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Functional Programming Languages

Based on the mathematical notion of function
Equational reasoning: f (a) = f (a)

Pure/impure functional programming languages
Characteristic feature:
higher-order functions with nested lexical scope
see also: delegates, anonymous classes, . . .
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Three Flavors of FP

FunJava
MiniJava with higher-order functions
Side effects permitted, cf. Scheme, ML, Smalltalk
Impure, HO functional language

PureFunJava
FunJava w/o side effects
Pure, HO functional language

LazyFunJava
PureFunJava with lazy evaluation
Nonstrict, pure functional, cf. Haskell



FunJava, the Language

MiniJava + function types

ClassDecl = type id = TypeExp;

TypeExp = TypeExp -> TypeExp
= (TypeList) ->TypeExp
= (TypeExp)

= Type
TypeList = TypeExp TypeRest∗

=

TypeRest = , TypeExp



FunJava, the Language

MiniJava + function calls

Exp = Exp(ExpList)
Exp = Exp.id

If v is an object with method int m (int[]), then v.m
evaluates to a function of type (int[]) -> int.
Evaluating v.m does not invoke the method.



FunJava, the Language

Expressions and Statements

MethodDecl = public Type id(FormalList) Compound
Compound = {VarDecl∗ MethodDecl∗ Statement∗

return Exp;}
Exp = Compound

= if (Exp) Exp else Exp

Variables and functions/methods can be declared at the
beginning of each block. (Nested functions)
return produces the result for the next enclosing block.
{ return 3;} + { return 4;} yields 7.
The if statement is replaced by an if expression.



FunJava Example Program

type intf = int -> int
class C {

public intf add (n: int) {
public int h (int m) { return m+n; }
return h;

}
public intf twice (f: intf) {
public int g (int x) { return f (f (x)); }
return g;

}
public int test () {
intf addFive = add (5);
intf addSeven = add (7);
int twenty = addFive (15);
int twentyTwo = addSeven (15);
intf addTen = twice (addFive);
int seventeen = twice (add (5)) (7);
intf addTwentyFour = twice (twice (add (6)));
return addTwentyFour (seventeen);

}
}
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Closures
Representation of Function Values

Without nested functions (C): function pointers
Function value = address of function’s code
In the IR:
MOVE (TEMP (t_ff), NAME (L_function))
CALL (TEMP (t_ff), ... parameters ...)

Not sufficient for nested functions like h and g:
where does n come from?
where does f come from?

Solution: represent function value by a closure
Closure = record of code address and values of free
variables (environment)
Similar to object with one method and several instance
variables



Activation Records

Function may return a locally defined function
⇒ This function may refer to parameters and local variables
⇒ Parameters and local variables cannot be allocated on the

stack, but must be put on the heap
Activation record holds a static link to the next activation
record of the next enclosing function.
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Immutable Variables

Equational reasoning not sound for FunJava
⇒ PureFunJava prohibits side effects

No assignments to variables (exception: variable
initialization)
No assignments to fields of records (exception: initialization
in the constructor)
No calls to side-effecting external functions like println

Programs in functional style produce new object (partial
copies) instead of changing existing ones



Special Constructor Syntax

Syntax Changes for PureFunJava

ClassDecl = class id { VarDecl∗ MethodDecl∗ Constructor }
Constructor = public id (FormalList) { Init∗ }
Init = this.id = id



Continuation-Based I/O

How to do I/O if side effects are disallowed?
Answer: Enforce proper sequencing by using function calls
I/O visible to type checker: answer type

Interface for functional I/O
type answer // special built-in type
type intConsumer = int -> answer
type cont = () -> answer

class ContIO {
public answer readByte (intConsumer c);
public answer putByte (int i, cont c);
public answer exit ();

}



Language Changes

Remove System.out.println

Add functional I/O types and operations
Remove assignment and while loops
Each block is limited to one statment following the
declarations



