
DATA FLOW ANALYSIS (INTRAPROCEDURAL)

Neil D. Jones

DIKU, University of Copenhagen (prof. emeritus)

COURSE MATERIAL

Book: NNH = Nielson, Nielson and Hankin Principles of Program Analysis

Slides: downloadable from course home page.

Reading for lectures 2 and 7 December:

I Read and understand NNH sections 1.1, 1.2, 1.3, 1.7, 1.8.

I Skim 1.4, 1.5, 1.6.

I Read and understand NNH section 2.1.

The compiler construction course project may have some application-oriented

work based on Chapters 1 and 2.

— 2 —

SOURCES

How is program analysis done?

I Many people: decades of practical experience in writing compilers

(though correctness issues are rarely addressed by compiler hackers)

I Engineering methodology: program analysis by fix-point computations.

I This was developed by informal, pragmatic, ad hoc methods from the

1950s called data flow analysis.

Semantics-based program analysis:

I Methods formally based in program semantics developed by Cousot-

+Cousot, Jones, Muchnick, Nielson+Nielson, Hankin, many others.

I Research since 1970’s under the name of Abstract Interpretation

I Capture a significant part of data flow analysis (but not all).

I January 2008 conference in San Francisco:

“30 Years of Abstract Interpretation.”

— 3 —

MOTIVATION, ORIGINS

Optimising transformations for compilers.

Compiler structure:

sourcecode → intermediatecode → intermediatecode → targetcode

The Optimisation phase:

intermediatecode → intermediatecode

Intermediate code is usually (some version of) simple flow chart programs.

These contain

I program points (also called labels),

I with an elementary statement or test at each point, and

I control transitions from one program point to another.

— 4 —

WHAT AND HOW

What: program transformation to improve efficiency

I Based on program flow analysis

I Must be correct (and just what does this mean?)

I Complex

I Important: efficiency, complex hardware, limits to what humans can

improve, etc

How: several steps in program optimisation. First: program analysis.

I Choose a data flow lattice to describe program properties

I Build a system of data flow equations from the program

I Solve the system of data flow equations

Then transform the program, usually to optimise it

— 5 —

TOWARDS UNDERSTANDING THE PROBLEM I

Consider a transformation

[x := a]`⇒ [skip]`

to eliminate code. (It sounds trivial, but it’s significant in practice!)

Some possible reasons it can be correct:

1. Point ` is unreachable: control cannot flow from the program’s start to

[x := a]`

2. Point ` is dead: control cannot flow from [x := a]` to the program’s

exit. For example

I The program will definitely loop after point `. Or

I The program will definitely abort execution after point `.

3. Variable x is dead at ` (even though point ` is not dead): For instance

I x is never referenced again; or

I x may be used to compute y, z, . . . but they are never used again, . . .

— 6 —

TOWARDS UNDERSTANDING THE PROBLEM II

More possible reasons for correctness of the transformation

[x := a]`⇒ [skip]`

to eliminate code.

4. x is already equal to a (if control ever gets to `)

5. Mathematical reasons relating x and a, e.g., Matiyasevich’s theorem etc.

6. a is an uninitialised variable: so the value of x is completely undepend-

able

7. Some patchwork combination of the above.

(Eg, reason 3 applies if x is even, reason 4 applies if x is odd,. . .)

— 7 —

ALAS, MOST OF THESE REASONS ARE

AS UNDECIDABLE AS THE HALTING PROBLEM (!)

Remark: many (most!) of the above program behavior properties are un-

decidable (if you insist on exact answers).

Proof See Rice’s Theorem from Computability Theory.

So what do we do?

I The practice of program analysis and the theory of abstract interpreta-

tion: find safe descriptions of program behavior. Meaning of safety:

• if the analysis says that a program has a certain behavior (e.g., that

x is dead at point `),

• then it definitely has that behavior in all computations.

I However the analysis may be imprecise in this sense:

it can answer “don’t know” even when the property is true.

— 8 —

WHAT KIND OF REASONING CAN BE USED TO

DISCOVER PROGRAM PROPERTIES?

They can involve

I Control flow, e.g., that point ` is unreachable

I Data flow, e.g., that the value of variable x at point ` cannot affect the

program’s final output.

A useful classification: dimension 1 = past/future, dimension 2 = may/must.

I computational pasts, e.g., that x equals a if control point ` is reached

I computational futures, e.g., that variable x is dead at control point `

I all-path, or “must” properties, e.g., a past all-path property:

“variable x is initialised”

i.e., x was set on every computation path from start to current point `

I some-path, or “may” properties, e.g., a future some-path property:

“variable x is live”, i.e., there exists a computation path from current

point ` to the program end

— 9 —

OVERVIEW

A program analysis will compute a “program-point-centric” analysis that

binds information to each program point `.

