
Compiler Construction 2009/2010: Garbage
collection

Annette Bieniusa

January 18, 2010



Outline

1 Introduction
Types of storage

2 Reference counts

3 Mark-and-Sweep

4 Copying Collection

5 Generational Collection

6 Incremental and Concurrent Collection

7 Integration with compiler



Types of storage

Static allocation
All names in the program are bound to a storage location
known at compile-time
does not allow recursion
very fast due to direct access
safe as the program cannot run out of memory

Stack allocation
Local data is stored in an activation record/frame
Values do not persist from one activation to next
Size of local data may depend on parameters passed to
procedure
Only objects whose size is known at compile-time can be
returned by a procedure



Types of storage

Heap allocation
Data maybe allocated (and deallocated) in any order
Size of data structure can be varied dynamically
Dynamically-sized objects and closures (i.e. function
paired with environment) can be returned by procedure
allows recursive data structures



What is garbage collection?

Garbage collection
automatic management of dynamically allocated storage
performed at run-time

Terminology
mutator = user program



Reachability

Program variables and heap-allocated records form a
directed graphs
Local and global variables are roots of this graph

Liveness
A record in the heap is live if its address is held in a root, or
there is a pointer to it held in another live heap record.

live = {n ∈ Records|(∃r ∈ Roots : r → n)∨(∃m ∈ live : m → n)}

Requirement: no random access to locations in address
space
(safe) approximation



Outline

1 Introduction
Types of storage

2 Reference counts

3 Mark-and-Sweep

4 Copying Collection

5 Generational Collection

6 Incremental and Concurrent Collection

7 Integration with compiler



Reference counting

Idea: keep track during execution how many pointers to a
record exist!

For each access x.f i <- p

1 z <- x.f_i
2 z.count <- z.count-1
3 if z.count=0
4 putOnFreelist(z)
5 x.f_i <- p
6 p.count <- p.count+1

1 function putOnFreeList(p)
2 for all fields f_i of p
3 p.f_i.count <- p.f_i.count-1
4 if p.f_i.count=0 putOnFreelist(p.f_i)
5 p.f_1 <- freelist
6 freelist <- p



Problems

cycles of garbage cannot be reclaimed
require programmer to break cycles explicitly
combine reference counting with occasional
mark-and-sweep

counters are expensive
aggregate changes to counters via data flow analysis



Outline

1 Introduction
Types of storage

2 Reference counts

3 Mark-and-Sweep

4 Copying Collection

5 Generational Collection

6 Incremental and Concurrent Collection

7 Integration with compiler



Mark-and-Sweep Collection

global traversal of all live objects to determine which ones
maybe reclaimed
only started when available storage is exhausted
depth-first search marks all reachable nodes
freelist contains pointers to available storage



Algorithm

Mark phase

1 for each root v
2 DSF(v)
3

4 function DFS(x)
5 if x is pointer into heap to record p
6 if record p is not marked
7 mark p
8 for each field f_i of record p
9 DFS(p.f_i)



Algorithm

Sweep phase

1 p <- first address in heap
2 while p < last address in heap
3 if record p is marked
4 unmark
5 else let f_1 be the first field in p
6 p.f_1 <- freelist
7 freelist <- p
8 p <- p + (size of record p)



Costs

R = words of reachable data
H = size of heap

Analysis
Mark phase: O(R)

Sweep phase: O(H)

Regained memory: H − R
Amortized cost:

c1R + c2H
H − R



Pointer reversal

1 function DSF(x)
2 if x is a pointer and record x is not marked
3 t <- nil
4 mark x; done[x] = 0
5 while true
6 i <- done[x]
7 if i < number of fields in record x
8 y <- x.f_i
9 if y is a pointer and record y not marked
10 x.f_i <- t; t <- x; x <- y
11 mark x; done[x] = 0
12 else
13 done[x] <- i+1
14 else
15 y <- x; x <- t
16 if x = nil then return
17 i <- done[x]
18 t <- x.f_i; x.f_i <- y
19 done[x] <- i+1



Issues

organizing the freelist
array of several freelists
freelist[i] points to linked list of all records of size i
if freelist[i] is empty, grab entry from freelist[j]
(j > i) putting unused portion back to freelist[j-i]

fragmentation



Outline

1 Introduction
Types of storage

2 Reference counts

3 Mark-and-Sweep

4 Copying Collection

5 Generational Collection

6 Incremental and Concurrent Collection

7 Integration with compiler



Copying collection

Idea: build an isomorphic, compact image of the heap
Partition heap into from-heap and to-heap
Use from-heap to allocate data
When invoking garbage collection, move all reachable data
to to-heap
Everything left is garbage
Reverse role of to-heap and from-heap

To-space copy is compact ⇒ no fragmentation



Cheney’s Algorithm

Breadth-first copying

1 scan <- next <- beginning of to-space
2 for each root r
3 r <- Forward(r)
4 while scan < next
5 for each field f_i of record at scan
6 scan.f_i <- Forward(scan.f_i)
7 scan <- scan + (size of record at scan)



Cheney’s Algorithm

Forwarding a pointer

1 function Forward(p)
2 if p points to from-space
3 then if p.f_1 points to to-space
4 then return p.f_1
5 else for each field f_i of p
6 next.f_i <- p.f_i
7 p.f_1 <- next
8 next <- next + (size of record p)
9 return p.f_1
10 else return p



Locality of references

Records that are copied near each other have the same
distance from the roots
If record p points to record s, they will likely be far apart
⇒ bad caching behavior
But: depth-first copying requires pointer-traversal
hybrid solution: use breadth-first copying, but take direct
children into account



Locality of references

1 function Forward(p)
2 if p points to from-space
3 then if p.f_1 points to to-space
4 then return p.f_1
5 else Chase(p); return p.f_1
6 else return p
7

8 function Chase(p)
9 repeat
10 q <- next
11 next <- next + (size of record p)
12 r <- nil
13 for each field f_i of record p
14 q.f_i <- p.f_i
15 if q.f_i points to from-space
16 and q.f_i.f_1 does not point to to-space
17 then r <- q.f_i
18 p.f_1 <- q
19 p <- r
20 until p = nil



Costs

Analysis
Breadth-first search: O(R)
Regained memory: H/2 - R
Amortized cost:

c3R
H
2 − R

Realistic setting: H = 4R
high costs for copying!



