Chapter 3

Semantic Analysis

3.1 Attribute Grammars

A parser which is just a recognizer is not sufficient for a compiler—its output conveys
nothing about the nature of the parsed input, just whether it belongs to the language
defined by the underlying grammar. In a compiler, a parser needs to communicate
the parse tree it has internally generated. Hence, this section introduces an extended
notion of a context-free grammar: the attribute grammar. An attribute grammar
associates additional values (the attribute instances) with the nodes of a parse tree,
and rules that relate them to each other. A parser in a compiler computes the
values of the attribute instances and return them to the caller.

Attribute grammars carry a considerable amount of notational clutter. Some
examples illustrate the central ideas.

Consider again the grammar for constant arithmetic expressions. For technical
reasons, only one number has a literal: 42. An attribute grammar can describe how
to actually compute the value of such an expression.

(exp) == (term) (exp).v = (term).v
| (term) + (exp) (exp1).v = (term).v + (expa).v
| (term) - (exp) (exp1).v = (term).v — (expa).v

(term) := (prod) (term).v = (prod).v
| (prod) * (term) (term;).v = (prod).v - (terms).v
| (prod) / (term) (term;).v = (prod).v/(terms).v

(prod) == 42 (prod).v = 42
| C {(exp)) (prod).v = (exp).v

(bit) == 0 (bit).v =0
|1 (bit).v = 2(bit).s

(bits) ::= (bit) (bits).v = (bit).v, (bit).s = (bits).s, (bits).l =1
| (bits) (bit) (bitsy).v = (bitss).v 4 (bit).v, (bit).s = (bits;).s,

<bit52>.8 = (bits1>.s +1, (bits1>.l = <bit82>.l +1

(num) ::= (bits) (num).v = (bits).v, (bits).s = 0
| (bits) . (bits) (num).v = (bits;).v + (bitss).v, (bits;).s =0,

(bitse).s = —(bitsz).l

57

58 CHAPTER 3. SEMANTIC ANALYSIS

3.1.1 Notation

3.1 Definition (Position)

A position identifies an occurrence of a grammar symbol within a grammar pro-
duction. The symbol is identified by a o directly in front of it. Thus, (-A — «)
identifies the left-hand side A, whereas (A — a-X3) identifies the X .

3.2 Definition (Attribute grammar)
Let Att be a set of attributes.
An attribute grammar is a tuple (G, Syn, Inh, R, D) where

e G=(N,T,P,S) is a context-free grammar,

Syn : N — P(Att) specifies for each nonterminal A the set Syn(A) of synthe-
sized attributes,

Inh : N — P(Att) defines for each nonterminal A the set Inh(A) of inherited
attributes,

R is a family of attribution rules, and

D = (D%)acast is a family of attribute domains such that D® is the set of
possible values for an attribute named a.

For each A, it holds that Syn(A) NInh(A4) = & and Att(A) := Inh(A4) U Syn(A) is
the set of attributes of A.

An attribute occurrence is a pair p.a consisting of a position in a production
and an attribute. An attribute occurrence must either have the form (A — &) .a
with a € Att(A) or (A — y-B6) .a with a € Att(B).

The occurrences of a production fall into two classes: the defining occurrences
Def(A — «) and the applied occurrences App(A — «).

Def(A — a) :={(-A = a).a|a € Syn(4)}

U{(A — veBd).a |« =yBd A a € Inh(B)}
App(A = a) :={(-A = a).a | a € Inh(4)}

U{(A = veB§).a|a=+vyB§ A a € Syn(B)}

Each defining occurrence p.a € Def(A — «) has an associated attribution rule

p.a = fpa(P1.01y. .., Pm-Om)

where m is some natural number associated with p.a, and all p;.a; € App(4A — «)
are applied attribute occurrences for the same production. f,, must be a function
D™ x ... x D% — D% TR is the family of all such attribution rules, indexed by
the defining attribute occurrences.

O

The attribute dependencies of the grammar according to the above definition are
in Bochmann normal form |]: Inherited attributes depend only on attributes
“above” them in the parse tree, synthesized attributes on those “below”. An attribute
grammar assigns a meaning to a derivation tree by prescribing how to label its nodes.

3.3 Definition (Derivation tree)
A derivation tree for a context-free grammar (N, T, P, S) is a finite, ordered, directed
tree with node set V' such that each node is labeled with a production. Furthermore

e if node vq is labeled with Ay — A;...A,, then vy must have n successors
v1,...,U, such that v; is labeled with A; = «;,

3.1. ATTRIBUTE GRAMMARS 59

3
OO0«

-

-
-

U IR
bico e

Figure 3.1: A grammar attribution

e in a full derivation tree, the root node is labeled with a start production
S = a.