The program properties at a program point ` are

I determined by

• the computational future

(of computations that get as far as `); or

• the computational past

I determined by the set of

• all computation paths from (or to) `, or by

• the existence of at least one computation path from (or to) `

— 10 —

OVERVIEW

A program analysis will compute a “program-point-centric” analysis that

binds information to each program point `.

Such information (almost always in the literature)

I is finitely (and feasibly!) computable

I is computed uniformly, i.e., for all the source program’s program points.

I Adjacent program points will have properties that are related, e.g., by

classic flow equations of dataflow analysis for compiler construction.

An analogy: heat flow equations.

(though heat flows 2-ways, while program flows are asymmetric.)

— 11 —

SOME NOTATIONS USED IN THE BOOK

` ∈ Lab the set of all labels

x, y, z ∈ Var the set of all variables

S ∈ Stmt the set of all statements

a ∈ AExp the set of all arithmetic expressions

b ∈ BExp the set of all Boolean expressions

e ∈ Exp the set of all expressions (arithmetic or Boolean)

— 12 —

ABSTRACT SYNTAX

a ::= x | n | a1 op1 a2

b ::= true | false | not b | b1 opb b2 | a1 opr a2

S ::= [x := a]` | [skip]` | S1 ;S2

| if [b]` then S1 else S2 | while [b]` do S

B ::= [x := a]` | [skip]` | [b]`

For our slides: we only think of flow charts containing labeled blocks B,

don’t deal with statements that contain other statements. (Doesn’t lose

information, and saves notation!)

Generic versus concrete:

[x := a]` Math font for generic program fragments, e.g.,

x ranges over all variables

[x:=x+1]7 Teletype font for concrete program fragments, e.g.,

the LHS is the concrete variable “x”

— 13 —

A FEW MORE NOTATIONS

Lab∗ the set of all labels in the program currently being analysed

Var∗ the set of all variables in the program currently being analysed

Stmt∗ the set of all statements in the program currently being analysed

AExp∗ the set of all arithmetic expressions in the program currently being analysed

BExp∗ the set of all Boolean expressions in the program currently being analysed

— 14 —

4 USEFUL EXAMPLES OF DATA FLOW ANALYSIS

Type of flow equations: What’s analysed

Time Path

F : Lab∗→ dataflow lattice L dependency modality

RD : Lab∗→ P(Var∗ × Lab?
∗) past ∃

LV : Lab∗→ P(Var∗) future ∃

AE : Lab∗→ P(Exp∗) past ∀

V B : Lab∗→ P(Exp∗) future ∀

RD = Reaching definitions (used for constant propagation)

LV = Live variables (used for dead code elimination)

AE = Available expressions (to avoid recomputing expressions)

V B = Very busy expressions (save expression values for later use)

— 15 —

INTUITIVE EXPLANATION: LIVE VARIABLES

Type of flow equations: What’s analysed How it’s computed

Time Path Data Kind of

F : Lab∗→ dataflow lattice L dependency modality flow fixpoint

LV : Lab∗→ P(Var∗) future ∃ backward least

Variable x is live at program point ` if there exists a flow chart path from

` to some usage of variable x. Things to notice:

I it’s about what can happen in the future

I along at least one path (∃)

Optimisation enabled by live variable analysis:

If x is not live at point `, then the register / memory cell containg

the value of x may be used for another value

Net effect: to reduce memory or register usage.

— 16 —

INTUITIVE EXPLANATION: AVAILABLE EXPRESSIONS

Type of flow equations: What’s analysed How it’s computed

Time Path Data Kind of

F : Lab∗→ dataflow lattice L dependency modality flow fixpoint

AE : Lab∗→ P(Exp∗) past ∀ forward greatest

Expression e is available at program point ` if on all flow chart paths to `

the value of e has been computed, and no variable in e has been changed.

Things to notice:

I it’s about what did happen in the past

I and along all paths to ` (∀)

Optimisation enabled by live variable analysis:

If e is available at point `, then (generate code to) fetch the value

that has already been computed.

Net effect: generate smaller code.

— 17 —

INTUITIVE EXPLANATION: VERY BUSY EXPRESSIONS

Type of flow equations: What’s analysed How it’s computed

Time Path Data Kind of

F : Lab∗→ dataflow lattice L dependency modality flow fixpoint

V B : Lab∗→ P(Exp∗) future ∀ backward greatest

Expression e is very busy at program point ` if the value of e will be used

on all flow chart paths from `. Things to notice:

I it’s about what will happen in the future

I and along all paths from ` (∀)

Optimisation enabled by very busy expression analysis:

It can pay to keep the value of e in a register instead of memory.

Net effect: generate faster code.

