Compiler Construction 2010/2011 Loop Optimizations

Peter Thiemann

January 25, 2011

Outline

- Loop Optimizations
- 2 Dominators
- 3 Loop-Invariant Computations
- Induction Variables
- 6 Array-Bounds Checks
- 6 Loop Unrolling

Loop Optimizations

- Loops are everywhere
- ⇒ worthwhile target for optimization

Loops

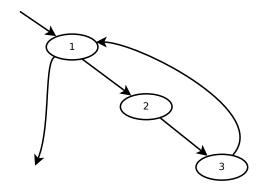
Definition: Loop

A loop with header h is a set S of nodes in a CFG such that

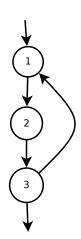
- h ∈ S
- $(\forall s \in S)$ exists path from s to h
- $(\forall s \in S)$ exists path from h to s
- $(\forall t \notin S)$ $(\forall h \neq s \in S)$ there is no edge from t to s

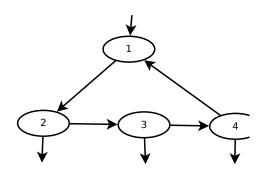
Special loop nodes

- A loop entry node has a predecessor outside the loop.
- A loop exit node has a successor outside the loop.

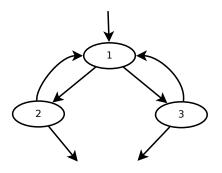


18-1a

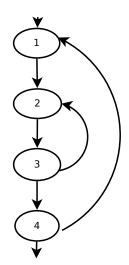




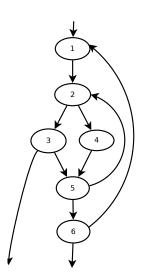
18-1c



18-1d



18-1e



Program for 18-1e

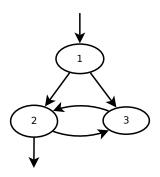
```
1 function isPrime (n: int) : int =
    (i := 2;
    repeat j := 2;
           repeat if i*j==n
4
                       then return 0
5
                       else j := j+1
6
            until j=n;
7
             i := i+1;
8
    until i==n;
9
     return 1)
10
```

Reducible Flow Graphs

- Arbitrary flow graphs: Spaghetti code
- Reducible flow graphs arise from structured control
 - if-then-else
 - while-do
 - repeat-until
 - for
 - break (multi-level)

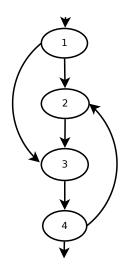
Irreducible Flow Graphs

18-2a: Not a loop



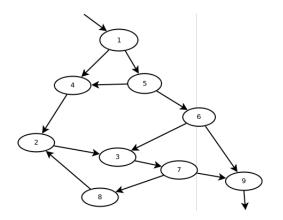
Irreducible Flow Graphs

18-2b: Not a loop



Irreducible Flow Graphs

18-2c: Not a loop



- Reduces to 18-2a: collapse edges (x, y) where x is the only predecessor of y
- A flow graph is <u>irreducible</u> if exhaustive collapsing leads to a subgraph like 18-2a.

Outline

- Loop Optimizations
- 2 Dominators
- 3 Loop-Invariant Computations
- Induction Variables
- 6 Array-Bounds Checks
- 6 Loop Unrolling

Dominators

- Objective: find loops in flow graph
- Assumption: each CFG has unique start node s₀ without predecessors

Domination relation

A node d dominates a node n if every path from s_0 to n must go through d.

Remark: domination is reflexive

Algorithm for Finding Dominators

Let n be a node with predecessors p_1, \ldots, p_k and $d \neq n$ a node. If $(\forall i)$ d dominates p_i , then d dominates n and vice versa. Let D[n] be the set of nodes that dominate n.

Domination equation

$$D[s_0] = \{s_0\}$$
 $D[n] = \{n\} \cup \bigcap_{p \in pred[n]} D[p]$

- Solve by fixpoint iteration
- Start with $(\forall n) D[n] = N$ (all nodes in the CFG)
- Watch out for unreachable nodes

Immediate Dominators

Theorem

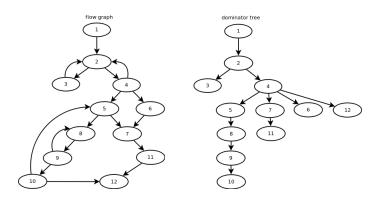
Let G be a connected graph. If d dominates n and e dominates n, then either d dominates e or e dominates d.

