
Chapter 3Semanti Analysis3.1 Attribute GrammarsA parser whih is just a reognizer is not su�ient for a ompiler�its output onveysnothing about the nature of the parsed input, just whether it belongs to the languagede�ned by the underlying grammar. In a ompiler, a parser needs to ommuniatethe parse tree it has internally generated. Hene, this setion introdues an extendednotion of a ontext-free grammar: the attribute grammar. An attribute grammarassoiates additional values (the attribute instanes) with the nodes of a parse tree,and rules that relate them to eah other. A parser in a ompiler omputes thevalues of the attribute instanes and return them to the aller.Attribute grammars arry a onsiderable amount of notational lutter. Someexamples illustrate the entral ideas.Consider again the grammar for onstant arithmeti expressions. For tehnialreasons, only one number has a literal: 42. An attribute grammar an desribe howto atually ompute the value of suh an expression.hexpi ::= htermi hexpi:v = htermi:vj htermi + hexpi hexp1i:v = htermi:v + hexp2i:vj htermi - hexpi hexp1i:v = htermi:v � hexp2i:vhtermi ::= hprodi htermi:v = hprodi:vj hprodi * htermi hterm1i:v = hprodi:v � hterm2i:vj hprodi / htermi hterm1i:v = hprodi:v=hterm2i:vhprodi ::= 42 hprodi:v = 42j (hexpi) hprodi:v = hexpi:vhbiti ::= 0 hbiti:v = 0j 1 hbiti:v = 2hbiti:shbitsi ::= hbiti hbitsi:v = hbiti:v; hbiti:s = hbitsi:s; hbitsi:l = 1j hbitsi hbiti hbits1i:v = hbits2i:v + hbiti:v; hbiti:s = hbits1i:s;hbits2i:s = hbits1i:s+ 1; hbits1i:l = hbits2i:l+ 1hnumi ::= hbitsi hnumi:v = hbitsi:v; hbitsi:s = 0j hbitsi . hbitsi hnumi:v = hbits1i:v + hbits2i:v; hbits1i:s = 0;hbits2i:s = �hbits2i:l57

58 CHAPTER 3. SEMANTIC ANALYSIS3.1.1 Notation3.1 De�nition (Position)A position identi�es an ourrene of a grammar symbol within a grammar pro-dution. The symbol is identi�ed by a Æ diretly in front of it. Thus, hÆA! �iidenti�es the left-hand side A, whereas hA! �ÆX�i identi�es the X .3.2 De�nition (Attribute grammar)Let Att be a set of attributes.An attribute grammar is a tuple (G; Syn; Inh;R; D) where� G = (N;T; P; S) is a ontext-free grammar,� Syn : N ! P(Att) spei�es for eah nonterminal A the set Syn(A) of synthe-sized attributes,� Inh : N ! P(Att) de�nes for eah nonterminal A the set Inh(A) of inheritedattributes,� R is a family of attribution rules, and� D = (Da)a2Att is a family of attribute domains suh that Da is the set ofpossible values for an attribute named a.For eah A, it holds that Syn(A) \ Inh(A) = ? and Att(A) := Inh(A) [Syn(A) isthe set of attributes of A.An attribute ourrene is a pair p:a onsisting of a position in a produtionand an attribute. An attribute ourrene must either have the form hÆA! �i :awith a 2 Att(A) or hA! ÆBÆi :a with a 2 Att(B).The ourrenes of a prodution fall into two lasses: the de�ning ourrenesDef(A! �) and the applied ourrenes App(A! �).Def(A! �) :=fhÆA! �i :a j a 2 Syn(A)g[fhA! ÆBÆi :a j � = BÆ ^ a 2 Inh(B)gApp(A! �) :=fhÆA! �i :a j a 2 Inh(A)g[fhA! ÆBÆi :a j � = BÆ ^ a 2 Syn(B)gEah de�ning ourrene p:a 2 Def(A! �) has an assoiated attribution rulep:a = fp:a(p1:a1; : : : ; pm:am)where m is some natural number assoiated with p:a, and all pj :aj 2 App(A! �)are applied attribute ourrenes for the same prodution. fp:a must be a funtionDa1 � � � � � Dam ! Da. R is the family of all suh attribution rules, indexed bythe de�ning attribute ourrenes. 2The attribute dependenies of the grammar aording to the above de�nition arein Bohmann normal form [Bo76℄: Inherited attributes depend only on attributes�above� them in the parse tree, synthesized attributes on those �below�. An attributegrammar assigns a meaning to a derivation tree by presribing how to label its nodes.3.3 De�nition (Derivation tree)A derivation tree for a ontext-free grammar (N;T; P; S) is a �nite, ordered, diretedtree with node set V suh that eah node is labeled with a prodution. Furthermore� if node v0 is labeled with A0 ! A1 : : : An, then v0 must have n suessorsv1; : : : ; vn suh that vi is labeled with Ai ! �i,