— 18 —

INTUITIVE EXPLANATION: REACHING DEFINITIONS

Type of flow equations: What’s analysed How it’s computed

Time Path Data Kind of

F : Lab∗→ dataflow lattice L dependency modality flow fixpoint

RD : Lab∗→ P(Var∗ × Lab?
∗) past ∃ forward least

A pair (x, `0) can reach program point ` if

I there is a statement [x := e]`0, and

I there is a path from `0 to `, and

I variable x is not changed on the path

Things to notice:

I it’s about what happened in the past along at least one path to ` (∃)

Optimisation enabled by reaching definition analysis: constant propagation

Net effect: generate faster code.

— 19 —

SEMANTIC FOUNDATION

I State: a state is a function σ : Var→ Z. Also known as a store.

Idea: the current value of variable x is σ(x).

I A computational configuration is a pair 〈S, σ〉 where S is a statement

(what is remaining to execute) and σ is the current state.

I A one-step transition has form

〈S, σ〉 → 〈S′, σ′〉 or, if program stops: 〈S, σ〉 → σ′

Details omitted today, but what you would expect. Here there is a data

flow from σ to σ′

I Each program defines a set of computations. A computation is either

• a terminating computation: a finite sequence

〈S1, σ1〉 → 〈S2, σ2〉 → . . . 〈Sn, σn〉 → σn+1

or

• a looping computation: an infinite sequence

〈S1, σ1〉 → 〈S2, σ2〉 → . . .

— 20 —

THE MAIN PROBLEM OF DFA

Given a program, to find a description of the data flow at each label `. In

this book, for analysis A:

I Aentry(`) = flow information at the entry to statement [B]`

I Aexit(`) = flow information at the exit from statement [B]`

Suppose program has the form:

[B1]
`1 [B2]

`2 . . . [Bn]
`n

Then a program description will have the form:

Aentry : Lab∗→ L and Aexit : Lab∗→ L

where L is a complete lattice. Different lattices for different flow properties.

Flow lattice: a structure L = (L,v,t,u,⊥,>)).

— 21 —

A PAST ANALYSIS: REACHING DEFINITIONS FOR X!

Program:

[y:=x]1;[z:=1]2; while [y>1]3 do ([z:=z*y]4;[y:=y-1]5); [y:=0]6;

Reaching definitions lattice:

L = (P({x, y, z} × {1, 2, 3, 4, 5, 6, ?}) ,v,t,u,⊥,>)

(x, `0) ∈ RD (`) if for some computation path from `0 to `

I x was assigned at point `0, and (jargon: “defined”)

I x was not re-assigned before point ` (i.e., the assignment “reaches” `)

Uninitalised variables: are “reached” from point “?”

` RDentry(`) RDexit(`)

1 {(x, ?), (y, ?), (z, ?)} {(x, ?), (y, 1), (z, ?)}
2 {(x, ?), (y, 1), (z, ?)} {(x, ?), (y, 1), (z, 2)}
3 {(x, ?), (y, 1), (y, 5), (z, 2), (z, 4)} {(x, ?), (y, 1), (y, 5), (z, 2), (z, 4)}
4 {(x, ?), (y, 1), (y, 5), (z, 2), (z, 4)} {(x, ?), (y, 1), (y, 5), (z, 4)}
5 {(x, ?), (y, 1), (y, 5), (z, 4)} {(x, ?), (y, 5), (z, 4)}
6 {(x, ?), (y, 1), (y, 5), (z, 2), (z, 4)} {(x, ?), (y, 6), (z, 2), (z, 4)}

— 22 —

A FUTURE ANALYSIS: LIVE VARIABLES

(for the same program to compute x!)

Program:

[y:=x]1;[z:=1]2; while [y>1]3 do ([z:=z*y]4;[y:=y-1]5); [y:=0]6;

Live variable lattice:

L = (P({x, y, z}) ,v,t,u,⊥,>)

Variable x is live if ∃ computation path with a future reference to x.

Assume: no variables are live at program exit.

` LVentry(`) LVexit(`)

1 {x} {y}
2 {y} {y, z}
3 {y, z} {y, z}
4 {y, z} {y, z}
5 {y, z} {y, z}
6 ∅ ∅

— 23 —

LIVE VARIABLE FLOW EQUATIONS:

(for the same program to compute x!)

[y:=x]1;[z:=1]2; while [y>1]3 do ([z:=z*y]4;[y:=y-1]5);[y:=0]6;

LVentry(1) = LVexit(1) \ {y} ∪ {x}
LVentry(2) = LVexit(2) \ {z}
LVentry(3) = LVexit(3) ∪ {y}
LVentry(4) = LVexit(4) ∪ {y, z}
LVentry(5) = LVexit(5) ∪ {y}
LVentry(6) = LVexit(6) \ {y}
LVexit(1) = LVentry(2)

LVexit(2) = LVentry(3)

LVexit(3) = LVentry(4) ∪ LVentry(6)

LVexit(4) = LVentry(5)

LVexit(5) = LVentry(3)

LVexit(6) = ∅

— 24 —

WHAT ON EARTH IS GOING ON?