PureFunJava, Example Program

public answer getInt (intConsumer done) {
public answer nextDigit (int accum) {
public answer eatChar (int dig) {
return if (isDigit (dig))

nextDigit (accum*10+dig-48)
else done (accum);

}
return ContIO.readByte (eatChar);

}
return nextDigit (0);

}



Optimization of PureFunJava

PureFunJava is a proper subset of FunJava
All existing optimizations apply
Computing the control flow graph is more demanding
Additionally optimization can exploit equational reasoning



Exploiting Equational Reasoning
Example Program

class G {
int a; int b;
public G (int a, int b) {
this.a = a;
this.b = b;

}
}

int a1 = 5;
int b1 = 7;
G r = new G (a1, b1);

int x = f (r); // no change of r possible

int y = r.a + r.b; // must be equivalent to
int y = a1 + b1;
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Inline Expansion

Inline Expansion
Replace a function call by its definition
Substituting actuals for formals

Essential optimization for FP
many short functions
specializes higher-order functions

Further optimization possible after inlining



Avoiding Variable Capture

Program with hole in scope
int x = 5
int g (int y) {
return y+x;

}
int f (int x) {
return g (1)+ x;

}
void main () { ... f(2)+x ... }

Naive inlining of g into f
int f (int x) {

return { return 1+x; } + x;
}
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Avoiding Variable Capture
α-Conversion — Renaming of Bound Variables

First rename local variable
int g (int y) {
return y+x;

}
int f (int a) { // renamed x -> a
return g (1)+ a;

}

Then substitute g into f
int f (int a) {

return { return 1+x; } + a;
}

Alternative
Rename all local variables so that each variable is bound at
most once in the program



Avoiding Variable Capture
α-Conversion — Renaming of Bound Variables

First rename local variable
int g (int y) {
return y+x;

}
int f (int a) { // renamed x -> a
return g (1)+ a;

}

Then substitute g into f
int f (int a) {
return { return 1+x; } + a;

}

Alternative
Rename all local variables so that each variable is bound at
most once in the program



Avoiding Variable Capture
α-Conversion — Renaming of Bound Variables

First rename local variable
int g (int y) {
return y+x;

}
int f (int a) { // renamed x -> a
return g (1)+ a;

}

Then substitute g into f
int f (int a) {
return { return 1+x; } + a;

}

Alternative
Rename all local variables so that each variable is bound at
most once in the program



Inline Expansion Algorithm

Actual parameters are variables
Let f (a1, . . . ,an)B be in scope
Let f (i1, . . . , in) be a call with ij variables
Rewrite the call to
B[a1 7→ i1, . . . ,an 7→ in]

Actual parameters are expressions
Let f (a1, . . . ,an)B be in scope
Let f (e1, . . . ,en) be a call with ej non-trivial expressions
Rewrite the call to
{int i1 = e1; . . .int in = en; return B[a1 7→ i1, . . . ,an 7→ in]}
where ij are fresh variables
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Comments on Inline Expansion Algorithm

Let int double (j) { return j+j; }

Consider expanding the call double (g (x)) ignoring
that the actual argument is a non-trivial expression
Result: g (x) + g (x)

Computation is repeated (expensive)
If impure, then side effect of g(x) is repeated and each call
may yield a different result

Correct inlining avoids these problems:
{ i = g (x); return i+i; }

Remarks
An implementation would handle each argument separately
Dead function elimination possible after inlining
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Inlining Recursive Functions
Some Example Code

class list {int head; int tail;} // constructor omitted
type observeInt = (int, cont) -> answer

public answer doList (observeInt f, list l, cont c) {
return
if (l===null)

c ();
else {

public answer doRest () {
return doList (f, l.tail, c);

}
return f (l.head, doRest);

};
}
public answer printTable (list l, cont c) {

return doList (printDouble, l, c);
}



Inlining Recursive Functions

Inlining doList into printTable does not yield the desired
result:

public answer printTableDL (list l, cont c) {
return

if (l===null)
c ();

else {
public answer doRest () {

return doList (printDouble, l.tail, c);
}
return printDouble (l.head, doRest);