Outline

1 Introduction
Types of storage

2 Reference counts

3 Mark-and-Sweep

4 Copying Collection

5 Generational Collection

6 Incremental and Concurrent Collection

7 Integration with compiler



Generational Collection

Hypothesis: newly created objects are likely to die soon
(infant mortality ); if it survived several collection cycles, it is
likely to survive longer
Idea: collector concentrates on younger data
Divide the heap into generations
G0 contains the most recently allocated data, G1, G2, . . .
contain older objects
Enlarge the set of roots to also include pointers from
G1, G2 . . . to G0:

need to track updating of fields
use a remembered list/set to collect updated objects and
scan this for root pointers at garbage collection



Generational Collection

Use same system to garbage collect also older
generations.
Move objects from Gi to Gi+1 after several collections.
Each older generation should be exponentially bigger than
the previous one.
Possible to use the virtual memory system:

Updating an old generation sets a dirty bit for the
corresponding page
If OS does not make dirty bits available, the user program
can use write-protection for the page and implement
user-mode fault handler for protection violations



Outline

1 Introduction
Types of storage

2 Reference counts

3 Mark-and-Sweep

4 Copying Collection

5 Generational Collection

6 Incremental and Concurrent Collection

7 Integration with compiler



Incremental and concurrent collection

Collector might interrupt the program for a long time
undesirable for interactive or real-time programs
Idea: interleave gc work with program execution

Incremental collection: collector only operates when mutator
requires it

Concurrent collection: collector operates between or during the
program execution



Tricolor marking

White objects are not yet visited.
Grey are visited, but their children not yet.
Black are marked as well as their children.

Basic algorithm

1 color all objects white
2 for each root r
3 if r points to an object p
4 color p grey
5 while there are any grey objects
6 select a grey record p
7 for each field f_i of p
8 if record p.f_i is white
9 color record p.f_i grey
10 color record p black



Tricolor marking

Invariants
1 No black object points to a white object.
2 Every grey object is on the collector’s (stack or queue) data

structure.

Mutator must not violate these invariants.
Synchronization of mutator and collector is necessary.



Write-barrier Algorithms

Whenever the mutator stores a white pointer a into a black
object b, it colors a grey. (⇒ a reachable)
Whenever the mutator stores a white pointer into a black
object, it colors b grey. (⇒ check b again)



Read-barrier Algorithms

All-black pages are marked read-only in the memory
system. Whenever the mutator stores any value into an
all-black page, a page fault marks all objects on that page
grey.
Whenever the mutator fetches a pointer b to a white object,
it colors b grey.
Whenever the mutator fetches a pointer b from any
memory page containing a non-black object, a page-fault
handler colors every object on the page black (making
children of these objects grey).



Baker’s Algorithm

When starting new gc cycle: Flip
1 Swap roles of from-space and to-space.
2 Forward all roots to to-space.
3 Resume mutator.

For each allocation:
1 Scan a few pointers at scan.
2 Allocate new record at the end of to-space.
3 When scan reaches next, terminate gc for this cycle.

For each fetch:
1 Check if fetched pointer points to from-space.
2 If so, forward pointed immediately.



Outline

1 Introduction
Types of storage

2 Reference counts

3 Mark-and-Sweep

4 Copying Collection

5 Generational Collection

6 Incremental and Concurrent Collection

7 Integration with compiler



Interface to the compiler

Compiler interacts with GC by
generating code for allocating data
describing locations of roots
describing data layout on heap
implementing read/write barriers



Fast allocation

Example: Allocating record of size N when using copying
collection:

1 Call the allocate function.
2 Test next + N < limit? ⇒ If not, call gc.
3 Move next into result
4 Clear memory locations next, ..., next+N-1

5 next <- next + N

6 Move result into required place.
7 Store values into the record.



Fast Allocation

How much data is allocated on average?
approximately one word of allocation per store instruction
1/7 of all instructions are stores

Possible optimization:
Inline the allocate function.
Move result directly into the right register.
Combine clearing and initialization of fields.
Allocate data for a whole block to minimize tests.



Data layouts

Save for every heap object a pointer to its
class-/type-descriptor

What is the total size of this object?
Which fields are pointers?
(For dynamic method lookup: vtable)

Save all pointer-containing temporaries and local variables
in a pointer map

different at every program point ⇒ save it only at calls to
alloc and function calls
Collector starts at top of stack and scans all frames,
handling all the pointers in that frame as saved in the
pointer-map entry for this frame
Information about callee-save registers need to be
transfered to callee.



Literature

Jones, R. and Lins, R. Garbage Collection. Algorithms for
Automatic Dynamic Memory Management. John Wiley &
Sons, Chichester, England (1996).


	Introduction
	Types of storage

	Reference counts
	Mark-and-Sweep
	Copying Collection
	Generational Collection
	Incremental and Concurrent Collection
	Integration with compiler