I What is being defined by these equations ?

I What data flow logic is being expressed?

I How can the equations be solved ?

The equations define the values of in all 12 program point descriptions

LVentry(1), . . . , LVentry(6), LVexit(1), . . . , LVexit(6)

in terms of each other.

This is a recursive system of data flow equations to describe the program’s

computational behavior.

Solution to the equation system: This is called a fixpoint.

Type of a solution to the equation system: L12, where L is the description

data flow lattice.

Type of the equation system itself:

F : L12→ L12

— 25 —

FLOW EQUATION DIMENSIONS

I Time dependence. Possibilities:

• Future analysis: the property depends on the computational future.

Computed by backward data flow.

• Past analysis: the property depends on the computational past.

Computed by forward data flow. – “must” or “may” dependence:

I Path modality dependence. Possibilities:

• may path dependence (for some path)

• must path dependence (for all paths)

I These make four combinations . For example:

• Both LV and RD are may path dependencies

• Live variables LV is a future analysis (= backward data flow)

• Reaching definitions RD is a past analysis (= forward data flow)

— 26 —

FLOW EQUATIONS: REFLECT THE 4 COMBINATIONS

Future/past: what is defined in terms of what in the equations, e.g.,

future: LVentry(`) = . . . LVexit(`) . . .

past: LVexit(`) = . . . LVentry(`) . . .

All-paths/some-path: find greatest or least fixpoint solution to equations

Fixpoints: lfp (least fixpoint) for ∃ path dependence

lfp(F) =
⊔
n→∞

F n(⊥,⊥, . . . ,⊥)

gfp (greatest fixpoint) for ∀ path dependence

gfp(F) = un→∞F n(>,>, . . . ,>)

Combining flows from several blocks into one:

I Use t when computing least fixpoint (some-path properties)

I Use u when computing greatest fixpoint (all-path properties)

— 27 —

4 EXAMPLES OF THE 4 COMBINATIONS

Type of flow equations: What’s analysed How it’s computed

Time Path Data Kind of

F : Lab∗→ dataflow lattice L dependency modality flow fixpoint

RD : Lab∗→ P(Var∗ × Lab?
∗) past ∃ forward least

LV : Lab∗→ P(Var∗) future ∃ backward least

AE : Lab∗→ P(Exp∗) past ∀ forward greatest

V B : Lab∗→ P(Exp∗) future ∀ backward greatest

RD = Reaching definitions

LV = Live variables

AE = Available expressions

V B = Very busy expressions

— 28 —

RELATIONS TO LATTICES ETC. FROM APPENDIX A

Form of the data flow equation system:

(X1, X2, . . . , X2n) = (e1(~X), e2(~X), . . . , e2n(~X))

where set expressions ee, . . . , e2n are built from X1, X2, . . . , X2n by set

operations such as ∪,∩, \ and constants.

This defines a function

F : P(D)2n→ P(D)2n

(where D = set of descriptions, n = number of labels)

on the lattice

L = (L,v,t,u,⊥,>)) = (P(D),⊆,∪,∩, ∅, D))

Fixpoints: lfp(F) =
⊔
n→∞ F

n(⊥,⊥, . . . ,⊥), gfp(F) = un→∞F n(>, . . . ,>)

1. P(D) is a lattice, so F (X1, X2, . . . , X2n) exists.

2. P(D) is complete, so lfp(F), gfp(F) both exist.

3. Ascending (descending) chain condition: ensures that

lfp(F), gfp(F) are finitely computable.

— 29 —

CHAOTIC ITERATION

Effect is to compute the least (or greatest) fixpoint by repeatedly applying

the equations

I Apply them in any order

I until no sets can be changed

I Initialisation of the sets:

• Least fixpoint: start with every set empty (⊥ of the lattice)

• Greatest fixpoint: start with every set equal to (> of the lattice)

I Amazing fact: it doesn’t matter what order is chosen (hence the name

“chaotic”)

— 30 —

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE

FACTORIAL PROGRAM BY CHAOTIC ITERATION 1

[y:=x]1;[z:=1]2; while [y>1]3 do ([z:=z*y]4;[y:=y-1]5);[y:=0]6;

LVentry(1) = LVexit(1) \ {y} ∪ {x}
LVentry(2) = LVexit(2) \ {z}
LVentry(3) = LVexit(3) ∪ {y}
LVentry(4) = LVexit(4) ∪ {y, z}
LVentry(5) = LVexit(5) ∪ {y}
LVentry(6) = LVexit(6) \ {y}
LVexit(1) = LVentry(2)

LVexit(2) = LVentry(3)

LVexit(3) = LVentry(4) ∪ LVentry(6)
LVexit(4) = LVentry(5)