};
}

Only the first element is processed directly with printDouble,
the remaining are still processed with the generic doList
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Inlining Recursive Functions

Loop-Preheader Transformation
Given int f (a1, . . . ,an)B
Transform to

int f (a′1, . . . ,a
′
n){

int f ′(a1, . . . ,an)B[f 7→ f ′]
return f ′(a′1, . . . ,a

′
n);

}

Inlining now copies the specialized local function f ′ into the
target
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Inlining Recursive Functions
Loop-Preheader Transformation Applied

public answer doList (observeInt fX, list lX, cont cX) {
public answer doListX (observeInt f, list l, cont c) {
return

if (l===null)
c ();

else {
public answer doRest () {

return doListX (f, l.tail, c);
}
return f (l.head, doRest);

};
}
return doListX (fX, lX, cX);

}

Observation: arguments f and c are loop invariants

Replace by outer parameters
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Inlining Recursive Functions
Hoisting Loop-Invariant Arguments

public answer doList (observeInt f, list lX, cont c) {
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if (l===null)
c ();

else {
public answer doRest () {

return doListX (l.tail);
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}



Inlining Recursive Functions
Inlining of doList into printTable continued

public answer printTable (list lX, cont c) {
public answer doListX (list l) {

return
if (l===null)

c ();
else {

public answer doRest () {
return doListX (l.tail);

}
return printDouble (l.head, doRest);

};
}
return doListX (lX);

}

printDouble is called directly and can be inlined!



Inlining Recursive Functions
Cascaded Inlining

public answer printTable (list lX, cont c) {
public answer doListX (list l) {
return

if (l===null)
c ();

else {
public answer doRest () {

return doListX (l.tail);
}
return {

int i = l.head;
public answer again() {return putInt (i+i, doRest);}
return putInt (i, again);

};
};

}
return doListX (lX);

}



Avoiding Code Explosion

Inline expansion copies function bodies
⇒ The program text becomes bigger
⇒ Expansion may not terminate

Controlling inlining
1 Expand very frequently executed call sites

determine frequency by static estimation or execution
profiling

2 Expand functions with very small bodies
3 Expand functions called only once

rely on dead function elimination
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Closure Conversion

Closure = code address + environment
One representation of closures: objects
Closure conversion transforms the program so that no
function appears to access free variables
Approach: represent a function value of type t1 -> t2 by
an object implementing the interface
interface I_t1_t2 {
public t2 exec (t1 x);

}

There is a different implementation class for each function,
as the free variables differ



Closure Conversion
Example

class doRest implements I_list_answer {
doListX dlx;
public answer exec (list l) { return dlx.exec (l.tail); }

}
class again implements I_void_answer {

doListX dlx; int i;
public answer exec () {return putInt (i+i, new doRest (dlx));}

}
class doListX implements I_list_answer {

cont c;
public answer exec (list l) {
return
if (l===null) c.exec ();
else {
return { int i = l.head;

return putInt (i, new again (this, i)); };
};

}
class printTable implements I_list_cont_answer {

public exec (list lX, cont c) {
return new doListX (c).exec (lX);

}
}
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Tail Recursion

Functional programs have no loops
Efficient (iterative) recursion through tail recursion
A function is tail recursive if each recursive function call is
a tail call
Tail calls defined by contexts:

B = {t1 x1 = e1; . . . tn xn = en; return B′}
B′ = 2 | B | if(e) B′ else B′

A call to g is a tail call if it occurs in a function definition as
follows
t f (a1, . . . ,an)B[g(e1, . . . ,em)]



Implementation of Tail Calls
Example

int g (int y) { int x = h(y); return f(x); }

h(y) is not a tail call
f(x) is a tail call
Tail calls can be implemented more efficiently by a jump
instead of a call
Calling sequence for tail call:

