DATA FLOW ANALYSIS (INTRAPROCEDURAL)

Neil D. Jones DIKU, University of Copenhagen (prof. emeritus) **Book:** NNH = Nielson, Nielson and Hankin Principles of Program Analysis

Slides: downloadable from course home page.

Reading for lectures 2 and 7 December:

- ▶ Read and understand NNH sections 1.1, 1.2, 1.3, 1.7, 1.8.
- ▶ Skim 1.4, 1.5, 1.6.
- ▶ Read and understand NNH section 2.1.

The compiler construction course project may have some application-oriented work based on Chapters 1 and 2.

SOURCES

How is program analysis done?

- Many people: decades of practical experience in writing compilers (though correctness issues are rarely addressed by compiler hackers)
- **•** Engineering methodology: program analysis by fix-point computations.
- This was developed by informal, pragmatic, ad hoc methods from the 1950s called data flow analysis.

Semantics-based program analysis:

- Methods formally based in program semantics developed by Cousot-+Cousot, Jones, Muchnick, Nielson+Nielson, Hankin, many others.
- **Research since 1970's under the name of Abstract Interpretation**
- ► Capture a significant part of data flow analysis (but not all).
- ► January 2008 conference in San Francisco:

"30 Years of Abstract Interpretation."

MOTIVATION, ORIGINS

Optimising transformations for compilers.

Compiler structure:

```
sourcecode \rightarrow intermediatecode \rightarrow intermediatecode \rightarrow targetcode
```

The Optimisation phase:

intermediatecode \rightarrow intermediatecode

Intermediate code is usually (some version of) simple flow chart programs. These contain

- program points (also called labels),
- with an elementary statement or test at each point, and
- control transitions from one program point to another.

What: program transformation to improve efficiency

- **Based on program flow analysis**
- Must be correct (and just what does this mean?)
- Complex
- Important: efficiency, complex hardware, limits to what humans can improve, etc

How: several steps in program optimisation. First: program analysis.

- Choose a data flow lattice to describe program properties
- **•** Build a system of data flow equations from the program
- **Solve** the system of data flow equations

Then transform the program, usually to optimise it

Consider a transformation

 $[x := a]^{\ell} \Rightarrow [skip]^{\ell}$

to eliminate code. (It sounds trivial, but it's significant in practice!)

Some possible reasons it can be correct:

- 1. Point ℓ is <u>unreachable</u>: control cannot flow from the program's start to $[x := a]^{\ell}$
- 2. <u>Point ℓ is dead</u>: control cannot flow from $[x := a]^{\ell}$ to the program's exit. For example
 - **•** The program will definitely loop after point ℓ . Or
 - **•** The program will definitely abort execution after point ℓ .
- 3. Variable x is dead at ℓ (even though point ℓ is not dead): For instance
 - ▶ x is never referenced again; or
 - ▶ x may be used to compute y, z, ... but they are never used again, ...

TOWARDS UNDERSTANDING THE PROBLEM II

More possible reasons for correctness of the transformation

 $[x := a]^{\ell} \Rightarrow [skip]^{\ell}$

to eliminate code.

- 4. x is already equal to a (if control ever gets to ℓ)
- **5.** Mathematical reasons relating x and a, e.g., Matiyasevich's theorem etc.
- 6. <u>a is an uninitialised variable</u>: so the value of x is completely undependable
- 7. Some patchwork combination of the above.(Eg, reason 3 applies if x is even, reason 4 applies if x is odd,...)

ALAS, MOST OF THESE REASONS ARE AS UNDECIDABLE AS THE HALTING PROBLEM (!)

Remark: many (most!) of the above program behavior properties are **un**-**decidable** (if you insist on exact answers).

Proof See Rice's Theorem from Computability Theory.

So what do we do?

- ► The practice of program analysis and the theory of abstract interpretation: find safe descriptions of program behavior. Meaning of safety:
 - if the analysis says that a program has a certain behavior (e.g., that x is dead at point ℓ),
 - then it definitely has that behavior in all computations.
- ► However the analysis may be imprecise in this sense:
 - it can answer "don't know" even when the property is true.

WHAT KIND OF REASONING CAN BE USED TO DISCOVER PROGRAM PROPERTIES?

They can involve

- **Control flow**, e.g., that point ℓ is unreachable
- **Data flow**, e.g., that the value of variable x at point ℓ cannot affect the program's final output.

A useful classification: dimension 1 = past/future, dimension 2 = may/must.

- \blacktriangleright computational pasts, e.g., that x equals a if control point ℓ is reached
- \blacktriangleright computational futures, e.g., that variable x is dead at control point ℓ
- ▶ all-path, or "must" properties, e.g., a past all-path property:

"variable x is initialised"

i.e., x was set on every computation path from start to current point ℓ

some-path, or "may" properties, e.g., a future some-path property:

"variable x is live", i.e., there exists a computation path from current point ℓ to the program end

OVERVIEW

A program analysis will compute a "program-point-centric" analysis that binds information to each program point ℓ .

The program properties at a program point ℓ are

- determined by
 - the computational <u>future</u>

(of computations that get as far as ℓ); or

- the computational past
- determined by the set of
 - <u>all</u> computation paths from (or to) ℓ , or by
 - the existence of <u>at least one</u> computation path from (or to) ℓ

OVERVIEW

A program analysis will compute a "program-point-centric" analysis that binds information to each program point ℓ .

Such information (almost always in the literature)

- ▶ is finitely (and feasibly!) computable
- ▶ is computed uniformly, i.e., for all the source program's program points.
- Adjacent program points will have properties that are related, e.g., by classic flow equations of dataflow analysis for compiler construction.

An analogy: heat flow equations.

(though heat flows 2-ways, while program flows are asymmetric.)