- Proof: by contradiction
- Consequence: Each node n ≠ s₀ has one <u>immediate</u> dominator *idom*(n) such that
 - \bigcirc idom(n) \neq n
 - idom(n) dominates n
 - \bigcirc idom(n) does not dominate another dominator of n

Dominator Tree

Dominator Tree

The <u>dominator tree</u> is a graph where the nodes are the nodes of the CFG and there is an edge (x, y) if x = idom(y).



• back edge in CFG: from *n* to *h* so that *h* dominates *n*

Loops

Natural Loop

The <u>natural loop</u> of a back edge (n, h) where h dominates n is the set of nodes x such that

- h dominates x
- exists path from x to n not containing h

h is the <u>header</u> of this loop.

Nested Loops

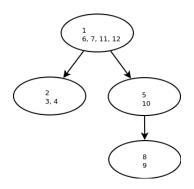
Nested Loop

If *A* and *B* are loops with headers $a \neq b$ and $b \in A$, then $B \subseteq A$. Loop *B* is <u>nested</u> within *A*. *B* is the <u>inner loop</u>.

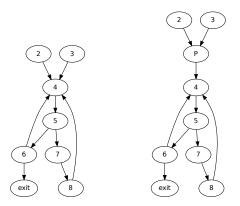
Loop-nest Tree

- Compute the dominators of the CFG
- Compute the dominator tree
- Find all natural loops with their headers
- For each loop header h merge all natural loops of h into a single loop loop[h]
- **⑤** Construct the tree of loop headers such that h_1 is above h_2 if $h_2 ∈ loop[h_1]$
 - Leaves are innermost loops
 - Procedure body is pseudo-loop at root of loop-nest tree

A Loop-Nest Tree



Loop Preheader



- loop optimizations need CFG node before the loop to move code out of the loop
- ⇒ add preheader node like *P* in example

Outline

- Loop Optimizations
- 2 Dominators
- 3 Loop-Invariant Computations
- Induction Variables
- 6 Array-Bounds Checks
- 6 Loop Unrolling

Loop-Invariant Computations

- Let $t \leftarrow a \oplus b$ be in a loop.
- If a and b have the same value for each iteration of the loop, then t always gets the same value.
- ⇒ repeated computation of the same value
 - Goal: Hoist this computation out of the loop
 - Approximation needed for "loop invariant"

Loop-Invariance

Loop-Invariance

The definition $d: t \leftarrow a_1 \oplus a_2$ is loop-invariant for loop L if, for each a_i , either

- $\mathbf{0}$ a_i is a constant,
- ② all definitions of a_i that reach d are outside L, or
- only one definition of a_i reaches d and that definition is loop-invariant.

Algorithm: Loop-Invariance

- Identify all definitions whose operands are constant or from outside the loop
- Add loop-invariant definitions until fixpoint

Hoisting

- Suppose $t \leftarrow a \oplus b$ is loop-invariant.
- Can we hoist it out of the loop?

	1		1
L_0	L ₀	L ₀	L_0
t ←0	<i>t</i> ←0	t ←0	<i>t</i> ←0
L ₁	L ₁	L ₁	L ₁
$i \leftarrow i+1$	if $i \geq N$ goto L_2	<i>i</i> ← <i>i</i> + 1	$M[j] \leftarrow t$
$t \leftarrow a \oplus b$	<i>i</i> ← <i>i</i> + 1	t ←a ⊕ b	<i>i</i> ← <i>i</i> + 1
$M[i] \leftarrow t$	$t \leftarrow a \oplus b$	$M[i] \leftarrow t$	$t \leftarrow a \oplus b$
if $i < N$ goto L_1	$M[i] \leftarrow t$	t ←0	$M[i] \leftarrow t$
L ₂	goto L ₁	$M[j] \leftarrow t$	if $i < N$ goto L_1
x ←t	L ₂	if $i < N$ goto L_1	L ₂
	$x \leftarrow t$	L ₂	$x \leftarrow t$

Hoisting

- Suppose $t \leftarrow a \oplus b$ is loop-invariant.
- Can we hoist it out of the loop?