LVexit(5) = LVentry(3)

LVexit(6) = ∅

` LVentry(`) LVexit(`)

1 ∅ ∅
2 ∅ ∅
3 ∅ ∅
4 ∅ ∅
5 ∅ ∅
6 ∅ ∅

— 31 —

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE

FACTORIAL PROGRAM BY CHAOTIC ITERATION 2

[y:=x]1;[z:=1]2; while [y>1]3 do ([z:=z*y]4;[y:=y-1]5);[y:=0]6;

LVentry(1) = LVexit(1) \ {y} ∪ {x}
LVentry(2) = LVexit(2) \ {z}
LVentry(3) = LVexit(3) ∪ {y}
LVentry(4) = LVexit(4) ∪ {y, z}
LVentry(5) = LVexit(5) ∪ {y}
LVentry(6) = LVexit(6) \ {y}
LVexit(1) = LVentry(2)

LVexit(2) = LVentry(3)

LVexit(3) = LVentry(4) ∪ LVentry(6)
LVexit(4) = LVentry(5)

LVexit(5) = LVentry(3)

LVexit(6) = ∅

` LVentry(`) LVexit(`)

1 {x} ∅
2 ∅ ∅
3 {y} ∅
4 {y, z} ∅
5 {y} ∅
6 ∅ ∅

— 32 —

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE

FACTORIAL PROGRAM BY CHAOTIC ITERATION 3

[y:=x]1;[z:=1]2; while [y>1]3 do ([z:=z*y]4;[y:=y-1]5);[y:=0]6;

LVentry(1) = LVexit(1) \ {y} ∪ {x}
LVentry(2) = LVexit(2) \ {z}
LVentry(3) = LVexit(3) ∪ {y}
LVentry(4) = LVexit(4) ∪ {y, z}
LVentry(5) = LVexit(5) ∪ {y}
LVentry(6) = LVexit(6) \ {y}
LVexit(1) = LVentry(2)

LVexit(2) = LVentry(3)

LVexit(3) = LVentry(4) ∪ LVentry(6)
LVexit(4) = LVentry(5)

LVexit(5) = LVentry(3)

LVexit(6) = ∅

` LVentry(`) LVexit(`)

1 {x} ∅
2 ∅ {y}
3 {y} ∅
4 {y, z} ∅
5 {y} ∅
6 ∅ ∅

— 33 —

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE

FACTORIAL PROGRAM BY CHAOTIC ITERATION 4

[y:=x]1;[z:=1]2; while [y>1]3 do ([z:=z*y]4;[y:=y-1]5);[y:=0]6;

LVentry(1) = LVexit(1) \ {y} ∪ {x}
LVentry(2) = LVexit(2) \ {z}
LVentry(3) = LVexit(3) ∪ {y}
LVentry(4) = LVexit(4) ∪ {y, z}
LVentry(5) = LVexit(5) ∪ {y}
LVentry(6) = LVexit(6) \ {y}
LVexit(1) = LVentry(2)

LVexit(2) = LVentry(3)

LVexit(3) = LVentry(4) ∪ LVentry(6)
LVexit(4) = LVentry(5)

LVexit(5) = LVentry(3)

LVexit(6) = ∅

` LVentry(`) LVexit(`)

1 {x} ∅
2 ∅ {y}
3 {y} {y, z}
4 {y, z} ∅
5 {y} ∅
6 ∅ ∅

— 34 —

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE

FACTORIAL PROGRAM BY CHAOTIC ITERATION 5

[y:=x]1;[z:=1]2; while [y>1]3 do ([z:=z*y]4;[y:=y-1]5);[y:=0]6;

LVentry(1) = LVexit(1) \ {y} ∪ {x}
LVentry(2) = LVexit(2) \ {z}
LVentry(3) = LVexit(3) ∪ {y}
LVentry(4) = LVexit(4) ∪ {y, z}
LVentry(5) = LVexit(5) ∪ {y}
LVentry(6) = LVexit(6) \ {y}
LVexit(1) = LVentry(2)

LVexit(2) = LVentry(3)

LVexit(3) = LVentry(4) ∪ LVentry(6)
LVexit(4) = LVentry(5)

LVexit(5) = LVentry(3)

LVexit(6) = ∅

` LVentry(`) LVexit(`)

1 {x} ∅
2 ∅ {y}
3 {y} {y, z}
4 {y, z} {y}
5 {y} ∅
6 ∅ ∅

— 35 —

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE

FACTORIAL PROGRAM BY CHAOTIC ITERATION 6

[y:=x]1;[z:=1]2; while [y>1]3 do ([z:=z*y]4;[y:=y-1]5);[y:=0]6;