SOME NOTATIONS USED IN THE BOOK

$\ell \in \mathrm{Lab}$	the set of all labels
$x,y,z \in \mathrm{Var}$	the set of all variables
$S \in \mathrm{Stmt}$	the set of all statements
$a \in \operatorname{AExp}$	the set of all arithmetic expressions
$b \in \operatorname{BExp}$	the set of all Boolean expressions
$e \in \operatorname{Exp}$	the set of all expressions (arithmetic or Boolean)

ABSTRACT SYNTAX

For our slides: we only think of flow charts containing labeled blocks B, don't deal with statements that contain other statements. (Doesn't lose information, and saves notation!)

Generic versus concrete:

$[x:=a]^\ell$	Math font for generic program fragments, e.g.,
	x ranges over all variables
$[x := x+1]^7$	Teletype font for concrete program fragments, e.g.,
	the LHS is the concrete variable "x"

A FEW MORE NOTATIONS

 Lab_* the set of all labels in the program currently being analysed

 Var_* the set of all variables in the program currently being analysed

 ${\rm Stm}t_*$ the set of all statements in the program currently being analysed

 $AExp_*$ the set of all arithmetic expressions in the program currently being a

 $BExp_*$ the set of all Boolean expressions in the program currently being ana

4 USEFUL EXAMPLES OF DATA FLOW ANALYSIS

Type of flow equations:	What's	analysed
$F: \operatorname{Lab}_* o dataflow \ lattice \ L$	Time dependency	Path modality
$RD \ : \operatorname{Lab}_* o \mathcal{P}(\operatorname{Var}_* imes \operatorname{Lab}_*^?)$	past	Э
$LV \ : \mathrm{Lab}_* ightarrow \mathcal{P}(\mathrm{Var}_*)$	future	Э
$AE \ : \mathrm{Lab}_* o \mathcal{P}(\mathrm{Exp}_*)$	past	\forall
$VB \ : \mathrm{Lab}_* ightarrow \mathcal{P}(\mathrm{Exp}_*)$	future	\forall

RD = Reaching definitions (used for constant propagation) LV = Live variables (used for dead code elimination) AE = Available expressions (to avoid recomputing expressions) VB = Very busy expressions (save expression values for later use)

INTUITIVE EXPLANATION: LIVE VARIABLES

Type of flow equations:	What's analysed		How it's	computed
$F: \operatorname{Lab}_* ightarrow \operatorname{dataflow} \operatorname{lattice} L$ $LV: \operatorname{Lab}_* ightarrow \mathcal{P}(\operatorname{Var}_*)$	Time dependency future	Path modality ∃		Kind of fixpoint least

Variable x is live at program point ℓ if there exists a flow chart path from ℓ to some usage of variable x. Things to notice:

- ▶ it's about what can happen in the future
- ▶ along at least one path (\exists)

Optimisation enabled by live variable analysis:

If x is not live at point ℓ , then the register / memory cell containg the value of x may be used for another value

Net effect: to reduce memory or register usage.

INTUITIVE EXPLANATION: AVAILABLE EXPRESSIONS

Type of flow equations:	What's analysed		How it'	s computed
$F: \operatorname{Lab}_* ightarrow dataflow$ lattice L	Time dependency	Path modality	Data flow	Kind of fixpoint
$AE \ : \mathrm{Lab}_* ightarrow \mathcal{P}(\mathrm{Exp}_*)$	past	\forall	forward	greatest

Expression e is available at program point ℓ if on all flow chart paths to ℓ the value of e has been computed, and no variable in e has been changed. Things to notice:

- ▶ it's about what did happen in the past
- ▶ and along all paths to ℓ (∀)

Optimisation enabled by live variable analysis:

If e is available at point ℓ , then (generate code to) fetch the value that has already been computed.

Net effect: generate smaller code.

INTUITIVE EXPLANATION: VERY BUSY EXPRESSIONS

Type of flow equations:	What's analysed		How it's	computed
	Time	Path	Data	Kind of
$F: \operatorname{Lab}_* ightarrow dataflow$ lattice L	dependency	modality	flow	fixpoint
$VB \ : \mathrm{Lab}_* ightarrow \mathcal{P}(\mathrm{Exp}_*)$	future	\forall	backward	greatest

Expression *e* is very busy at program point ℓ if the value of *e* will be used on all flow chart paths from ℓ . Things to notice:

- ▶ it's about what will happen in the future
- ▶ and along all paths from ℓ (∀)

Optimisation enabled by very busy expression analysis:

It can pay to keep the value of e in a register instead of memory. Net effect: generate faster code.

INTUITIVE EXPLANATION: REACHING DEFINITIONS

Type of flow equations:	What's analysed		How it'	's computed
	Time	Path		Kind of
$F: \operatorname{Lab}_* \to \operatorname{dataflow} \operatorname{lattice} L$	dependency	modality	flow	fixpoint
$RD \ : \mathrm{Lab}_* ightarrow \mathcal{P}(\mathrm{Var}_* imes \mathrm{Lab}^?_*)$	past	Э	forward	least

A pair (x,ℓ_0) can reach program point ℓ if

- \blacktriangleright there is a statement $[x:=e]^{\ell_0}$, and
- **•** there is a path from ℓ_0 to ℓ , and
- \blacktriangleright variable x is not changed on the path

Things to notice:

▶ it's about what happened in the past along at least one path to ℓ (∃) Optimisation enabled by reaching definition analysis: constant propagation Net effect: generate faster code.

