DATA FLOW ANALYSIS (INTRAPROCEDURAL)

Neil D. Jones
DIKU, University of Copenhagen (prof. emeritus)

COURSE MATERIAL

Book: NNH = Nielson, Nielson and Hankin Principles of Program Analysis
Slides: downloadable from course home page.

Reading for lectures 2 and 7 December:
\checkmark Read and understand NNH sections 1.1, 1.2, 1.3, 1.7, 1.8.

- Skim 1.4, 1.5, 1.6.
- Read and understand NNH section 2.1.

The compiler construction course project may have some application-oriented work based on Chapters 1 and 2.

SOURCES

How is program analysis done?

- Many people: decades of practical experience in writing compilers (though correctness issues are rarely addressed by compiler hackers)
- Engineering methodology: program analysis by fix-point computations.
- This was developed by informal, pragmatic, ad hoc methods from the 1950s called data flow analysis.

Semantics-based program analysis:

- Methods formally based in program semantics developed by Cousot+Cousot, Jones, Muchnick, Nielson+Nielson, Hankin, many others.
- Research since 1970's under the name of Abstract Interpretation
- Capture a significant part of data flow analysis (but not all).
- January 2008 conference in San Francisco:

MOTIVATION, ORIGINS

Optimising transformations for compilers.
Compiler structure:
sourcecode \longrightarrow intermediatecode \longrightarrow intermediatecode \rightarrow targetcode
The Optimisation phase:
intermediatecode \longrightarrow intermediatecode
Intermediate code is usually (some version of) simple flow chart programs. These contain

- program points (also called labels),
- with an elementary statement or test at each point, and
- control transitions from one program point to another.

WHAT AND HOW

What: program transformation to improve efficiency

- Based on program flow analysis
- Must be correct (and just what does this mean?)
- Complex
- Important: efficiency, complex hardware, limits to what humans can improve, etc

How: several steps in program optimisation. First: program analysis.

- Choose a data flow lattice to describe program properties
- Build a system of data flow equations from the program
- Solve the system of data flow equations

Then transform the program, usually to optimise it

TOWARDS UNDERSTANDING THE PROBLEM I

Consider a transformation

$$
[\mathrm{x}:=\mathrm{a}]^{\ell} \Rightarrow[\text { skip }]^{\ell}
$$

to eliminate code. (It sounds trivial, but it's significant in practice!)
Some possible reasons it can be correct:

1. Point ℓ is unreachable: control cannot flow from the program's start to $[\mathrm{x}:=\mathrm{a}]^{\ell}$
2. Point ℓ is dead: control cannot flow from $[x:=a]^{\ell}$ to the program's exit. For example

- The program will definitely loop after point ℓ. Or
- The program will definitely abort execution after point ℓ.

3. Variable x is dead at ℓ (even though point ℓ is not dead): For instance

- x is never referenced again; or
- x may be used to compute y, z, \ldots but they are never used again, ...

TOWARDS UNDERSTANDING THE PROBLEM II

More possible reasons for correctness of the transformation

$$
[\mathrm{x}:=\mathrm{a}]^{\ell} \Rightarrow[\text { skip }]^{\ell}
$$

to eliminate code.
4. x is already equal to a (if control ever gets to ℓ)
5. Mathematical reasons relating x and a, e.g., Matiyasevich's theorem etc.
6. \underline{a} is an uninitialised variable: so the value of x is completely undependable
7. Some patchwork combination of the above.
(Eg, reason 3 applies if x is even, reason 4 applies if x is odd,...)

ALAS, MOST OF THESE REASONS ARE AS UNDECIDABLE AS THE HALTING PROBLEM (!)

Remark: many (most!) of the above program behavior properties are undecidable (if you insist on exact answers).

Proof See Rice's Theorem from Computability Theory.

So what do we do?

