
Semantic Analysis

The compilation process is driven by the syntactic structure of the
program as discovered by the parser

Semantic routines perform static analysis:

• interpret meaning of the program based on its syntactic structure

• associated with individual productions of a context free grammar or
subtrees of a syntax tree

• two purposes:

– finish analysis by deriving context-sensitive information

– begin synthesis by generating the IR or target code

Copyright c©2010 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and full citation on the first page. To
copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or fee. Request permission to publish from hosking@cs.purdue.edu.

1



Context-sensitive analysis

What context-sensitive questions might the compiler ask?

1. Is x scalar, an array, or a function?

2. Is x declared before it is used?

3. Are any names declared but not used?

4. Which declaration of x does this reference?

5. Is an expression type-consistent?

6. Does the dimension of a reference match the declaration?

7. Where can x be stored? (heap, stack, . . .)

8. Does *p reference the result of a malloc()?

9. Is x defined before it is used?

10. Is an array reference in bounds?

11. Does function foo produce a constant value?

12. Can p be implemented as a memo-function?

These cannot be answered with a context-free grammar
2



Context-sensitive analysis

Why is context-sensitive analysis hard?

• answers depend on values, not syntax

• questions and answers involve non-local information

• answers may involve computation

Several alternatives:

abstract syntax tree specify non-local computations
(attribute grammars) automatic evaluators

symbol tables central store for facts
express checking code

language design simplify language
avoid problems

3



Symbol tables

For compile-time efficiency, compilers use a symbol table:

associates lexical names (symbols) with their attributes

What items should be entered?

• variable names

• defined constants

• procedure and function names

• literal constants and strings

• source text labels

• compiler-generated temporaries (we’ll get there)

Separate table for structure layouts (types) (field offsets and lengths)

A symbol table is a compile-time structure
4



Symbol table information

What kind of information might the compiler need?

• textual name

• data type

• dimension information (for aggregates)

• declaring procedure

• lexical level of declaration

• storage class (base address)

• offset in storage

• if record, pointer to structure table

• if parameter, by-reference or by-value?

• can it be aliased? to what other names?

• number and type of arguments to functions

5



Scope

The scope of a definition of identifier x is the part of the program where a
(non-definition) occurrence of x may refer to this definition.

⇒ semantic analysis must map each occurrence of an identifier to its
definition.

Example: Scopes in Java

• public class: entire program

• class: classes in package

• public, (default), protected, private fields

• local variables: just in the enclosing block

6



Visibility

A definition of an identifier x may be in scope, but not visible.

A definition of x is shadowed at some program point if there is another
intervening enclosing definition of x.

7



Visibility example

class Outer {

int a, b; // (1)

static class P {

int a, c; // (2)

// def of a at (1) shadowed

// def of c at (3) shadowed

}

int c, d; // (3)

static class Q {

int a, d; // (4) shadows (1)a, (3)d

static class R {

int a, c; // (5) shadows (4)a, (3)c

}

}

}

8



Nested scopes: block-structured symbol tables

What information is needed?

• when asking about a name, want most recent declaration

• declaration may be from current scope or outer scope

• innermost scope overrides outer scope declarations

9



Nested scopes

Key point: new declarations (usually) occur only in current scope

What operations do we need?

operation comment frequency

void put (Symbol key, Object value) bind key to value rare

Object get(Symbol key) return value bound to key frequent

void beginScope() remember current state of
table

very rare

void endScope() close current scope and
restore table to state at
most recent open begin-
Scope

very rare

10



Data structure for block-structured symbol table

Idea:

• Each identifier points to a stack of entries pointing to the definitions in
scope with the currently visible one at the head.

• These entries have a secondary list structure that connects all entries
defined in the same scope.

• A stack of open scopes consisting of entries that contain the entry
points of the secondary list structure.

11



Operations

• beginScope() push a new entry on the stack of open scopes

• put (key, value) push a new entry on the stack for key, insert
entry into list of current scope

• get (key) obtain top entry from stack for key

• endScope() pop entry from stack of open scopes, following the list in
this entry pop the top entry in each concerned stack

12



[Intentionally left blank]

13



Attribute information

Attributes are internal representation of declarations

Symbol table associates names with attributes

Names may have different attributes depending on their meaning:

• variables: type, procedure level, frame offset

• types: type descriptor, data size/alignment

• constants: type, value

• procedures: formals (names/types), result type, block information
(local decls.), frame size

14



Type expressions

Type expressions are a textual representation for types:

1. basic types: boolean, char, int, float, etc.

2. type names

3. constructed types (constructors applied to type expressions):

(a) array(T ) denotes array of elements type T
(potentially, there is also an index type I, e.g.,
array(1 . . .10, integer))

(b) classes: fields have names and visibilities
e.g., class((a : int),(b : float))

(c) D→ R denotes type of method mapping domain D to range R
e.g., int× int→ int

15



Type compatibility

Type checking needs to determine type equivalence

Two approaches:

Name equivalence: each type name is a distinct type

Structural equivalence: two types are equivalent iff they have the same
structure (after substituting type expressions for type names)

• s≡ t iff. s and t are the same basic types

• array(s)≡ array(t) iff. s≡ t

• s1× s2 ≡ t1× t2 iff. s1 ≡ t1 and s2 ≡ t2

• s1→ s2 ≡ t1→ t2 iff. s1 ≡ t1 and s2 ≡ t2

16



Java inheritance: field shadowing

• Fields declared in a subclass can shadow fields declared in
superclasses

• Consider:

class A { int j; }

class B extends A { int j; }

A a = new A();// let’s call this object X

// X has one field, named j, declared in A

a.j = 1; // assigns 1 to the field j of X declared in A

a = new B(); // let’s call this object Y

// Y has two fields, both named j,

// one declared in A, the other in B

a.j = 2; // assigns 2 to the field j of Y declared in A

B b = a;

b.j = 3; // assigns 3 to the field j of Y declared in B

17



Java inheritance: method overriding

• Methods declared in subclasses can override methods declared in
superclasses

• Overriding is same name used to name a different thing, regardless
of context, such as methods in subclasses with the same name

• Consider:

class A { int j; void set_j(int i) { this.j = i; }

class B extends A { int j; void set_j(int i) { this.j = i; }

A a = new A();// let’s call this object X

a.set_j(1); // assigns 1 to the field j of X declared in A

// i.e., invokes A set_j method

a = new B(); // let’s call this object Y

a.set_j(2); // assigns 2 to the field j of Y declared in B

// i.e., invokes B set_j method

B b = a;

b.set_j(3); // assigns 3 to the field j of Y declared in B

// i.e. invokes B set_j method

18



Java method overloading

• Java also supports method overloading, which has nothing to do with
inheritance

• In Java, the “name” of a method includes the number and the types of
the method’s arguments.

• Consider:

class A {

int j;

boolean b;

void set(int i) { this.j = i; }

void set(boolean b) { this.j = b; }

}

• Don’t confuse method overloading with method overriding

19