SEMANTIC FOUNDATION

- ► State: a state is a function σ : Var \rightarrow Z. Also known as a store. Idea: the current value of variable x is $\sigma(x)$.
- A computational configuration is a pair $\langle S, \sigma \rangle$ where S is a statement (what is remaining to execute) and σ is the current state.
- ► A one-step transition has form

 $\langle S,\sigma
angle
ightarrow \langle S',\sigma'
angle$ or, if program stops: $\langle S,\sigma
angle
ightarrow \sigma'$

Details omitted today, but what you would expect. Here there is a data flow from σ to σ'

- **Each program defines a set of computations.** A computation is either
 - a terminating computation: a finite sequence

$$\langle S_1, \sigma_1
angle o \langle S_2, \sigma_2
angle o \ldots \langle S_n, \sigma_n
angle o \sigma_{n+1}$$

or

• a looping computation: an infinite sequence

$$\langle S_1, \sigma_1
angle o \langle S_2, \sigma_2
angle o \ldots$$

Given a program, to find a description of the data flow at each label ℓ . In this book, for analysis A:

- ► $A_{entry}(\ell)$ = flow information at the entry to statement $[B]^{\ell}$
- $A_{exit}(\ell) =$ flow information at the exit from statement $[B]^{\ell}$

Suppose program has the form:

$$[B_1]^{\ell_1} \; [B_2]^{\ell_2} \; \dots \; [B_n]^{\ell_n}$$

Then a program description will have the form:

 $A_{entry}: \operatorname{Lab}_* \to L \text{ and } A_{exit}: \operatorname{Lab}_* \to L$

where L is a complete lattice. Different lattices for different flow properties.

Flow lattice: a structure $L = (L, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$.

A PAST ANALYSIS: REACHING DEFINITIONS FOR X!

Program:

 $[y:=x]^{1};[z:=1]^{2};$ while $[y>1]^{3}$ do $([z:=z*y]^{4};[y:=y-1]^{5});$ $[y:=0]^{6};$

Reaching definitions lattice:

 $L = (\ \mathcal{P}(\{\mathtt{x}, \mathtt{y}, \mathtt{z}\} \times \{1, 2, 3, 4, 5, 6, ?\}) \ , \sqsubseteq, \sqcup, \sqcap, \bot, \top)$

 $(x,\ell_0)\in RD_{_-}(\ell)$ if for some computation path from ℓ_0 to ℓ

- ▶ x was assigned at point ℓ_0 , and (jargon: "defined")
- $\blacktriangleright x$ was not re-assigned before point ℓ (i.e., the assignment "reaches" ℓ)

Uninitalised variables: are "reached" from point "?"

l	$RD_{entry}(\ell)$	$RD_{exit}(\ell)$
1	$\{(x,?),(y,?),(z,?)\}$	$\{(x,?),(y,1),(z,?)\}$
2	$\{(x,?),(y,1),(z,?)\}$	$\{(x,?),(y,1),(z,2)\}$
3	$\{(x,?),(y,1),(y,5),(z,2),(z,4)\}$	$\{({\tt x},?),({\tt y},1),({\tt y},5),({\tt z},2),({\tt z},4)\}$
4	$\{(x,?),(y,1),(y,5),(z,2),(z,4)\}$	$\{(x,?),(y,1),(y,5),(z,4)\}$
5	$\{(x,?),(y,1),(y,5),(z,4)\}$	$\{(x,?),(y,5),(z,4)\}$
6	$\{(x,?),(y,1),(y,5),(z,2),(z,4)\}$	$\{(x,?),(y,6),(z,2),(z,4)\}$

A FUTURE ANALYSIS: LIVE VARIABLES (for the same program to compute x!)

Program:

$$[y:=x]^{1};[z:=1]^{2};$$
 while $[y>1]^{3}$ do $([z:=z*y]^{4};[y:=y-1]^{5});$ $[y:=0]^{6};$

Live variable lattice:

$$L = (\mathcal{P}(\{\mathrm{x},\mathrm{y},\mathrm{z}\}) , \sqsubseteq, \sqcup, \sqcap, \bot, \top)$$

Variable x is live if \exists computation path with a future reference to x. Assume: no variables are live at program exit.

l	$LV_{entry}(\ell)$	$LV_{exit}(\ell)$
1	{x}	{y}
2	{y}	$\{y,z\}$
3	$\{y,z\}$	$\{y,z\}$
4	$\{y,z\}$	$\{y,z\}$
5	$\{y,z\}$	$\{y,z\}$
6	Ø	Ø

LIVE VARIABLE FLOW EQUATIONS: (for the same program to compute x!)

 $[y:=x]^{1};[z:=1]^{2};$ while $[y>1]^{3}$ do $([z:=z*y]^{4};[y:=y-1]^{5});[y:=0]^{6};$

$$egin{aligned} LV_{entry}(1) &= LV_{exit}(1) \setminus \{y\} \cup \{x\} \ LV_{entry}(2) &= LV_{exit}(2) \setminus \{z\} \ LV_{entry}(3) &= LV_{exit}(3) \cup \{y\} \ LV_{entry}(4) &= LV_{exit}(4) \cup \{y,z\} \ LV_{entry}(5) &= LV_{exit}(5) \cup \{y\} \ LV_{entry}(6) &= LV_{exit}(6) \setminus \{y\} \ LV_{exit}(1) &= LV_{entry}(2) \ LV_{exit}(2) &= LV_{entry}(3) \ LV_{exit}(3) &= LV_{entry}(4) \cup LV_{entry}(6) \ LV_{exit}(4) &= LV_{entry}(5) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(6) &= \emptyset \end{aligned}$$

- ► What is being defined by these equations ?
- ► What data flow logic is being expressed?
- ► How can the equations be solved ?

The equations define the values of in all 12 program point descriptions

 $LV_{entry}(1), \ldots, LV_{entry}(6), LV_{exit}(1), \ldots, LV_{exit}(6)$

in terms of each other.

This is a recursive system of data flow equations to describe the program's computational behavior.

Solution to the equation system: This is called a **fixpoint**.

Type of a solution to the equation system: L^{12} , where L is the description data flow lattice.