3.4 Definition (Attribute decoration)

An attribute decoration associates with each node v in a derivation tree, which is

labeled with production A — «, an attribute instance v.a € D® for each a € Att(A).
An attribute decoration is valid if for each node vy, which is labeled with Ay —

A ... A, and has successors vi,...,v,, and for each defining occurrence pg.a €

Def(Ag — A1 ... Ay) with associated attribution rule

Po-a = fpo.a(pl'ala s apm-am)

it holds that
Viy-Q = fpo.a(vh A1y .-,y Uim'am)

where position p; identifies nonterminal occurrence A;; and thus node v;; .
O

Hence, an attribute grammar G with start production S — A defines a meaning
function M : T* x DA — DS¥»(S) For ¢ € L(G), M(E,v1,.. -,V Inh(4)|) seeds
the derivation tree with attribute instances for the inherited attributes of A and
yields instances of the synthesized attributes of S that result from the decoration
of the derivation tree.

3.1.2 Computing a Decoration

There are many techniques for actually producing such a decoration of a derivation
tree, some of them quite involved. It is, however, obviously desirable to generate
the decoration during parsing. After all, the meaning function is only interested
in the attribute instances of the start production; the derivation tree itself is not
part of it. Hence, computing the decoration during parsing could avoid having to
store the tree. Unfortunately, general attribute grammars may require the whole
derivation tree to be present for performing attribute evaluation; the attribute rules
may, after all, generate circularities.

Therefore, it is necessary to restrict the class of attribute grammars such that
they become amenable to “on-the-fly” attribute evaluation. Two particular ways
of formulating suitable restrictions on attribute grammars are L-attributed and S-
attributed grammars.

60 CHAPTER 3. SEMANTIC ANALYSIS

3.5 Definition (L-attributed grammar)
An L-attributed grammar is an attribute grammar where, for each rule

dzfd(al,...,aid)

with d of the form (A — a~Bf).a (with a € Inh(B)), each a; either has the form
(+A — aBp) .a (with a € Inh(A)) or (A — y-CéBf) .a (with yCé = « and a €
Syn(C)). (Rules with d of the form (-A — «) .a have no restrictions.)

In an L-attributed grammar, any attribute occurrence may only depend on occur-
rences to its left (hence L-attributed). Since a recursive-descent parser proceeds
from left to right in grammar rules, L-attributed grammars lend themselves to on-
the-fly attribute evaluation by recursive-descent parsers.

14 Example

Consider a fragment of a recursive descent parser for the grammar rule A —
A;p...A,,. The parse function for A takes the input string and the inherited at-
tributes of A as parameters and returns remaining string and the synthesized at-
tributes of A as a result. For simplicity, we assume that there is only one synthesized
attribute, s, and one inherited attribute, 7.

[A] ¢ T* xInh(A) = T* x Syn(A)
[A](f, inh) = let inh; = f<AﬁoA1mAm>,i(inh) in
let (&1, synq) = [A1](&, inhy) in
let inhy = flaa,04,...4,,).i(inh, syn;) in

let (fma Synm) = [Am](fm—la Znhm) in
(fma f(OA—>A1...Am>.s(inh7 SYNyy ..y Synm))

a

However, L-attributed grammars present problems for recursive-ascent parsers:
As a recursive-ascent parser proceeds, it always has to keep several different pro-
ductions “in mind,” each of which may have completely different attribute rules. It
therefore would have to evaluate all of them in parallel—and thus do much superflu-
ous work. Therefore, recursive-ascent parsers usually restrict the class of attribute
grammars they accept even further: they simply do not allow inherited attributes.

3.6 Definition (S-attributed grammar)
An S-attributed grammar is an attribute grammar (G,S,Z, R, D) with Inh(A) = &
for all A € N.

For an S-attributed grammar, attribute evaluation always flows upwards in the
derivation tree: no circularities may occur, all dependencies point in the same di-
rection. Because of this, it is actually sufficient to have just one synthesized attribute
per nonterminal—multiple attributes are easily simulated by using aggregate values
such as records. Therefore, the rest of this section assumes Syn(A4) = {v} for all
A € N. Also, for simplicity of the presentation, f 4,4, always has |a| arguments.
Terminals simply yield some reserved value L as their attribute which may not be
used.