1 Move actual parameters into argument registers
2 Restore callee-save registers
3 Pop stack frame of the calling function (if it has one)
4 Jump to the callee



Effects of Tail Calls

In printTable, all calls are tail calls
⇒ Can all be implemented with jumps

The generated code is very similar to the code generated
for the equivalent imperative program (with a while loop)
Difference: activation block on the heap vs. on the stack
Amendment

By compile-time escape analysis: objects that do not
escape can be stack-allocated
By extremely cheap heap allocation and garbage collection
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Lazy Evaluation

β-reduction: important law in equational reasoning
Reminder β-reduction: if f (x) = B, then f (e) = B[x 7→ e]

PureFunJava violates this law



Unsound β-Reduction in PureFunJava

{
int loop (int z) {
return

if (z>0)
else loop (z));

}
int f (int x) {
return if (y>8) x

else -y;
}
return f (loop (y));

}

{
int loop (int z) {

return
if (z>0)
else loop (z));

}
int f (int x) {

return if (y>8) x
else -y;

}
return if (y>8) loop (y)

else -y;
}

For y = 0, left loops, but right terminates



Remedy: LazyJava & Call-By-Name Evaluation

LazyJava
same syntax as PureFunJava
but with lazy evaluation:
expressions are only evaluated if and when their value is
demanded by execution of the program

First step: call-by-name evaluation
Transform each expression to a thunk
Thunk: parameterless procedure that yields the value of the
expression when invoked
Advantage: evaluation only when needed
Disadvantage: evaluation can be repeated arbitrarily often



Introducing Thunks
Original Program (lookup in binary tree)

class tree {
String key;
int binding;
tree left;
tree right;

}
public int look (tree t, String k) {
int c = t.key.compareTo(k);
if (c < 0) return look (t.left, k);
else if (c > 0) return look (t.right, k);
else return t.binding;

}



Introducing Thunks
Transformed Program (lookup in binary tree)

type th_int = () -> int;
type th_tree = () -> tree;
type th_string = () -> String;

class tree {
th_String key;
th_int binding;
th_tree left;
th_tree right;

}
public th_int look (th_tree t, th_String k) {
th_int c = t ().key ().compareTo(k);
if (c () < 0) return look (t ().left, k);
else if (c () > 0) return look (t ().right, k);
else return t ().binding;

}



Call-By-Need Evaluation

Second step: call-by-need evaluation
Call-by-name evaluation with caching of result
First invocation of thunk stores result in memo slot of the
thunk’s closure
Further invocations return the value from the memo slot
(exploits / requires purity)



Call-By-Need Transformation
Example

Recall

int twenty = addFive (15);

is transformed to

th_int twenty = new intThunk (this); // this |-> addFive

With supportive definitions (requiring assignment)

class intThunk {public int eval(); int memo; boolean done;}

class c_int_int {public int exec (int x);}
class intFuncThunk {public c_int_int eval();

c_int_int memo; boolean done;}

class twentyThunk extends intThunk {
intFuncThunk addFive;
public int exec () {
if (!done) {
memo = addFive.eval().exec (15);
done = true;

}
return memo;

}
}



Example Evaluation of a Lazy Program

{
int fact (int i) {
return if (i==0) 1 else i * fact (i-1);

}
tree t0 = new tree ("",0,null,null);
tree t1 = t0.enter ("-one", fact (-1));
tree t2 = t1.enter ("three", fact (3));
return putInt (t2.look ("three", exit));

}

Fortunately, fact (-1) is never evaluated!