Type of the equation system itself:

$$F:L^{12}
ightarrow L^{12}$$

Time dependence. Possibilities:

• Future analysis: the property depends on the computational future.

```
Computed by backward data flow.
```

- Past analysis: the property depends on the computational past.
 Computed by forward data flow. "must" or "may" dependence:
- ► Path modality dependence. Possibilities:
 - may path dependence (for some path)
 - must path dependence (for all paths)
- ► These make **four combinations**. For example:
 - Both LV and RD are may path dependencies
 - Live variables LV is a future analysis (= backward data flow)
 - Reaching definitions RD is a past analysis (= forward data flow)

FLOW EQUATIONS: REFLECT THE 4 COMBINATIONS

Future/past: what is defined in terms of what in the equations, e.g.,

future:
$$LV_{entry}(\ell) = \dots LV_{exit}(\ell) \dots$$

past: $LV_{exit}(\ell) = \dots LV_{entry}(\ell) \dots$

All-paths/some-path: find greatest or least fixpoint solution to equations

Fixpoints: *lfp* (least fixpoint) for \exists path dependence

$$lfp(F) = igsqcup F^n(ot, ot, ot, \dots, ot)$$

gfp (greatest fixpoint) for \forall path dependence

$$gfp(F) = \sqcap_{n o \infty} F^n(\top, \top, \dots, \top)$$

Combining flows from several blocks into one:

- ► Use \sqcup when computing least fixpoint (some-path properties)
- ▶ Use □ when computing greatest fixpoint (all-path properties)

4 EXAMPLES OF THE 4 COMBINATIONS

Type of flow equations:	What's	analysed	How it's	computed
$F: \operatorname{Lab}_* o dataflow \ lattice \ L$	Time dependency	Path modality	Data flow	Kind of fixpoint
$RD \ : \mathrm{Lab}_* ightarrow \mathcal{P}(\mathrm{Var}_* imes \mathrm{Lab}_*^?)$	past	Э	forward	least
$LV \ : \mathrm{Lab}_* ightarrow \mathcal{P}(\mathrm{Var}_*)$	future	Э	backward	least
$AE \ : \mathrm{Lab}_* ightarrow \mathcal{P}(\mathrm{Exp}_*)$	past	\forall	forward	greatest
$VB \ : \mathrm{Lab}_* ightarrow \mathcal{P}(\mathrm{Exp}_*)$	future	\forall	backward	greatest

- RD = Reaching definitions
- LV = Live variables
- AE = Available expressions
- VB = Very busy expressions

Form of the data flow equation system:

$$(X_1,X_2,\ldots,X_{2n})=(e_1(ec{X}),e_2(ec{X}),\ldots,e_{2n}(ec{X}))$$

where set expressions e_e, \ldots, e_{2n} are built from X_1, X_2, \ldots, X_{2n} by set operations such as \cup, \cap, \setminus and constants.

This defines a function

$$F:\mathcal{P}(D)^{2n}
ightarrow\mathcal{P}(D)^{2n}$$

(where D = set of descriptions, n = number of labels)

on the lattice

$$L = (L, \sqsubseteq, \sqcup, \sqcap, \bot, \top)) = (\mathcal{P}(D), \subseteq, \cup, \cap, \emptyset, D))$$

Fixpoints: $lfp(F) = \bigsqcup_{n \to \infty} F^n(\bot, \bot, ..., \bot), gfp(F) = \sqcap_{n \to \infty} F^n(\top, ..., \top)$ 1. $\mathcal{P}(D)$ is a lattice, so $F(X_1, X_2, ..., X_{2n})$ exists.

- 2. $\mathcal{P}(D)$ is complete, so lfp(F), gfp(F) both exist.
- 3. Ascending (descending) chain condition: ensures that

lfp(F), gfp(F) are finitely computable.

Effect is to compute the least (or greatest) fixpoint by repeatedly applying the equations

- ► Apply them in any order
- until no sets can be changed
- Initialisation of the sets:
 - Least fixpoint: start with every set empty (\perp of the lattice)
 - Greatest fixpoint: start with every set equal to (\top of the lattice)

Amazing fact: it doesn't matter what order is chosen (hence the name "chaotic")

$$[y:=x]^{1};[z:=1]^{2};$$
 while $[y>1]^{3}$ do $([z:=z*y]^{4};[y:=y-1]^{5});[y:=0]^{6};$

$$egin{aligned} LV_{entry}(1) &= LV_{exit}(1) \setminus \{y\} \cup \{x\} \ LV_{entry}(2) &= LV_{exit}(2) \setminus \{z\} \ LV_{entry}(3) &= LV_{exit}(3) \cup \{y\} \ LV_{entry}(4) &= LV_{exit}(4) \cup \{y,z\} \ LV_{entry}(5) &= LV_{exit}(5) \cup \{y\} \ LV_{entry}(6) &= LV_{exit}(6) \setminus \{y\} \ LV_{exit}(1) &= LV_{entry}(2) \ LV_{exit}(2) &= LV_{entry}(3) \ LV_{exit}(3) &= LV_{entry}(4) \cup LV_{entry}(6) \ LV_{exit}(4) &= LV_{entry}(5) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(6) &= \emptyset \end{aligned}$$

l	$LV_{entry}(\ell)$	$LV_{exit}(\ell)$
1	Ø	Ø
2	Ø	Ø
3	Ø	Ø
4	Ø	Ø
5	Ø	Ø
6	Ø	Ø

$$[y:=x]^{1};[z:=1]^{2};$$
 while $[y>1]^{3}$ do $([z:=z*y]^{4};[y:=y-1]^{5});[y:=0]^{6};$

$$egin{aligned} LV_{entry}(1) &= LV_{exit}(1) \setminus \{y\} \cup \{x\} \ LV_{entry}(2) &= LV_{exit}(2) \setminus \{z\} \ LV_{entry}(3) &= LV_{exit}(3) \cup \{y\} \ LV_{entry}(4) &= LV_{exit}(4) \cup \{y,z\} \ LV_{entry}(5) &= LV_{exit}(5) \cup \{y\} \ LV_{entry}(6) &= LV_{exit}(6) \setminus \{y\} \ LV_{exit}(1) &= LV_{entry}(2) \ LV_{exit}(2) &= LV_{entry}(3) \ LV_{exit}(3) &= LV_{entry}(4) \cup LV_{entry}(6) \ LV_{exit}(4) &= LV_{entry}(5) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(6) &= \emptyset \end{aligned}$$

