}
for each p ∈ pred[n] do
 LiveOutAtBlock(p, v)
else
 let s’ be the statement preceding s
 LiveOutAtStatement(s’, v)

LiveOutAtStatement(s, v) =
{v is live-out at s}
let W be the set of variables defined in s
for each variable w ∈ W \ {v} do
 add (v, w) to interference graph {needed if v defined?}
if v ∉ W then
 LiveInAtStatement(s, v)