- The practice of program analysis and the theory of abstract interpretation: find safe descriptions of program behavior. Meaning of safety:
- if the analysis says that a program has a certain behavior (e.g., that x is dead at point ℓ),
- then it definitely has that behavior in all computations.
- However the analysis may be imprecise in this sense:
it can answer "don't know" even when the property is true.

WHAT KIND OF REASONING CAN BE USED TO DISCOVER PROGRAM PROPERTIES?

They can involve

- Control flow, e.g., that point ℓ is unreachable
- Data flow, e.g., that the value of variable x at point ℓ cannot affect the program's final output.
A useful classification: dimension $1=$ past/future, dimension $2=$ may/must.
- computational pasts, e.g., that x equals a if control point ℓ is reached
- computational futures, e.g., that variable x is dead at control point ℓ
- all-path, or "must" properties, e.g., a past all-path property:
"variable x is initialised"
i.e., x was set on every computation path from start to current point ℓ
- some-path, or "may" properties, e.g., a future some-path property:
"variable x is live", i.e., there exists a computation path from current point ℓ to the program end

OVERVIEW

A program analysis will compute a "program-point-centric" analysis that binds information to each program point ℓ.

The program properties at a program point ℓ are

- determined by
- the computational future
(of computations that get as far as ℓ); or
- the computational past
- determined by the set of
- all computation paths from (or to) ℓ, or by
- the existence of at least one computation path from (or to) ℓ

OVERVIEW

A program analysis will compute a "program-point-centric" analysis that binds information to each program point ℓ.

Such information (almost always in the literature)

- is finitely (and feasibly!) computable
- is computed uniformly, i.e., for all the source program's program points.
- Adjacent program points will have properties that are related, e.g., by classic flow equations of dataflow analysis for compiler construction.

An analogy: heat flow equations.
(though heat flows 2-ways, while program flows are asymmetric.)

SOME NOTATIONS USED IN THE BOOK

```
    \ell\in Lab the set of all labels
    x,y,z\in\operatorname{Var}}\mathrm{ the set of all variables
        S\in Stmt the set of all statements
        a\in AExp the set of all arithmetic expressions
        b}\in\textrm{BExp}\mathrm{ the set of all Boolean expressions
    e}\in\operatorname{Exp}\mathrm{ the set of all expressions (arithmetic or Boolean)
```


ABSTRACT SYNTAX

$$
\begin{aligned}
a & ::=x|n| a_{1} o p_{1} a_{2} \\
b & ::=\text { true } \mid \text { false } \mid \text { not } b\left|b_{1} o p_{b} b_{2}\right| a_{1} o p_{r} a_{2} \\
S & ::=[x:=a]^{\ell} \mid[\text { skip }]^{\ell} \mid S_{1} ; S_{2} \\
& \mid \quad \text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2} \mid \text { while }[b]^{\ell} \text { do } S \\
B: & :=[x:=a]^{\ell} \mid[\text { skip }]^{\ell} \mid[b]^{\ell}
\end{aligned}
$$

For our slides: we only think of flow charts containing labeled blocks B, don't deal with statements that contain other statements. (Doesn't lose information, and saves notation!)

Generic versus concrete:

$$
\begin{array}{ll}
{[x:=a]^{\ell}} & \text { Math font for generic program fragments, e.g., } \\
& x \text { ranges over all variables } \\
{[\mathrm{x}:=\mathrm{x}+1]^{7}} & \begin{array}{l}
\text { Teletype font for concrete program fragments, e.g., } \\
\\
\\
\text { the LHS is the concrete variable " } \mathrm{x} "
\end{array}
\end{array}
$$

A FEW MORE NOTATIONS

Lab_{*} the set of all labels in the program currently being analysed

Var $_{*}$ the set of all variables in the program currently being analysed

Stmt* the set of all statements in the program currently being analysed
AExp_{*} the set of all arithmetic expressions in the program currently being a
BExp_{*} the set of all Boolean expressions in the program currently being ana