LVentry(1) = LVexit(1) \ {y} ∪ {x}
LVentry(2) = LVexit(2) \ {z}
LVentry(3) = LVexit(3) ∪ {y}
LVentry(4) = LVexit(4) ∪ {y, z}
LVentry(5) = LVexit(5) ∪ {y}
LVentry(6) = LVexit(6) \ {y}
LVexit(1) = LVentry(2)

LVexit(2) = LVentry(3)

LVexit(3) = LVentry(4) ∪ LVentry(6)
LVexit(4) = LVentry(5)

LVexit(5) = LVentry(3)

LVexit(6) = ∅

` LVentry(`) LVexit(`)

1 {x} ∅
2 ∅ {y}
3 {y} {y, z}
4 {y, z} {y}
5 {y} {y}
6 ∅ ∅

— 36 —

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE

FACTORIAL PROGRAM BY CHAOTIC ITERATION 7

[y:=x]1;[z:=1]2; while [y>1]3 do ([z:=z*y]4;[y:=y-1]5);[y:=0]6;

LVentry(1) = LVexit(1) \ {y} ∪ {x}
LVentry(2) = LVexit(2) \ {z}
LVentry(3) = LVexit(3) ∪ {y}
LVentry(4) = LVexit(4) ∪ {y, z}
LVentry(5) = LVexit(5) ∪ {y}
LVentry(6) = LVexit(6) \ {y}
LVexit(1) = LVentry(2)

LVexit(2) = LVentry(3)

LVexit(3) = LVentry(4) ∪ LVentry(6)
LVexit(4) = LVentry(5)

LVexit(5) = LVentry(3)

LVexit(6) = ∅

` LVentry(`) LVexit(`)

1 {x} ∅
2 {y} {y}
3 {y} {y, z}
4 {y, z} {y}
5 {y} {y}
6 ∅ ∅

— 37 —

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE

FACTORIAL PROGRAM BY CHAOTIC ITERATION 8

[y:=x]1;[z:=1]2; while [y>1]3 do ([z:=z*y]4;[y:=y-1]5);[y:=0]6;

LVentry(1) = LVexit(1) \ {y} ∪ {x}
LVentry(2) = LVexit(2) \ {z}
LVentry(3) = LVexit(3) ∪ {y}
LVentry(4) = LVexit(4) ∪ {y, z}
LVentry(5) = LVexit(5) ∪ {y}
LVentry(6) = LVexit(6) \ {y}
LVexit(1) = LVentry(2)

LVexit(2) = LVentry(3)

LVexit(3) = LVentry(4) ∪ LVentry(6)
LVexit(4) = LVentry(5)

LVexit(5) = LVentry(3)

LVexit(6) = ∅

` LVentry(`) LVexit(`)

1 {x} ∅
2 {y} {y}
3 {y, z} {y, z}
4 {y, z} {y}
5 {y} {y}
6 ∅ ∅

— 38 —

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE

FACTORIAL PROGRAM BY CHAOTIC ITERATION 9

[y:=x]1;[z:=1]2; while [y>1]3 do ([z:=z*y]4;[y:=y-1]5);[y:=0]6;

LVentry(1) = LVexit(1) \ {y} ∪ {x}
LVentry(2) = LVexit(2) \ {z}
LVentry(3) = LVexit(3) ∪ {y}
LVentry(4) = LVexit(4) ∪ {y, z}
LVentry(5) = LVexit(5) ∪ {y}
LVentry(6) = LVexit(6) \ {y}
LVexit(1) = LVentry(2)

LVexit(2) = LVentry(3)

LVexit(3) = LVentry(4) ∪ LVentry(6)
LVexit(4) = LVentry(5)

LVexit(5) = LVentry(3)

LVexit(6) = ∅

` LVentry(`) LVexit(`)

1 {x} {y}
2 {y} {y}
3 {y, z} {y, z}
4 {y, z} {y}
5 {y} {y}
6 ∅ ∅

— 39 —

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE

FACTORIAL PROGRAM BY CHAOTIC ITERATION 10

[y:=x]1;[z:=1]2; while [y>1]3 do ([z:=z*y]4;[y:=y-1]5);[y:=0]6;

LVentry(1) = LVexit(1) \ {y} ∪ {x}
LVentry(2) = LVexit(2) \ {z}
LVentry(3) = LVexit(3) ∪ {y}
LVentry(4) = LVexit(4) ∪ {y, z}
LVentry(5) = LVexit(5) ∪ {y}
LVentry(6) = LVexit(6) \ {y}
LVexit(1) = LVentry(2)

LVexit(2) = LVentry(3)

LVexit(3) = LVentry(4) ∪ LVentry(6)
LVexit(4) = LVentry(5)

LVexit(5) = LVentry(3)

LVexit(6) = ∅

` LVentry(`) LVexit(`)

