
Compiler Construction 2009/2010
Instruction Selection

Peter Thiemann

December 1, 2009



Optimal vs Optimum Tiling

Optimal Tiling
No two adjacent tiles can be replaced by a larger tile of lower
cost.

Optimum Tiling
The total cost of the tiling is minimal among all possible tilings.

Tiling is optimum⇒ tiling is optimal



Implementation of Optimal Tiling
Maximal Munch Algorithm (Top Down)

Temp munchExpr (Tree.Exp e) {
test patterns from largest to smallest

choose the first matching pattern
with instruction INS

foreach (e_i : wildcard (pattern, e))
recursively invoke temp_i = munchExpr (e_i)

emit INS using temp_i as arguments
putting result into new temp_0

return temp_0
}



Optimum Tiling
Example

MEM

+

CONST1 CONST2

pattern instr tile cost wildcard cost total cost
CONST ADDI 1 0 1



Optimum Tiling
Example (cont’d)

pattern instr tile cost wildcard cost total cost
+

ADD 1 1+1 3
+

CONST ADDI 1 1 2
+

CONST ADDI 1 1 2



Optimum Tiling
Example (cont’d)

pattern instr tile cost wildcard cost total cost
MEM

LOAD 1 2 3
MEM

+

CONST LOAD 1 1 2
MEM

+

CONST ADDI 1 1 2



Optimum Tiling
Emitted Code

ADDI r1 ← r0 + 1
LOAD r1 ← M[r1 + 2]



Implementation of Optimum Tiling
Dynamic Programming (Bottom Up)

void matchExpr (Tree.Exp e) {
for (Tree.Exp kid : e.kids())
matchExpr (kid);

cost = INFINITY
for each pattern P_i
if (P_i.matches (e)) {
cost_i = cost(P_i)

+ sum ((wildcard (P_i, e)).mincost)
if (cost_i < cost) { cost = cost_i; choice = i; }

}
e.matched = P_{choice}
e.mincost = cost

}



Implementation of Optimum Tiling
Collecting the Match (Top Down)

Temp emission (Tree.Exp e) {
foreach (e_i : wildcard (e.matched, e)) {
temp_i = emission (e_i)

}

emit INS using temp_i as arguments
putting result into new temp_0

return temp_0
}



Implementation of Pattern Matching

Additional side conditions (e.g., size of constants, special
constants)
Matching of patterns can be done with a decision tree that
avoids checking the same node twice
The bottom up matcher can remember partial matches and
avoid rechecking the same nodes

⇒ tree automata



Tree Automata

A bottom-up tree automaton isM = (Q,Σ, δ,F ) where
Q is a finite set of states
Σ a ranked alphabet (the tree constructors)
δ ⊆ Σ(n) ×Qn ×Q (∀n) the transition relation
F ⊆ Q the set of final states

M is deterministic if δ is a function.

Define⇒ on TΣ+Q by

t [F (q1, . . . ,qn)]⇒ t [q0] if (F ,q1, . . . ,qn,q0) ∈ δ

t ∈ L(M) if t ⇒∗ q with q ∈ F



Tree Automata
Example

Tree automaton for

MEM

+

CONST

Q = {qt ,qc ,qa,qm}
F = {qm}
δ = Σ q1 q2 qout

CONST qc

TEMP qt

+ qc qt qa

MEM qa qm



Optimum Tiling with Tree Automata

Generate a bu tree automaton for each pattern
Simulate them in parallel on expression tree
At each node

determine all patterns whose root matches the current node
compute their cost and mark the node with the minimum
cost pattern

There are tools to compile a pattern specification to such
an automaton⇒ BURG (Fraser, Hanson, Proebsting)



Tree Grammars

Extension: Different pattern sets leading to different kinds
of results
Some architectures habe different kinds of registers that
obey different restrictions
Set of patterns for each kind of register
Example: M680x0 distinguishes data and address
registers, only the latter may serve for address calculations
and indirect addressing

⇒ Tree grammar needed



Tree Grammars
Definition

A context-free tree grammar is defined by G = (N,Σ,P,S)
where

N is a finite set of non-terminals
Σ is a ranked alphabet
S ∈ N is the start symbol
P ⊆ N × TΣ+N