l	$LV_{entry}(\ell)$	$LV_{exit}(\ell)$
1	{x}	Ø
2	Ø	Ø
3	{y}	Ø
4	$\{y,z\}$	Ø
5	{ y }	Ø
6	Ø	Ø

$$[y:=x]^{1};[z:=1]^{2};$$
 while $[y>1]^{3}$ do $([z:=z*y]^{4};[y:=y-1]^{5});[y:=0]^{6};$

$$egin{aligned} LV_{entry}(1) &= LV_{exit}(1) \setminus \{y\} \cup \{x\} \ LV_{entry}(2) &= LV_{exit}(2) \setminus \{z\} \ LV_{entry}(3) &= LV_{exit}(3) \cup \{y\} \ LV_{entry}(4) &= LV_{exit}(4) \cup \{y,z\} \ LV_{entry}(5) &= LV_{exit}(5) \cup \{y\} \ LV_{entry}(6) &= LV_{exit}(6) \setminus \{y\} \ LV_{exit}(1) &= LV_{entry}(2) \ LV_{exit}(2) &= LV_{entry}(3) \ LV_{exit}(3) &= LV_{entry}(4) \cup LV_{entry}(6) \ LV_{exit}(4) &= LV_{entry}(5) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(6) &= \emptyset \end{aligned}$$

l	$LV_{entry}(\ell)$	$LV_{exit}(\ell)$
1	{x}	Ø
2	Ø	{y}
3	{y}	Ø
4	$\{y,z\}$	Ø
5	{y}	Ø
6	Ø	Ø

$$[y:=x]^{1};[z:=1]^{2};$$
 while $[y>1]^{3}$ do $([z:=z*y]^{4};[y:=y-1]^{5});[y:=0]^{6};$

$$egin{aligned} LV_{entry}(1) &= LV_{exit}(1) \setminus \{y\} \cup \{x\} \ LV_{entry}(2) &= LV_{exit}(2) \setminus \{z\} \ LV_{entry}(3) &= LV_{exit}(3) \cup \{y\} \ LV_{entry}(4) &= LV_{exit}(4) \cup \{y,z\} \ LV_{entry}(5) &= LV_{exit}(5) \cup \{y\} \ LV_{entry}(6) &= LV_{exit}(6) \setminus \{y\} \ LV_{exit}(1) &= LV_{entry}(2) \ LV_{exit}(2) &= LV_{entry}(3) \ LV_{exit}(3) &= LV_{entry}(4) \cup LV_{entry}(6) \ LV_{exit}(4) &= LV_{entry}(5) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(6) &= \emptyset \end{aligned}$$

l	$LV_{entry}(\ell)$	$LV_{exit}(\ell)$
1	{x}	Ø
2	Ø	{y}
3	{y}	$\{y,z\}$
4	$\{y,z\}$	Ø
5	{y}	Ø
6	Ø	Ø

$$[y:=x]^{1};[z:=1]^{2};$$
 while $[y>1]^{3}$ do $([z:=z*y]^{4};[y:=y-1]^{5});[y:=0]^{6};$

$$egin{aligned} LV_{entry}(1) &= LV_{exit}(1) \setminus \{y\} \cup \{x\} \ LV_{entry}(2) &= LV_{exit}(2) \setminus \{z\} \ LV_{entry}(3) &= LV_{exit}(3) \cup \{y\} \ LV_{entry}(4) &= LV_{exit}(4) \cup \{y,z\} \ LV_{entry}(5) &= LV_{exit}(5) \cup \{y\} \ LV_{entry}(6) &= LV_{exit}(6) \setminus \{y\} \ LV_{exit}(1) &= LV_{entry}(2) \ LV_{exit}(2) &= LV_{entry}(3) \ LV_{exit}(3) &= LV_{entry}(4) \cup LV_{entry}(6) \ LV_{exit}(4) &= LV_{entry}(5) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(6) &= \emptyset \end{aligned}$$

l	$LV_{entry}(\ell)$	$LV_{exit}(\ell)$
1	{x}	Ø
2	Ø	{y}
3	{y}	$\{y,z\}$
4	$\{y,z\}$	{y}
5	{y}	Ø
6	Ø	Ø

$$[y:=x]^{1};[z:=1]^{2};$$
 while $[y>1]^{3}$ do $([z:=z*y]^{4};[y:=y-1]^{5});[y:=0]^{6};$

$$egin{aligned} LV_{entry}(1) &= LV_{exit}(1) \setminus \{y\} \cup \{x\} \ LV_{entry}(2) &= LV_{exit}(2) \setminus \{z\} \ LV_{entry}(3) &= LV_{exit}(3) \cup \{y\} \ LV_{entry}(4) &= LV_{exit}(4) \cup \{y,z\} \ LV_{entry}(5) &= LV_{exit}(5) \cup \{y\} \ LV_{entry}(6) &= LV_{exit}(6) \setminus \{y\} \ LV_{exit}(1) &= LV_{entry}(2) \ LV_{exit}(2) &= LV_{entry}(3) \ LV_{exit}(3) &= LV_{entry}(4) \cup LV_{entry}(6) \ LV_{exit}(4) &= LV_{entry}(5) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(6) &= \emptyset \end{aligned}$$

l	$LV_{entry}(\ell)$	$LV_{exit}(\ell)$
1	{x}	Ø
2	Ø	{y}
3	{y}	$\{y,z\}$
4	$\{y,z\}$	{y}
5	{y}	{y}
6	Ø	Ø

$$[y:=x]^{1};[z:=1]^{2};$$
 while $[y>1]^{3}$ do $([z:=z*y]^{4};[y:=y-1]^{5});[y:=0]^{6};$