4 USEFUL EXAMPLES OF DATA FLOW ANALYSIS

Type of flow equations:	What's analysed	
$F: \mathrm{Lab}_{*} \rightarrow$ dataflow lattice L	Time dependency	Path modality
$R D: \mathrm{Lab}_{*} \rightarrow \mathcal{P}\left(\mathrm{Var}_{*} \times \mathrm{Lab}_{*}^{?}\right)$	past	\exists
$L V: \mathrm{Lab}_{*} \rightarrow \mathcal{P}\left(\mathrm{Var}_{*}\right)$	future	\exists
$A E: \mathrm{Lab}_{*} \rightarrow \mathcal{P}\left(\operatorname{Exp}_{*}\right)$	past	\forall
$V B: \mathrm{Lab}_{*} \rightarrow \mathcal{P}\left(\operatorname{Exp}_{*}\right)$	future	\forall

$R D=$ Reaching definitions (used for constant propagation)
$L V=$ Live variables (used for dead code elimination)
$A E=$ Available expressions (to avoid recomputing expressions)
$V B=$ Very busy expressions (save expression values for later use)

INTUITIVE EXPLANATION: LIVE VARIABLES

Type of flow equations:	What's analysed		How it's computed	
$F: \mathrm{Lab}_{*} \rightarrow$ dataflow lattice L	Time dependency	Path modality	Data flow	Kind of fixpoint
$L V: \mathrm{Lab}_{*} \rightarrow \mathcal{P}\left(\mathrm{Var}_{*}\right)$	future	\exists	backward	least

Variable x is live at program point ℓ if there exists a flow chart path from ℓ to some usage of variable x. Things to notice:

- it's about what can happen in the future
- along at least one path (\exists)

Optimisation enabled by live variable analysis:
If x is not live at point ℓ, then the register / memory cell containg the value of x may be used for another value
Net effect: to reduce memory or register usage.

INTUITIVE EXPLANATION: AVAILABLE EXPRESSIONS

Type of flow equations:	What's analysed		How it's computed	
$F: \mathrm{Lab}_{*} \rightarrow$ dataflow lattice L	Time dependency	Path modality	Data flow	Kind of fixpoint
$A E: \operatorname{Lab}_{*} \rightarrow \mathcal{P}\left(\operatorname{Exp}_{*}\right)$	past	\forall	forward	greatest

Expression e is available at program point ℓ if on all flow chart paths to ℓ the value of e has been computed, and no variable in e has been changed. Things to notice:

- it's about what did happen in the past
- and along all paths to $\ell(\forall)$

Optimisation enabled by live variable analysis:
If e is available at point ℓ, then (generate code to) fetch the value that has already been computed.

Net effect: generate smaller code.

INTUITIVE EXPLANATION: VERY BUSY EXPRESSIONS

Type of flow equations:	What's analysed		How it's computed	
$F: \operatorname{Lab}_{*} \rightarrow$ dataflow lattice L	Time dependency	Path	Data	Kind of
modality	flow	fixpoint		
$V B: \operatorname{Lab}_{*} \rightarrow \mathcal{P}\left(\operatorname{Exp}_{*}\right)$	future	\forall	backward	greatest

Expression e is very busy at program point ℓ if the value of e will be used on all flow chart paths from ℓ. Things to notice:

- it's about what will happen in the future
- and along all paths from $\ell(\forall)$

Optimisation enabled by very busy expression analysis:
It can pay to keep the value of e in a register instead of memory. Net effect: generate faster code.