Define⇒ on TΣ+N by

t [A]⇒ t [r ] in A→ r ∈ P

t ∈ L(G) if S ⇒∗ t ∈ TΣ



Tree Grammars
Example: The Schizo-Jouette Architecture (Excerpt)

Instruction Effect Pattern

ADD di ← dj + dk

D → +

D D

ADDI di ← dj + c

D → +

D CONST

MOVEA di ← aj D → A
MOVED ai ← dj A→ D

LOAD di ← M[aj + c]

D → MEM

+

A CONST



Efficiency of Tiling

N number of nodes in input tree
T number of patterns
K average number of labeled nodes in pattern
K ′ maximum number of nodes to check for a match
T ′ average number of patterns that match at each node
Maximal munch. Each match consumes K nodes: test for
matches at N/K nodes. At each candidate node, choose
pattern with K ′ + T ′ tests.
(K ′ + T ′)N/K steps on average. Worst case: K = 1.
Dynamic programming. Tests every pattern at every
node: (K ′ + T ′)N.

⇒ same linear worst-case complexity. (K ′ + T ′)/K is
constant, anyway.



CISC vs RISC
Challenges for Instruction Selection and Register Allocation

RISC CISC
32 registers few registers (16, 8, 6)
one class of registers different classes with re-

stricted operations
ALU instructions only be-
tween registers

ALU operations with mem-
ory operands

three-adress instructions
r1 ← r2 ⊕ r3

two-address instructions
r1 ← r1 ⊕ r2

one addressing mode for
load/store

several addressing modes

every instruction 32 bits long different instruction lengths
one result / instruction instructions w/ side effects



CISC Examples

Pentium / x86 (32-bit)
six GPR, sp, bp
multiply / divide only on eax

generally two-address instructions

MC 680x0 (32-bit)
8 data registers, 7 address registers, 2 stack registers
ALU operations generally on data registers, indirect
addressing only through address registers
generally two-address instructions
esoteric addressing modes (68030)



Challenges

[Few Registers] generate temporaries and rely on register
allocation
[Restricted Registers] generate extra moves and hope
that register allocation can get rid of them. Example:

Multiply on Pentium requires one operand and destination
in eax
Most-significant word of result stored to edx

Hence for t1 ← t2 · t3 generate

mov eax,t2 eax← t2
mul t3 eax← eax · t3; edx← garbage
mov t1, eax t3 ← eax



Challenges II

[Two-address instructions]
Generate extra move instructions.
For t1 ← t2 + t3 generate

mov t1, t2 t1 ← t2
add t1, t3 t1 ← t1 + t3;

[Special addressing modes]
Example: memory addressing

mov eax,[ebp-8]
add eax, ecx add [ebp-8], ecx
mov [ebp-8], eax

Two choices:
1 Ignore and use separate load and store instructions. Same

speed, but an extra register gets trashed.
2 Avoid register pressure and use addressing mode. More

work for the pattern matcher.



Challenges III

[Variable-length instructions]
No problem for instruction selection or register allocation.
Assembler deals with it.
[Instructions with side effects]
Example: autoincrement after memory fetch (MC 680x0)

r2 ← M[r1]; r1 ← r1 + 4

Hard to incorporate in tree-pattern based instruction
selection.

1 Ignore. . .
2 Ad-hoc solution
3 Different algorithm for instruction selection



Abstract Assembly Language
Output of Instruction Selection

Class hierarchy for representing instructions

Instr

OPER MOVE LABEL

Each instruction specifies a
set of defined temporaries
set of used temporaries
set of branch targets

each of which may be empty



Abstract Assembly Language
Creating an Operation

MEM

+

TEMP fp CONST 8

new OPER ("LOAD ’d0 <- M[’s0+8]",
L (new Temp(), null),// targets: defined
L (frame.FP, null)); // sources: used

Independent of register allocation and jump labels



Abstract Assembly Language
Important

An operation’s def and use set must account for all defined and
used registers.

Example: the multiplication instruction on Pentium
new OPER ("mul ’s0",

L (pentium.EAX, L (pentium.EDX, null)),
L (argTemp, L (pentium.EAX, null)));

Example: a procedure call trashes many registers (see the
calling convention of the architecture)

return address
return-value register
caller-save registers