$$egin{aligned} LV_{entry}(1) &= LV_{exit}(1) \setminus \{y\} \cup \{x\} \ LV_{entry}(2) &= LV_{exit}(2) \setminus \{z\} \ LV_{entry}(3) &= LV_{exit}(3) \cup \{y\} \ LV_{entry}(4) &= LV_{exit}(4) \cup \{y,z\} \ LV_{entry}(5) &= LV_{exit}(5) \cup \{y\} \ LV_{entry}(6) &= LV_{exit}(6) \setminus \{y\} \ LV_{exit}(1) &= LV_{entry}(2) \ LV_{exit}(2) &= LV_{entry}(3) \ LV_{exit}(3) &= LV_{entry}(4) \cup LV_{entry}(6) \ LV_{exit}(4) &= LV_{entry}(5) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(6) &= \emptyset \end{aligned}$$

l	$LV_{entry}(\ell)$	$LV_{exit}(\ell)$
1	{x}	Ø
2	{y}	{y}
3	{y}	$\{y,z\}$
4	$\{y,z\}$	{y}
5	{y}	{y}
6	Ø	Ø

$$[y:=x]^{1};[z:=1]^{2};$$
 while $[y>1]^{3}$ do $([z:=z*y]^{4};[y:=y-1]^{5});[y:=0]^{6};$

$$egin{aligned} LV_{entry}(1) &= LV_{exit}(1) \setminus \{y\} \cup \{x\} \ LV_{entry}(2) &= LV_{exit}(2) \setminus \{z\} \ LV_{entry}(3) &= LV_{exit}(3) \cup \{y\} \ LV_{entry}(4) &= LV_{exit}(4) \cup \{y,z\} \ LV_{entry}(5) &= LV_{exit}(5) \cup \{y\} \ LV_{entry}(6) &= LV_{exit}(6) \setminus \{y\} \ LV_{exit}(1) &= LV_{entry}(2) \ LV_{exit}(2) &= LV_{entry}(3) \ LV_{exit}(3) &= LV_{entry}(4) \cup LV_{entry}(6) \ LV_{exit}(4) &= LV_{entry}(5) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(6) &= \emptyset \end{aligned}$$

l	$LV_{entry}(\ell)$	$LV_{exit}(\ell)$
1	{x}	Ø
2	{y}	{y}
3	$\{y,z\}$	$\{y,z\}$
4	$\{y,z\}$	{y}
5	{y}	{y}
6	Ø	Ø

$$[y:=x]^{1};[z:=1]^{2};$$
 while $[y>1]^{3}$ do $([z:=z*y]^{4};[y:=y-1]^{5});[y:=0]^{6};$

$$egin{aligned} LV_{entry}(1) &= LV_{exit}(1) \setminus \{y\} \cup \{x\} \ LV_{entry}(2) &= LV_{exit}(2) \setminus \{z\} \ LV_{entry}(3) &= LV_{exit}(3) \cup \{y\} \ LV_{entry}(4) &= LV_{exit}(4) \cup \{y,z\} \ LV_{entry}(5) &= LV_{exit}(5) \cup \{y\} \ LV_{entry}(6) &= LV_{exit}(6) \setminus \{y\} \ LV_{exit}(1) &= LV_{entry}(2) \ LV_{exit}(2) &= LV_{entry}(3) \ LV_{exit}(3) &= LV_{entry}(4) \cup LV_{entry}(6) \ LV_{exit}(4) &= LV_{entry}(5) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(6) &= \emptyset \end{aligned}$$

ℓ	$LV_{entry}(\ell)$	$LV_{exit}(\ell)$
1	{x}	{y}
2	{y}	{y}
3	$\{y,z\}$	$\{y,z\}$
4	$\{y,z\}$	{y}
5	{y}	{y}
6	Ø	Ø

$$[y:=x]^{1};[z:=1]^{2};$$
 while $[y>1]^{3}$ do $([z:=z*y]^{4};[y:=y-1]^{5});[y:=0]^{6};$

$$egin{aligned} LV_{entry}(1) &= LV_{exit}(1) \setminus \{y\} \cup \{x\} \ LV_{entry}(2) &= LV_{exit}(2) \setminus \{z\} \ LV_{entry}(3) &= LV_{exit}(3) \cup \{y\} \ LV_{entry}(4) &= LV_{exit}(4) \cup \{y,z\} \ LV_{entry}(5) &= LV_{exit}(5) \cup \{y\} \ LV_{entry}(6) &= LV_{exit}(6) \setminus \{y\} \ LV_{exit}(1) &= LV_{entry}(2) \ LV_{exit}(2) &= LV_{entry}(3) \ LV_{exit}(3) &= LV_{entry}(4) \cup LV_{entry}(6) \ LV_{exit}(4) &= LV_{entry}(5) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(6) &= \emptyset \end{aligned}$$

l	$LV_{entry}(\ell)$	$LV_{exit}(\ell)$
1	{x}	{y}
2	{y}	$\{y,z\}$
3	$\{y,z\}$	$\{y,z\}$
4	$\{y,z\}$	{y}
5	{y}	{y}
6	Ø	Ø

$$[y:=x]^{1};[z:=1]^{2};$$
 while $[y>1]^{3}$ do $([z:=z*y]^{4};[y:=y-1]^{5});[y:=0]^{6};$

$$egin{aligned} LV_{entry}(1) &= LV_{exit}(1) \setminus \{y\} \cup \{x\} \ LV_{entry}(2) &= LV_{exit}(2) \setminus \{z\} \ LV_{entry}(3) &= LV_{exit}(3) \cup \{y\} \ LV_{entry}(4) &= LV_{exit}(4) \cup \{y,z\} \ LV_{entry}(5) &= LV_{exit}(5) \cup \{y\} \ LV_{entry}(6) &= LV_{exit}(6) \setminus \{y\} \ LV_{exit}(1) &= LV_{entry}(2) \ LV_{exit}(2) &= LV_{entry}(3) \ LV_{exit}(3) &= LV_{entry}(4) \cup LV_{entry}(6) \ LV_{exit}(4) &= LV_{entry}(5) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(6) &= \emptyset \end{aligned}$$