1 {x} {y}
2 {y} {y, z}
3 {y, z} {y, z}
4 {y, z} {y}
5 {y} {y}
6 ∅ ∅

— 40 —

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE

FACTORIAL PROGRAM BY CHAOTIC ITERATION 11

[y:=x]1;[z:=1]2; while [y>1]3 do ([z:=z*y]4;[y:=y-1]5);[y:=0]6;

LVentry(1) = LVexit(1) \ {y} ∪ {x}
LVentry(2) = LVexit(2) \ {z}
LVentry(3) = LVexit(3) ∪ {y}
LVentry(4) = LVexit(4) ∪ {y, z}
LVentry(5) = LVexit(5) ∪ {y}
LVentry(6) = LVexit(6) \ {y}
LVexit(1) = LVentry(2)

LVexit(2) = LVentry(3)

LVexit(3) = LVentry(4) ∪ LVentry(6)
LVexit(4) = LVentry(5)

LVexit(5) = LVentry(3)

LVexit(6) = ∅

` LVentry(`) LVexit(`)

1 {x} {y}
2 {y} {y, z}
3 {y, z} {y, z}
4 {y, z} {y}
5 {y} {y, z}
6 ∅ ∅

— 41 —

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE

FACTORIAL PROGRAM BY CHAOTIC ITERATION 12

[y:=x]1;[z:=1]2; while [y>1]3 do ([z:=z*y]4;[y:=y-1]5);[y:=0]6;

LVentry(1) = LVexit(1) \ {y} ∪ {x}
LVentry(2) = LVexit(2) \ {z}
LVentry(3) = LVexit(3) ∪ {y}
LVentry(4) = LVexit(4) ∪ {y, z}
LVentry(5) = LVexit(5) ∪ {y}
LVentry(6) = LVexit(6) \ {y}
LVexit(1) = LVentry(2)

LVexit(2) = LVentry(3)

LVexit(3) = LVentry(4) ∪ LVentry(6)
LVexit(4) = LVentry(5)

LVexit(5) = LVentry(3)

LVexit(6) = ∅

` LVentry(`) LVexit(`)

1 {x} {y}
2 {y} {y, z}
3 {y, z} {y, z}
4 {y, z} {y}
5 {y, z} {y, z}
6 ∅ ∅

— 42 —

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE

FACTORIAL PROGRAM BY CHAOTIC ITERATION 13

[y:=x]1;[z:=1]2; while [y>1]3 do ([z:=z*y]4;[y:=y-1]5);[y:=0]6;

LVentry(1) = LVexit(1) \ {y} ∪ {x}
LVentry(2) = LVexit(2) \ {z}
LVentry(3) = LVexit(3) ∪ {y}
LVentry(4) = LVexit(4) ∪ {y, z}
LVentry(5) = LVexit(5) ∪ {y}
LVentry(6) = LVexit(6) \ {y}
LVexit(1) = LVentry(2)

LVexit(2) = LVentry(3)

LVexit(3) = LVentry(4) ∪ LVentry(6)
LVexit(4) = LVentry(5)

LVexit(5) = LVentry(3)

LVexit(6) = ∅

` LVentry(`) LVexit(`)

1 {x} {y}
2 {y} {y, z}
3 {y, z} {y, z}
4 {y, z} {y, z}
5 {y, z} {y, z}
6 ∅ ∅

— 43 —

THE ITERATION PROCESS CONVERGED! (AT LAST)

Chaotic iteration:

I this always works, i.e., it always converges and to the same fixpoint

I the final result is a safe description of the program’s data flow.

I some iteration orders converge faster than others.

— 44 —

LOOKS LIKE MAGIC!

WHERE DO THE FLOW EQUATIONS COME FROM?

Short answer: the result of much experience in writing analysis phases for

real compilers. We’ll see some examples.

Future/past: what is defined in terms of what in the equations, e.g.,

future: LVentry(`) = . . . LVexit(`) . . .

past: LVexit(`) = . . . LVentry(`) . . .

All-paths/some-path: find greatest or least fixpoint solution to the equations

I lfp (least fixpoint) for ∃ path dependence

I gfp (greatest fixpoint) for ∀ path dependence

Combining flows from several blocks into one:

I Use t when computing least fixpoint (some-path properties)

I Use u when computing greatest fixpoint (all-path properties)

— 45 —

SEVERAL APPROACHES TO DATA FLOW ANALYSIS

I Data flow equations over a lattice (what we just saw)

I The “kill/gen” approach to data flow equations (a traditional compiler-

writer’s approach)

I Constraint based analysis

I Monotone frameworks (unified lattice-theoretic viewpoint; notationally

complex)

I Type and effect systems

I Abstract interpretation

— 46 —

“KILL/GEN” DATA FLOW EQUATIONS

For a future analysis AN :

ANentry(`) = ANexit(`) \ killAN(B`) t genAN(B`)

For a past analysis AN :