Optimization

All the standard optimizations apply
Additional optimization opportunities due to equational
reasoning

Invariant hoisting
Dead-code removal
Deforestation



Invariant Hoisting

type intfun = int -> int

intfun f (int i) {
public int g (int j) {
return h (i) * j;

}
return g;

}

type intfun = int -> int

intfun f (int i) {
int hi = h (i);
public int g (int j) {
return hi * j;

}
return g;

}

In lazy functional language, left can be transformed into right

Incorrect in strict language: h(i) may not terminate or yield
different results on each call



Dead-Code Removal

int f (int i) {
int d = g (x);
return i+2;

}

d is dead after its definition
The LFL compiler removes this definition
Incorrect in strict language!



Deforestation
Example Program

Common modularization in FP

class intList {int head, intList tail;}
type intfun = int -> int;
type int2fun = (int,int) -> int;

public int sumSq (intfun inc, int2fun mul, int2fun add) {
public intList range (int i, int j) {
return if (i>j) then null

else new intList (i, range (inc (i), j));
}
public intList squares (intList l) {
return if (l==null) null

else new intList (mul (l.head, l.head), squares (l.tail));
}
public int sum (int accum, intList l) {
return if (l==null) accum

else sum (add (accum, l.head), l.tail);
}
return sum (0, squares (range (1,100)));

}



Result of Deforestation

public int sumSq (intfun inc, int2fun mul, int2fun add) {
public int f (int accum, int i, int j) {
return if (i>j) accum

else f (add (accum, mul (i,i)), inc (i));
}
return f (0,1,100);

}

Deforestation removes intermediate data structures

Rearranges the order of function calls

Only legal in a pure FL



Strictness Analysis

A function is strict in an argument, if this argument is
always needed to produce the result of the function.
Put formally:
A function f (x1, . . . , xn) is strict in xi if whenever the
expression a fails to terminate, then the function call
f (b1, . . . ,bi−1,a,bi+1, . . . ,bn) fails to termiante.
If the compiler knows that a function is strict, then it need
not allocate a thunk for the argument, but it can evaluate it
right away.
Program analysis can approximate strictness



Examples: Strictness

int f (int x, int y) { return x + x + y; }

int g (int x, int y) { return if (x>0) y else x; }

tree h (String x, int y) {
return new tree (x, y, null, null);

}

int j (int x) { return j(0); }

f strict in x and y

g strict in x not in y

h not strict

j strict in x



Using Strictness Information

Lookup in a tree is strict in the tree and in the key
But the binding information as well as the fields in the tree
are not strict

th_String look (tree t, key k) {
return if (k < t.key.eval())

look (t.left.eval (), k)
else if (k > t.key.eval())

look (t.right.eval (), k)
else

t.binding;
}



Strictness Analysis

Exact strictness information is not computable
Conservative approximation needed
Domain: b ∈ {0,1}

1 (true) evaluation may terminate
0 (false) evaluation does not terminate (definitely)

Result is set H containing pairs (f , ~b)

f strict in xi if (f , (1, . . . ,1,0,1, . . . ,1)) /∈ H



Strictness Analysis
For First-Order Functions

M(c, σ) = 1
M(x , σ) = x ∈ σ
M(E1 + E2, σ) = M(E1, σ) ∧M(E2, σ)

M(new(E1, . . . ), σ) = 1
M(if E1 E2 E3, σ) = M(E1, σ) ∧ (M(E2, σ) ∨M(E3, σ))

M(f (E1, . . . ), σ) = (f , (M(E1, σ), . . . )) ∈ H



Strictness Analysis
Fixpoint Iteration

H ← {}
repeat

done← true
for each function f (x1, . . . , xn) = B do

for each sequence (b1, . . . ,bn) ∈ {0,1}n do
if (f , (b1, . . . ,bn)) /∈ H then
σ ← {xi | bi = 1}
if M(B, σ) then

done← false
H ← H ∪ {(f , (b1, . . . ,bn))}

end if
end if

end for
end for

until done



Strictness Analysis
Assessment

Basic analysis, quite expensive
Not applicable to full LazyJava
Does not handle data structures
Does not handle higher order functions
Better algorithms exist that handle both
Used in compilers for, e.g., Haskell
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