ℓ	$LV_{entry}(\ell)$	$LV_{exit}(\ell)$
1	{x}	{y}
2	{y}	$\{y,z\}$
3	$\{y,z\}$	$\{y,z\}$
4	$\{y,z\}$	{y}
5	{y}	$\{y,z\}$
6	Ø	Ø

— 42 —

$$[y:=x]^{1};[z:=1]^{2};$$
 while $[y>1]^{3}$ do $([z:=z*y]^{4};[y:=y-1]^{5});[y:=0]^{6};$

$$egin{aligned} LV_{entry}(1) &= LV_{exit}(1) \setminus \{y\} \cup \{x\} \ LV_{entry}(2) &= LV_{exit}(2) \setminus \{z\} \ LV_{entry}(3) &= LV_{exit}(3) \cup \{y\} \ LV_{entry}(4) &= LV_{exit}(4) \cup \{y,z\} \ LV_{entry}(5) &= LV_{exit}(5) \cup \{y\} \ LV_{entry}(6) &= LV_{exit}(6) \setminus \{y\} \ LV_{exit}(1) &= LV_{entry}(2) \ LV_{exit}(2) &= LV_{entry}(3) \ LV_{exit}(3) &= LV_{entry}(4) \cup LV_{entry}(6) \ LV_{exit}(4) &= LV_{entry}(5) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(6) &= \emptyset \end{aligned}$$

l	$LV_{entry}(\ell)$	$LV_{exit}(\ell)$
1	{x}	{y}
2	{y}	$\{y,z\}$
3	$\{y,z\}$	$\{y,z\}$
4	$\{y,z\}$	{y}
5	$\{y,z\}$	$\{y,z\}$
6	Ø	Ø

$$[y:=x]^{1};[z:=1]^{2};$$
 while $[y>1]^{3}$ do $([z:=z*y]^{4};[y:=y-1]^{5});[y:=0]^{6};$

$$egin{aligned} LV_{entry}(1) &= LV_{exit}(1) \setminus \{y\} \cup \{x\} \ LV_{entry}(2) &= LV_{exit}(2) \setminus \{z\} \ LV_{entry}(3) &= LV_{exit}(3) \cup \{y\} \ LV_{entry}(4) &= LV_{exit}(4) \cup \{y, z\} \ LV_{entry}(5) &= LV_{exit}(5) \cup \{y\} \ LV_{entry}(6) &= LV_{exit}(6) \setminus \{y\} \ LV_{exit}(1) &= LV_{entry}(2) \ LV_{exit}(2) &= LV_{entry}(3) \ LV_{exit}(3) &= LV_{entry}(4) \cup LV_{entry}(6) \ LV_{exit}(4) &= LV_{entry}(5) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(6) &= \emptyset \end{aligned}$$

ℓ	$LV_{entry}(\ell)$	$LV_{exit}(\ell)$
1	{x}	{y}
2	{y}	$\{y,z\}$
3	$\{y,z\}$	$\{y,z\}$
4	$\{y,z\}$	$\{y,z\}$
5	$\{y,z\}$	$\{y,z\}$
6	Ø	Ø

Chaotic iteration:

- ▶ this always works, i.e., it always converges and to the same fixpoint
- ▶ the final result is a safe description of the program's data flow.
- **•** some iteration orders converge faster than others.

LOOKS LIKE MAGIC! WHERE DO THE FLOW EQUATIONS COME FROM?

Short answer: the result of much experience in writing analysis phases for real compilers. We'll see some examples.

Future/past: what is defined in terms of what in the equations, e.g.,

future: $LV_{entry}(\ell) = \dots LV_{exit}(\ell) \dots$ past: $LV_{exit}(\ell) = \dots LV_{entry}(\ell) \dots$

All-paths/some-path: find greatest or least fixpoint solution to the equations

- \blacktriangleright *lfp* (least fixpoint) for \exists path dependence
- ▶ gfp (greatest fixpoint) for \forall path dependence

Combining flows from several blocks into one:

- ► Use \sqcup when computing least fixpoint (some-path properties)
- ► Use \sqcap when computing greatest fixpoint (all-path properties)

SEVERAL APPROACHES TO DATA FLOW ANALYSIS

- ► Data flow equations over a lattice (what we just saw)
- The "kill/gen" approach to data flow equations (a traditional compilerwriter's approach)
- Constraint based analysis
- Monotone frameworks (unified lattice-theoretic viewpoint; notationally complex)
- **•** Type and effect systems
- Abstract interpretation

For a future analysis AN:

 $AN_{entry}(\ell) = AN_{exit}(\ell) \setminus kill_{AN}(B^\ell) \sqcup gen_{AN}(B^\ell)$

For a past analysis AN:

$$AN_{exit}(\ell) = AN_{entry}(\ell) \setminus kill_{AN}(B^\ell) \sqcup gen_{AN}(B^\ell)$$

Idea, reasoning:

► $kill_{AN}(B^{\ell})$ expresses the data flow information that is over-written by statement B^{ℓ}

▶ $gen_{AN}(B^{\ell})$ expresses the

new data flow information that is added by statement B^ℓ

Example for live variable analysis: statement $[x:=y+z]^3$ will • Generate $\{y,z\}$, so • Kill x, so $kill_{LV}([x:=y+z]^3) = \{y,z\}$