3.1. ATTRIBUTE GRAMMARS 59
PSfrag replaements

A
X1 Xn

Figure 3.1: A grammar attribution� in a full derivation tree, the root node is labeled with a start produtionS ! �.3.4 De�nition (Attribute deoration)An attribute deoration assoiates with eah node v in a derivation tree, whih islabeled with prodution A! �, an attribute instane v:a 2 Da for eah a 2 Att(A).An attribute deoration is valid if for eah node v0, whih is labeled with A0 !A1 : : : An and has suessors v1; : : : ; vn, and for eah de�ning ourrene p0:a 2Def(A0 ! A1 : : : An) with assoiated attribution rulep0:a = fp0:a(p1:a1; : : : ; pm:am)it holds that vi0 :a = fp0:a(vi1 :a1; : : : ; vim :am)where position pj identi�es nonterminal ourrene Aij and thus node vij . 2Hene, an attribute grammar G with start prodution S ! A de�nes a meaningfuntion M : T � �DInh(A) ! DSyn(S). For � 2 L(G), M(�; v1; : : : ; vj Inh(A)j) seedsthe derivation tree with attribute instanes for the inherited attributes of A andyields instanes of the synthesized attributes of S that result from the deorationof the derivation tree.3.1.2 Computing a DeorationThere are many tehniques for atually produing suh a deoration of a derivationtree, some of them quite involved. It is, however, obviously desirable to generatethe deoration during parsing. After all, the meaning funtion is only interestedin the attribute instanes of the start prodution; the derivation tree itself is notpart of it. Hene, omputing the deoration during parsing ould avoid having tostore the tree. Unfortunately, general attribute grammars may require the wholederivation tree to be present for performing attribute evaluation; the attribute rulesmay, after all, generate irularities.Therefore, it is neessary to restrit the lass of attribute grammars suh thatthey beome amenable to �on-the-�y� attribute evaluation. Two partiular waysof formulating suitable restritions on attribute grammars are L-attributed and S-attributed grammars.

60 CHAPTER 3. SEMANTIC ANALYSIS3.5 De�nition (L-attributed grammar)An L-attributed grammar is an attribute grammar where, for eah ruled = fd(a1; : : : ; aid)with d of the form hA! �ÆB�i :a (with a 2 Inh(B)), eah aj either has the formhÆA! �B�i :a (with a 2 Inh(A)) or hA! ÆCÆB�i :a (with CÆ = � and a 2Syn(C)). (Rules with d of the form hÆA! �i :a have no restritions.)In an L-attributed grammar, any attribute ourrene may only depend on our-renes to its left (hene L-attributed). Sine a reursive-desent parser proeedsfrom left to right in grammar rules, L-attributed grammars lend themselves to on-the-�y attribute evaluation by reursive-desent parsers.14 ExampleConsider a fragment of a reursive desent parser for the grammar rule A !A1 : : : Am. The parse funtion for A takes the input string and the inherited at-tributes of A as parameters and returns remaining string and the synthesized at-tributes of A as a result. For simpliity, we assume that there is only one synthesizedattribute, s, and one inherited attribute, i.[A℄ : T � � Inh(A) ! T � � Syn(A)[A℄(�; inh) = let inh1 = fhA!ÆA1:::Ami:i(inh) inlet (�1; syn1) = [A1℄(�; inh1) inlet inh2 = fhA!A1ÆA2:::Ami:i(inh ; syn1) in...let (�m; synm) = [Am℄(�m�1; inhm) in(�m; fhÆA!A1:::Ami:s(inh ; syn1; : : : ; synm)) 2However, L-attributed grammars present problems for reursive-asent parsers:As a reursive-asent parser proeeds, it always has to keep several di�erent pro-dutions �in mind,� eah of whih may have ompletely di�erent attribute rules. Ittherefore would have to evaluate all of them in parallel�and thus do muh super�u-ous work. Therefore, reursive-asent parsers usually restrit the lass of attributegrammars they aept even further: they simply do not allow inherited attributes.3.6 De�nition (S-attributed grammar)An S-attributed grammar is an attribute grammar (G;S; I;R; D) with Inh(A) = ?for all A 2 N .For an S-attributed grammar, attribute evaluation always �ows upwards in thederivation tree: no irularities may our, all dependenies point in the same di-retion. Beause of this, it is atually su�ient to have just one synthesized attributeper nonterminal�multiple attributes are easily simulated by using aggregate valuessuh as reords. Therefore, the rest of this setion assumes Syn(A) = fvg for allA 2 N . Also, for simpliity of the presentation, fhA!�i:v always has j�j arguments.Terminals simply yield some reserved value ? as their attribute whih may not beused.

