
Chapter 3Semanti
 Analysis3.1 Attribute GrammarsA parser whi
h is just a re
ognizer is not su�
ient for a
ompiler�its output
onveysnothing about the nature of the parsed input, just whether it belongs to the languagede�ned by the underlying grammar. In a
ompiler, a parser needs to
ommuni
atethe parse tree it has internally generated. Hen
e, this se
tion introdu
es an extendednotion of a
ontext-free grammar: the attribute grammar. An attribute grammarasso
iates additional values (the attribute instan
es) with the nodes of a parse tree,and rules that relate them to ea
h other. A parser in a
ompiler
omputes thevalues of the attribute instan
es and return them to the
aller.Attribute grammars
arry a
onsiderable amount of notational
lutter. Someexamples illustrate the
entral ideas.Consider again the grammar for
onstant arithmeti
 expressions. For te
hni
alreasons, only one number has a literal: 42. An attribute grammar
an des
ribe howto a
tually
ompute the value of su
h an expression.hexpi ::= htermi hexpi:v = htermi:vj htermi + hexpi hexp1i:v = htermi:v + hexp2i:vj htermi - hexpi hexp1i:v = htermi:v � hexp2i:vhtermi ::= hprodi htermi:v = hprodi:vj hprodi * htermi hterm1i:v = hprodi:v � hterm2i:vj hprodi / htermi hterm1i:v = hprodi:v=hterm2i:vhprodi ::= 42 hprodi:v = 42j (hexpi) hprodi:v = hexpi:vhbiti ::= 0 hbiti:v = 0j 1 hbiti:v = 2hbiti:shbitsi ::= hbiti hbitsi:v = hbiti:v; hbiti:s = hbitsi:s; hbitsi:l = 1j hbitsi hbiti hbits1i:v = hbits2i:v + hbiti:v; hbiti:s = hbits1i:s;hbits2i:s = hbits1i:s+ 1; hbits1i:l = hbits2i:l+ 1hnumi ::= hbitsi hnumi:v = hbitsi:v; hbitsi:s = 0j hbitsi . hbitsi hnumi:v = hbits1i:v + hbits2i:v; hbits1i:s = 0;hbits2i:s = �hbits2i:l57

58 CHAPTER 3. SEMANTIC ANALYSIS3.1.1 Notation3.1 De�nition (Position)A position identi�es an o

urren
e of a grammar symbol within a grammar pro-du
tion. The symbol is identi�ed by a Æ dire
tly in front of it. Thus, hÆA! �iidenti�es the left-hand side A, whereas hA! �ÆX�i identi�es the X .3.2 De�nition (Attribute grammar)Let Att be a set of attributes.An attribute grammar is a tuple (G; Syn; Inh;R; D) where� G = (N;T; P; S) is a
ontext-free grammar,� Syn : N ! P(Att) spe
i�es for ea
h nonterminal A the set Syn(A) of synthe-sized attributes,� Inh : N ! P(Att) de�nes for ea
h nonterminal A the set Inh(A) of inheritedattributes,� R is a family of attribution rules, and� D = (Da)a2Att is a family of attribute domains su
h that Da is the set ofpossible values for an attribute named a.For ea
h A, it holds that Syn(A) \ Inh(A) = ? and Att(A) := Inh(A) [Syn(A) isthe set of attributes of A.An attribute o

urren
e is a pair p:a
onsisting of a position in a produ
tionand an attribute. An attribute o

urren
e must either have the form hÆA! �i :awith a 2 Att(A) or hA!
ÆBÆi :a with a 2 Att(B).The o

urren
es of a produ
tion fall into two
lasses: the de�ning o

urren
esDef(A! �) and the applied o

urren
es App(A! �).Def(A! �) :=fhÆA! �i :a j a 2 Syn(A)g[fhA!
ÆBÆi :a j � =
BÆ ^ a 2 Inh(B)gApp(A! �) :=fhÆA! �i :a j a 2 Inh(A)g[fhA!
ÆBÆi :a j � =
BÆ ^ a 2 Syn(B)gEa
h de�ning o

urren
e p:a 2 Def(A! �) has an asso
iated attribution rulep:a = fp:a(p1:a1; : : : ; pm:am)where m is some natural number asso
iated with p:a, and all pj :aj 2 App(A! �)are applied attribute o

urren
es for the same produ
tion. fp:a must be a fun
tionDa1 � � � � � Dam ! Da. R is the family of all su
h attribution rules, indexed bythe de�ning attribute o

urren
es. 2The attribute dependen
ies of the grammar a

ording to the above de�nition arein Bo
hmann normal form [Bo
76℄: Inherited attributes depend only on attributes�above� them in the parse tree, synthesized attributes on those �below�. An attributegrammar assigns a meaning to a derivation tree by pres
ribing how to label its nodes.3.3 De�nition (Derivation tree)A derivation tree for a
ontext-free grammar (N;T; P; S) is a �nite, ordered, dire
tedtree with node set V su
h that ea
h node is labeled with a produ
tion. Furthermore� if node v0 is labeled with A0 ! A1 : : : An, then v0 must have n su