MORE CONCRETELY: LIVE VARIABLE FLOW EQUATIONS

 $[y:=x]^{1};[z:=1]^{2};$ while $[y>1]^{3}$ do $([z:=z*y]^{4};[y:=y-1]^{5});[y:=0]^{6};$

$$egin{aligned} LV_{entry}(1) &= LV_{exit}(1) \setminus \{y\} \cup \{x\} \ LV_{entry}(2) &= LV_{exit}(2) \setminus \{z\} \ LV_{entry}(3) &= LV_{exit}(3) \cup \{y\} \ LV_{entry}(4) &= LV_{exit}(4) \setminus \{z\} \cup \{y,z\} \ LV_{entry}(5) &= LV_{exit}(5) \setminus \{y\} \cup \{y\} \ LV_{entry}(6) &= LV_{exit}(6) \setminus \{y\} \ LV_{exit}(1) &= LV_{entry}(2) \ LV_{exit}(2) &= LV_{entry}(3) \ LV_{exit}(3) &= LV_{entry}(4) \cup LV_{entry}(6) \ LV_{exit}(4) &= LV_{entry}(5) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(5) &= LV_{entry}(3) \ LV_{exit}(6) &= \emptyset \end{aligned}$$

Examples: $kill_{LV}([z:=z*y]^4) = \{z\}$ and $gen_{LV}([z:=z*y]^4) = \{y,z\}$

GENERAL DATA FLOW EQUATIONS: LIVE VARIABLES

 $LV_{exit}(\ell) = egin{cases} \emptyset & ext{if } [B]^{\ell} ext{ a final block} \ igcup \{LV_{entry}(\ell') \mid \ell'
ightarrow \ell ext{ in flow chart} \} ext{ otherwise} \end{cases}$

$$LV_{entry}(\ell) \,=\, (LV_{exit}(\ell) \setminus kill_{LV}(B^\ell)) \cup gen_{LV}(B^\ell)$$

where B^{ℓ} is a block

A future analysis, thus data flows backwards (from LV_{exit} to LV_{entry})
 An ∃ path analysis, thus *lfp* and use ∪ to merge branches

Some auxiliary definitions

$$egin{aligned} kill_{LV}(\llbracket x := a
brace^{\ell}) &= \{x\}\ kill_{LV}(\llbracket skip
brace^{\ell}) &= \emptyset\ kill_{LV}(\llbracket b
brace^{\ell}) &= \emptyset \end{aligned}$$

$$gen_{LV}([x := a]^{\ell}) = Free Variables(a) \ gen_{LV}([skip]^{\ell}) = \emptyset \ gen_{LV}([b]^{\ell}) = Free Variables(b)$$

GENERAL FLOW EQUATIONS: REACHING DEFINITIONS

 $RD_{entry}(\ell) = egin{cases} \{(x,?) \mid x \in \mathit{FreeVariables}(S)\} & ext{if } [B]^{\ell} ext{ initial block} \ \cup \{RD_{exit}(\ell') \mid \ell'
ightarrow \ell ext{ in flow chart}\} & ext{otherwise} \end{cases}$

$$RD_{exit}(\ell) ~=~ (RD_{entry}(\ell) \setminus kill_{RD}(B^\ell)) \cup gen_{RD}(B^\ell)$$

where B^{ℓ} is a block

~

A past analysis, thus data flows forwards (from RD_{entry} to RD_{exit})
 An ∃ path analysis, thus *lfp* and use ∪ to merge branches
 Some auxiliary definitions

$$\begin{aligned} kill_{RD}([x := a]^{\ell}) &= \{(x, ?)\} \cup \{(x, \ell') \mid \exists \text{ assignment } [x := \dots]^{\ell'}\} \\ kill_{RD}([\text{skip}]^{\ell}) &= \emptyset \\ kill_{RD}([b]^{\ell}) &= \emptyset \end{aligned}$$

$$gen_{RD}(\llbracket x := a
brace^{\ell}) = \{(x, \ell)\}$$

 $gen_{RD}(\llbracket skip
brace^{\ell}) = \emptyset$
 $gen_{RD}(\llbracket b
brace^{\ell}) = \emptyset$

CONSTRAINT SYSTEMS

Express flow equations in terms of	set containments. LV example:
[y:=x] ¹ ;[z:=1] ² ; while [y>1] ³ do	([z:=z*y] ⁴ ;[y:=y-1] ⁵);[y:=0] ⁶ ;
$egin{array}{ll} LV_{entry}(1) &\supseteq \ LV_{exit}(1) \setminus \{ { t y} \} \ LV_{entry}(1) &\supseteq \ \{ { t x} \} \end{array}$	$LV_{exit}(1) \supseteq LV_{entry}(2)$
$LV_{entry}(2) \supseteq LV_{exit}(2) \setminus \{{ t z}\}$	$LV_{exit}(2) \supseteq LV_{entry}(3)$
$LV_{entry}(3) \supseteq LV_{exit}(3)$ $LV_{entry}(3) \supseteq \{y\}$ $LV_{entry}(4) \supseteq LV_{exit}(4)$ $LV_{entry}(4) \supseteq \{y, z\}$ $LV_{entry}(5) \supseteq LV_{exit}(5)$	$egin{aligned} LV_{exit}(3) &\supseteq LV_{entry}(4)\ LV_{exit}(3) &\supseteq LV_{entry}(6)\ LV_{exit}(4) &\supseteq LV_{entry}(5) \end{aligned}$
$egin{aligned} LV_{entry}(5) &\supseteq \ LV_{exit}(5) \ LV_{entry}(5) &\supseteq \ \{ extrm{y}\} \ LV_{entry}(6) &\supseteq \ LV_{exit}(6) \setminus \{ extrm{y}\} \end{aligned}$	$LV_{exit}(5) \supseteq LV_{entry}(3)$

Exactly equivalent in this context. More generally: constraints can express more sophisticated flow analyses that are hard to describe by equations.

To show: that what the analysis says, is actually true of any computation.

- **•** Starting point: the semantics of the programming language.
- Given a program S and an initial store σ , the semantics defines the set of possible (finite or infinite) computations

$$\langle S, \sigma
angle o \langle S_1, \sigma_1
angle o \langle S_2, \sigma_2
angle o \ldots$$

- **\triangleright** Given: an analysis AN of one (arbitrary) program
- ► Needed: a (logical and natural) connection between
 - the result of the analysis; and
 - the program's possible computations

This is the start of the field:

Semantics-based program manipulation