INTUITIVE EXPLANATION: REACHING DEFINITIONS

Type of flow equations:	What's analysed		How it's computed	
$\boldsymbol{F}: \mathrm{Lab}_{*} \rightarrow$ dataflow lattice L	Time dependency	Path modality	Data flow	Kind of fixpoint
$R D: \operatorname{Lab}_{*} \rightarrow \mathcal{P}\left(\operatorname{Var}_{*} \times \mathrm{Lab}_{*}^{?}\right.$	past	\exists	forward	least

A pair $\left(x, \ell_{0}\right)$ can reach program point ℓ if

- there is a statement $[x:=e]^{\ell_{0}}$, and
- there is a path from ℓ_{0} to ℓ, and
- variable x is not changed on the path

Things to notice:

- it's about what happened in the past along at least one path to $\ell(\exists)$ Optimisation enabled by reaching definition analysis: constant propagation Net effect: generate faster code.
- State: a state is a function $\sigma: \operatorname{Var} \rightarrow \mathrm{Z}$. Also known as a store. Idea: the current value of variable x is $\sigma(x)$.
- A computational configuration is a pair $\langle S, \sigma\rangle$ where S is a statement (what is remaining to execute) and σ is the current state.
- A one-step transition has form

$$
\langle S, \sigma\rangle \rightarrow\left\langle S^{\prime}, \sigma^{\prime}\right\rangle \text { or, if program stops: }\langle S, \sigma\rangle \rightarrow \sigma^{\prime}
$$

Details omitted today, but what you would expect. Here there is a data
flow from σ to σ^{\prime}

- Each program defines a set of computations. A computation is either
- a terminating computation: a finite sequence

$$
\left\langle S_{1}, \sigma_{1}\right\rangle \rightarrow\left\langle S_{2}, \sigma_{2}\right\rangle \rightarrow \ldots\left\langle S_{n}, \sigma_{n}\right\rangle \rightarrow \sigma_{n+1}
$$

or

- a looping computation: an infinite sequence

$$
\left\langle S_{1}, \sigma_{1}\right\rangle \rightarrow\left\langle S_{2}, \sigma_{2}\right\rangle \rightarrow \ldots
$$

THE MAIN PROBLEM OF DFA

Given a program, to find a description of the data flow at each label ℓ. In this book, for analysis A :

- $A_{\text {entry }}(\ell)=$ flow information at the entry to statement $[B]^{\ell}$
- $A_{\text {exit }}(\ell)=$ flow information at the exit from statement $[B]^{\ell}$

Suppose program has the form:

$$
\left[\boldsymbol{B}_{1}\right]^{\ell_{1}}\left[\boldsymbol{B}_{2}\right]^{\ell_{2}} \ldots\left[\boldsymbol{B}_{n}\right]^{\ell_{n}}
$$

Then a program description will have the form:

$$
A_{e n t r y}: \mathrm{Lab}_{*} \rightarrow L \text { and } A_{e x i t}: \mathrm{Lab}_{*} \rightarrow L
$$

where L is a complete lattice. Different lattices for different flow properties.

Flow lattice: a structure $L=(\boldsymbol{L}, \sqsubseteq, \sqcup, \sqcap, \perp, \top))$.

A PAST ANALYSIS: REACHING DEFINITIONS FOR X!

Program:

$[y:=x]^{1} ;[z:=1]^{2}$; while $[y>1]^{3}$ do $\left([z:=z * y]^{4} ;[y:=y-1]^{5}\right) ;[y:=0]^{6}$;
Reaching definitions lattice:

$$
L=(\mathcal{P}(\{\mathrm{x}, \mathrm{y}, \mathrm{z}\} \times\{1,2,3,4,5,6, ?\}), \sqsubseteq, \sqcup, \sqcap, \perp, \top)
$$

$\left(x, \ell_{0}\right) \in R D_{-}(\ell)$ if for some computation path from ℓ_{0} to ℓ

- x was assigned at point ℓ_{0}, and
(jargon: "defined")
- x was not re-assigned before point ℓ (i.e., the assignment "reaches" ℓ)

Uninitalised variables: are "reached" from point "?"