essorsv1; : : : ; vn su
h that vi is labeled with Ai ! �i,

3.1. ATTRIBUTE GRAMMARS 59
PSfrag repla
ements

A
X1 Xn

Figure 3.1: A grammar attribution� in a full derivation tree, the root node is labeled with a start produ
tionS ! �.3.4 De�nition (Attribute de
oration)An attribute de
oration asso
iates with ea
h node v in a derivation tree, whi
h islabeled with produ
tion A! �, an attribute instan
e v:a 2 Da for ea
h a 2 Att(A).An attribute de
oration is valid if for ea
h node v0, whi
h is labeled with A0 !A1 : : : An and has su

essors v1; : : : ; vn, and for ea
h de�ning o

urren
e p0:a 2Def(A0 ! A1 : : : An) with asso
iated attribution rulep0:a = fp0:a(p1:a1; : : : ; pm:am)it holds that vi0 :a = fp0:a(vi1 :a1; : : : ; vim :am)where position pj identi�es nonterminal o

urren
e Aij and thus node vij . 2Hen
e, an attribute grammar G with start produ
tion S ! A de�nes a meaningfun
tion M : T � �DInh(A) ! DSyn(S). For � 2 L(G), M(�; v1; : : : ; vj Inh(A)j) seedsthe derivation tree with attribute instan
es for the inherited attributes of A andyields instan
es of the synthesized attributes of S that result from the de
orationof the derivation tree.3.1.2 Computing a De
orationThere are many te
hniques for a
tually produ
ing su
h a de
oration of a derivationtree, some of them quite involved. It is, however, obviously desirable to generatethe de
oration during parsing. After all, the meaning fun
tion is only interestedin the attribute instan
es of the start produ
tion; the derivation tree itself is notpart of it. Hen
e,
omputing the de
oration during parsing
ould avoid having tostore the tree. Unfortunately, general attribute grammars may require the wholederivation tree to be present for performing attribute evaluation; the attribute rulesmay, after all, generate
ir
ularities.Therefore, it is ne
essary to restri
t the
lass of attribute grammars su
h thatthey be
ome amenable to �on-the-�y� attribute evaluation. Two parti
ular waysof formulating suitable restri
tions on attribute grammars are L-attributed and S-attributed grammars.

60 CHAPTER 3. SEMANTIC ANALYSIS3.5 De�nition (L-attributed grammar)An L-attributed grammar is an attribute grammar where, for ea
h ruled = fd(a1; : : : ; aid)with d of the form hA! �ÆB�i :a (with a 2 Inh(B)), ea
h aj either has the formhÆA! �B�i :a (with a 2 Inh(A)) or hA!
ÆCÆB�i :a (with
CÆ = � and a 2Syn(C)). (Rules with d of the form hÆA! �i :a have no restri
tions.)In an L-attributed grammar, any attribute o

urren
e may only depend on o

ur-ren
es to its left (hen
e L-attributed). Sin
e a re
ursive-des
ent parser pro
eedsfrom left to right in grammar rules, L-attributed grammars lend themselves to on-the-�y attribute evaluation by re
ursive-des
ent parsers.14 ExampleConsider a fragment of a re
ursive des
ent parser for the grammar rule A !A1 : : : Am. The parse fun
tion for A takes the input string and the inherited at-tributes of A as parameters and returns remaining string and the synthesized at-tributes of A as a result. For simpli
ity, we assume that there is only one synthesizedattribute, s, and one inherited attribute, i.[A℄ : T � � Inh(A) ! T � � Syn(A)[A℄(�; inh) = let inh1 = fhA!ÆA1:::Ami:i(inh) inlet (�1; syn1) = [A1℄(�; inh1) inlet inh2 = fhA!A1ÆA2:::Ami:i(inh ; syn1) in...let (�m; synm) = [Am℄(�m�1; inhm) in(�m; fhÆA!A1:::Ami:s(inh ; syn1; : : : ; synm)) 2However, L-attributed grammars present problems for re
ursive-as
ent parsers:As a re
ursive-as
ent parser pro
eeds, it always has to keep several di�erent pro-du
tions �in mind,� ea
h of whi
h may have
ompletely di�erent attribute rules. Ittherefore would have to evaluate all of them in parallel�and thus do mu
h super�u-ous work. Therefore, re
ursive-as
ent parsers usually restri
t the
lass of attributegrammars they a

ept even further: they simply do not allow inherited attributes.3.6 De�nition (S-attributed grammar)An S-attributed grammar is an attribute grammar (G;S; I;R; D) with Inh(A) = ?for all A 2 N .For an S-attributed grammar, attribute evaluation always �ows upwards in thederivation tree: no
ir
ularities may o

ur, all dependen
ies point in the same di-re
tion. Be
ause of this, it is a
tually su�
ient to have just one synthesized attributeper nonterminal�multiple attributes are easily simulated by using aggregate valuessu
h as re
ords. Therefore, the rest of this se
tion assumes Syn(A) = fvg for allA 2 N . Also, for simpli
ity of the presentation, fhA!�i:v always has j�j arguments.Terminals simply yield some reserved value ? as their attribute whi
h may not beused.