L ₀	L ₀	L ₀	L ₀
t ←0	<i>t</i> ←0	t ←0	<i>t</i> ←0
L ₁	L ₁	L ₁	L ₁
<i>i</i> ← <i>i</i> + 1	if $i \ge N$ goto L_2	<i>i</i> ← <i>i</i> + 1	$M[j] \leftarrow t$
$t \leftarrow a \oplus b$	$i \leftarrow i+1$	$t \leftarrow a \oplus b$	<i>i</i> ← <i>i</i> + 1
$M[i] \leftarrow t$	$t \leftarrow a \oplus b$	$M[i] \leftarrow t$	$t \leftarrow a \oplus b$
if $i < N$ goto L_1	$M[i] \leftarrow t$	t ←0	$M[i] \leftarrow t$
L ₂	goto L ₁	$M[j] \leftarrow t$	if $i < N$ goto L_1
x ←t	L ₂	if $i < N$ goto L_1	L ₂
	$x \leftarrow t$	L ₂	$x \leftarrow t$
yes	no	no	no

Hoisting

Criteria for hoisting

A loop-invariant definition $d: t \leftarrow a \oplus b$ can be hoisted to the end of its loop's preheader if all of the following hold

- $\mathbf{0}$ d dominates all loop exits at which t is live-out
- there is only one definition of t in the loop
- t is not <u>live-out</u> at the loop preheader
 - ullet Attention: arithmetic exceptions, side effects of \oplus
 - Condition 1 often prevents hoisting from while loops: transform into repeat-until loops.

Outline

- Loop Optimizations
- 2 Dominators
- 3 Loop-Invariant Computations
- Induction Variables
- 6 Array-Bounds Checks
- 6 Loop Unrolling

Consider

Consider

before

after

- Induction-variable analysis: identify induction variables and relations among them
- Strength reduction:
 replace expensive operation (e.g., multiplication) by cheap operation (e.g., addition)
- Induction-variable elimination: remove dependent induction variables

- A basic induction variable is directly incremented (e.g., i)
- A <u>derived induction variable</u> is computed from other induction variables (e.g., j and k)
 - $j = a_j + i \cdot b_j$ with $a_j = 0$ and $b_j = 4$ $\Rightarrow j$ described by (i, a_j, b_j)
 - $k = j + c_k$ with loop-invariant c_k $\Rightarrow k$ described by $(i, a_i + c_k, b_i)$
- The basic induction variable i described by (i, 0, 1)
- A <u>linear induction variable</u> changes by the same amount in every iteration.

Non-linear Induction Variables

```
s \leftarrow 0
L_1: if s > 0 goto L_2
       i \leftarrow i + b
       j \leftarrow i \cdot 4
       x \leftarrow M[j]
       s \leftarrow s - x
       goto L_1
L_2: i \leftarrow i+1
       s \leftarrow s+i
       if i < n goto L_1
```

Non-linear Induction Variables

before

after

Detection of Induction Variables

Basic Induction Variable

Variable i is a <u>basic induction variable</u> in loop L with header h if all definitions of i in L have the form $i \leftarrow i + c$ or $i \leftarrow i - c$ where c is loop-invariant. (in the family of i)

Derived Induction Variable

Variable *k* is a derived ind. var. in the family of *i* in loop *L* if

- There is exactly one definition of k in L of the form k ← j ⋅ c or k ← j + d where j is an induction variable in the family of i and c, d are loop-invariant;
- 2 if j is a derived induction variable in the family of i, then
 - only the definition of *j* in *L* reaches (the def of) *k*
 - there is no definition of i on any path between the definition of j and the definition of k
- If j is described by (i, a, b), then k is described by $(i, a \cdot c, b \cdot c)$ or (i, a + d, b), respectively.