ANexit(`) = ANentry(`) \ killAN(B`) t genAN(B`)

Idea, reasoning:

I killAN(B`) expresses the data flow information

that is over-written by statement B`

I genAN(B`) expresses the

new data flow information that is added by statement B`

Example for live variable analysis: statement [x:=y+z]3 will

I Generate {y,z}, so genLV ([x:=y+z]3) = {y, z}

I Kill x, so killLV ([x:=y+z]3) = {x}

— 47 —

MORE CONCRETELY: LIVE VARIABLE FLOW EQUATIONS

[y:=x]1;[z:=1]2; while [y>1]3 do ([z:=z*y]4;[y:=y-1]5);[y:=0]6;

LVentry(1) = LVexit(1) \ {y} ∪ {x}
LVentry(2) = LVexit(2) \ {z}
LVentry(3) = LVexit(3) ∪ {y}
LVentry(4) = LVexit(4) \ {z} ∪ {y, z}
LVentry(5) = LVexit(5) \ {y} ∪ {y}
LVentry(6) = LVexit(6) \ {y}
LVexit(1) = LVentry(2)

LVexit(2) = LVentry(3)

LVexit(3) = LVentry(4) ∪ LVentry(6)

LVexit(4) = LVentry(5)

LVexit(5) = LVentry(3)

LVexit(6) = ∅

Examples: killLV ([z:=z*y]4) = {z} and genLV ([z:=z*y]4) = {y, z}

— 48 —

GENERAL DATA FLOW EQUATIONS: LIVE VARIABLES

LVexit(`) =

{
∅ if [B]` a final block⋃
{LVentry(`′) | `′→ ` in flow chart} otherwise

LVentry(`) = (LVexit(`) \ killLV (B`)) ∪ genLV (B`)

where B` is a block

I A future analysis, thus data flows backwards (from LVexit to LVentry)

I An ∃ path analysis, thus lfp and use
⋃

to merge branches

Some auxiliary definitions

killLV ([x := a]`) = {x}
killLV ([skip]`) = ∅
killLV ([b]`) = ∅

genLV ([x := a]`) = FreeVariables(a)

genLV ([skip]`) = ∅
genLV ([b]`) = FreeVariables(b)

— 49 —

GENERAL FLOW EQUATIONS: REACHING DEFINITIONS

RDentry(`) =

{
{(x, ?) | x ∈ FreeVariables(S)} if [B]` initial block⋃
{RDexit(`

′) | `′→ ` in flow chart} otherwise

RDexit(`) = (RDentry(`) \ killRD(B`)) ∪ genRD(B`)

where B` is a block

I A past analysis, thus data flows forwards (from RDentry to RDexit)

I An ∃ path analysis, thus lfp and use
⋃

to merge branches

Some auxiliary definitions

killRD([x := a]`) = {(x, ?)} ∪ {(x, `′) | ∃ assignment [x := . . .]`
′
}

killRD([skip]`) = ∅
killRD([b]`) = ∅

genRD([x := a]`) = {(x, `)}
genRD([skip]`) = ∅
genRD([b]`) = ∅

— 50 —

CONSTRAINT SYSTEMS

Express flow equations in terms of set containments. LV example:

[y:=x]1;[z:=1]2; while [y>1]3 do ([z:=z*y]4;[y:=y-1]5);[y:=0]6;

LVentry(1) ⊇ LVexit(1) \ {y}
LVentry(1) ⊇ {x}
LVentry(2) ⊇ LVexit(2) \ {z}

LVentry(3) ⊇ LVexit(3)

LVentry(3) ⊇ {y}
LVentry(4) ⊇ LVexit(4)

LVentry(4) ⊇ {y, z}
LVentry(5) ⊇ LVexit(5)

LVentry(5) ⊇ {y}
LVentry(6) ⊇ LVexit(6) \ {y}

LVexit(1) ⊇ LVentry(2)

LVexit(2) ⊇ LVentry(3)

LVexit(3) ⊇ LVentry(4)

LVexit(3) ⊇ LVentry(6)

LVexit(4) ⊇ LVentry(5)

LVexit(5) ⊇ LVentry(3)

Exactly equivalent in this context. More generally: constraints can express

more sophisticated flow analyses that are hard to describe by equations.

— 51 —

SEMANTIC CORRECTNESS, OR “SAFETY”

To show: that what the analysis says, is actually true of any computation.

I Starting point: the semantics of the programming language.

I Given a program S and an initial store σ, the semantics defines the set

of possible (finite or infinite) computations

〈S, σ〉 → 〈S1, σ1〉 → 〈S2, σ2〉 → . . .

I Given: an analysis AN of one (arbitrary) program

I Needed: a (logical and natural) connection between

• the result of the analysis; and

• the program’s possible computations

This is the start of the field:

Semantics-based program manipulation

— 52 —