Strength Reduction

- Often multiplication is more expensive than addition
- \Rightarrow Replace the definition $j \leftarrow i \cdot c$ of a derived induction variable by an addition

Procedure

- For each derived induction variable $j \sim (i, a, b)$ create new variable j'
- After each assignment i ← i + c to a basic induction variable, create an assignment j' ← j' + c · b
- Replace assignment to j with j ← j'
- Initialize $j' \leftarrow a + i \cdot b$ at end of preheader

Example Strength Reduction

Induction Variables $j \sim (i, 0, 4)$ and $k \sim (i, a, 4)$

before

after

Elimination

- Further apply constant propagation, copy propagation, and dead code elimination
- Special case: elimination of induction variables that are
 - not used in the loop
 - only used in comparisons with loop-invariant variables
 - useless

Useless variable

A variable is <u>useless</u> in a loop L if

- it is dead at all exits from L
- it is only used in its own definitions

Example After removal of j, j' is useless

Almost useless variable

A variable is almost useless in loop L if

- it is only used in comparisons against loop-invariant values and in definitions of itself and
- there is another induction variable in the same family that is not useless.
- An almost useless variable can be made useless by rewriting the comparisons to use the related induction variable

Coordinated induction variables

Let $x \sim (i, a_x, b_x)$ and $y \sim (i, a_y, b_y)$ be induction variables. x and y are coordinated if

$$(x-a_x)/b_x=(y-a_y)/b_y$$

throughout the execution of the loop, except during a sequence of statements of the form $z_i \leftarrow z_i + c_i$ where c_i is loop-invariant.

Let $j \sim (i, a_j, b_j)$ and $k \sim (i, a_k, b_k)$ be coordinated induction variables.

Consider the comparison k < n with n loop-invariant. Using $(j - a_j)/b_j = (k - a_k)/b_k$ the comparison can be rewritten as follows

$$b_k(j-a_j)/b_j + a_k < n$$

$$\Leftrightarrow b_k(j-a_j)/b_j < n-a_k$$

$$\Leftrightarrow \begin{cases}
j < (n-a_k)b_j/b_k + a_j & \text{if } b_j/b_k > 0 \\
j > (n-a_k)b_j/b_k + a_j & \text{if } b_j/b_k < 0
\end{cases}$$

where the right-hand sides are loop-invariant and their computation can be hoisted to the preheader.

Restrictions

- $(n-a_k)b_j$ must be a multiple of b_k
- $oldsymbol{e}{b_j}$ and b_k must both be constants or loop invariants of known sign

Outline

- Loop Optimizations
- 2 Dominators
- 3 Loop-Invariant Computations
- Induction Variables
- Array-Bounds Checks
- 6 Loop Unrolling

Array-Bounds Checks

- Safe programming languages check that the subscript is within the array bounds at each array operation.
- Bounds for an array have the form 0 ≤ i < N where N > 0 is the size of the array.
- Implemented by $i <_u N$ (unsigned comparison).
- Bounds checks redundant in well-written programs ⇒ slowdown
- For better performance: let the compiler prove which checks are redundant!
- In general, this problem is undecidable.

Conditions for Bounds Check Elimination

- There is an induction variable j and loop-invariant u used in statement s₁ of either of the forms
 - if j < u goto L_1 else goto L_2
 - if $j \ge u$ goto L_2 else goto L_1
 - if u > j goto L_1 else goto L_2
 - if $u \ge j$ goto L_2 else goto L_1

where L_2 is out of the loop

- ② There is a statement s_2 of the form
 - if $k <_u n$ goto L_3 else goto L_4

where k is an induction variable coordinated with j, n is loop-invariant, and s_1 dominates s_2

- **1** There is no loop nested within L containing a definition of k
- k increases when j does: $b_j/b_k > 0$

Array-Bounds Checking

- Objective: test in the preheader so that 0 ≤ k < n everywhere in the loop
- Let k_0 value of k at end of preheader
- Let $\Delta k_1, \ldots, \Delta k_m$ be the loop-invariant values added to k inside the loop
- $k \ge 0$ everywhere in the loop if
 - $k \ge 0$ in the loop preheader
 - $\bullet \ \Delta k_1 \geq 0 \ldots \Delta k_m \geq 0$

Array-Bounds Checking

- Let $\Delta k_1, \ldots, \Delta k_p$ be the set of loop-invariant values added to k on any path between s_1 and s_2 that does not go through s_1 .
- k < n at s_2 if $k < n (\Delta k_1 + \cdots + \Delta k_p)$ at s_1
- From $(k a_k)/b_k = (j a_j)/b_j$ this test can be rewritten to $j < b_j/b_k(n (\Delta k_1 + \cdots + \Delta k_p) a_k) + a_j$
- It is sufficient that $u \le b_j/b_k(n-(\Delta k_1+\cdots+\Delta k_p)-a_k)+a_j$ because the test j < u dominates the test k < n
- All parts of this test are loop-invariant!

Array-Bounds Checking Transformation

- Hoist loop-invariants out of the loop
- Copy the loop L to a new loop L' with header label L'_h
- Replace the statement "if $k <_u n$ goto L_3' else goto L_4' " by "goto L_3' "
- At the end of *L*'s preheader put statements equivalent to if $k \geq 0 \land \Delta k_1 \geq 0 \land \cdots \land \Delta k_m \geq 0$ and $u \leq b_j/b_k(n-(\Delta k_1+\cdots+\Delta k_p)-a_k)+a_j$ goto L_h' else goto L_h

Array-Bounds Checking Transformation

- This condition can be evaluated at compile time if
 - all loop-invariants in the condition are constants; or
 - 2 n and u are the same temporary, $a_k = a_j$, $b_k = b_j$ and no Δk 's are added to k between s_1 and s_2 .
- The second case arises for instance with code like this:

```
int u = a.length;
int i = 0;
while (i<u) {
   sum += a[i];
   i++;
}</pre>
```

assuming common subexpression elimination for a.length

- Compile-time evaluation of the condition means to unconditionally use L or L' and o delete the other loop
- Clean up with elimination of unreachable and dead code

Array-Bounds Checking Generalization

- Comparison of $j \le u'$ instead of j < u
- Loop exit test at end of loop body: A test
 - s_2 : if j < u goto L_1 else goto L_2

where L_2 is out of the loop and s_2 dominates all loop back edges; the Δk_i are between s_2 and any back edge and between the loop header and s_1

- Handle the case $b_j/b_k < 0$
- Handle the case where j counts downward where the loop exit tests for $j \ge l$ (a loop-invariant lower bound)
- The increments to the induction variable may be "undisciplined" with non-obvious increment:

```
1 while (i<n-1) {
2   if (sum<0) { i++; sum += i; i++ } else { i += 2; }
3   sum += a[i];
4 }</pre>
```

Outline

- Loop Optimizations
- 2 Dominators
- 3 Loop-Invariant Computations
- Induction Variables
- 6 Array-Bounds Checks
- 6 Loop Unrolling

Loop Unrolling

- For loops with small body, much time is spent incrementing the loop counter and testing the exit condition
- Loop unrolling optimizes this situation by putting more than one copy of the loop body in the loop
- To unroll a loop *L* with header *h* and back edges $s_i \rightarrow h$:
 - ① Copy L to a new loop L' with header h' and back edges $s'_i \rightarrow h'$
 - ② Change the back edges in *L* from $s_i \rightarrow h$ to $s_i \rightarrow h'$
 - **3** Change the back edges in L' from $s'_i \to h'$ to $s'_i \to h$

Loop Unrolling Example (Still Useless)

before

```
x \leftarrow M[i]
                                                          s \leftarrow s + x
                                                         i \leftarrow i+4
                                                         if i < n goto L'_1 else L_2
                                                  L_1':
L_1:
      x \leftarrow M[i]
                                                          x \leftarrow M[i]
       s \leftarrow s + x
                                                          s \leftarrow s + x
       i \leftarrow i+4
                                                          i \leftarrow i+4
       if i < n goto L_1 else L_2
                                                         if i < n goto L_1 else L_2
L_2
                                                   L_2
```

after

Loop Unrolling Improved

- No gain, yet
- Needed: induction variable i such that every increment i ← i + Δ dominates every back edge of the loop
- \Rightarrow each iteration increments *i* by the sum of the Δ s
- ⇒ increments and tests can be moved to the back edges of loop
 - In general, a separate <u>epilogue</u> is needed to cover the remaining iterations because the unrolled loop can only do multiple-of-K iterations.

Loop Unrolling Example

only even numbers

with epilogue