$\boldsymbol{\ell}$	$\boldsymbol{R} \boldsymbol{D}_{\text {entry }}(\ell)$	$\boldsymbol{R} \boldsymbol{D}_{\text {exit }}(\ell)$
$\mathbf{1}$	$\{(\mathrm{x}, ?),(\mathrm{y}, ?),(\mathrm{z}, ?)\}$	$\{(\mathrm{x}, ?),(\mathrm{y}, 1),(\mathrm{z}, ?)\}$
$\mathbf{2}$	$\{(\mathrm{x}, ?),(\mathrm{y}, 1),(\mathrm{z}, ?)\}$	$\{(\mathrm{x}, ?),(\mathrm{y}, 1),(\mathrm{z}, 2)\}$
$\mathbf{3}$	$\{(\mathrm{x}, ?),(\mathrm{y}, 1),(\mathrm{y}, 5),(\mathrm{z}, 2),(\mathrm{z}, 4)\}$	$\{(\mathrm{x}, ?),(\mathrm{y}, 1),(\mathrm{y}, 5),(\mathrm{z}, 2),(\mathrm{z}, 4)\}$
$\mathbf{4}$	$\{(\mathrm{x}, ?),(\mathrm{y}, 1),(\mathrm{y}, 5),(\mathrm{z}, 2),(\mathrm{z}, 4)\}$	$\{(\mathrm{x}, ?),(\mathrm{y}, 1),(\mathrm{y}, 5),(\mathrm{z}, 4)\}$
$\mathbf{5}$	$\{(\mathrm{x}, ?),(\mathrm{y}, 1),(\mathrm{y}, 5),(\mathrm{z}, 4)\}$	$\{(\mathrm{x}, ?),(\mathrm{y}, 5),(\mathrm{z}, 4)\}$
$\mathbf{6}$	$\{(\mathrm{x}, ?),(\mathrm{y}, 1),(\mathrm{y}, 5),(\mathrm{z}, 2),(\mathrm{z}, 4)\}$	$\{(\mathrm{x}, ?),(\mathrm{y}, 6),(\mathrm{z}, 2),(\mathrm{z}, 4)\}$

A FUTURE ANALYSIS: LIVE VARIABLES

Program:
$[y:=x]^{1} ;[z:=1]^{2}$; while $[y>1]^{3}$ do ([z:=z*y] $\left.{ }^{4} ;[y:=y-1]^{5}\right) ;[y:=0]^{6}$;
Live variable lattice:

$$
L=(\mathcal{P}(\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}), \sqsubseteq, \sqcup, \sqcap, \perp, \top)
$$

Variable x is live if \exists computation path with a future reference to x.
Assume: no variables are live at program exit.

$\boldsymbol{\ell}$	$\boldsymbol{L} \boldsymbol{V}_{\text {entry }}(\ell)$	$\boldsymbol{L} \boldsymbol{V}_{\text {exit }}(\ell)$
$\mathbf{1}$	$\{\mathrm{x}\}$	$\{\mathrm{y}\}$
$\mathbf{2}$	$\{\mathrm{y}\}$	$\{\mathrm{y}, \mathrm{z}\}$
$\mathbf{3}$	$\{\mathrm{y}, \mathrm{z}\}$	$\{\mathrm{y}, \mathrm{z}\}$
$\mathbf{4}$	$\{\mathrm{y}, \mathrm{z}\}$	$\{\mathrm{y}, \mathrm{z}\}$
$\mathbf{5}$	$\{\mathrm{y}, \mathrm{z}\}$	$\{\mathrm{y}, \mathrm{z}\}$
$\mathbf{6}$	\emptyset	\emptyset

LIVE VARIABLE FLOW EQUATIONS:

(for the same program to compute x !)

$$
[y:=x]^{1 ;} ;[z:=1]^{2} ; \text { while }[y>1]^{3} \text { do }\left([z:=z * y]^{4} ;[y:=y-1]^{5}\right) ;[y:=0]^{6} ;
$$

$$
\begin{aligned}
& L V_{\text {entry }}(1)=L V_{\text {exit }}(1) \backslash\{\mathrm{y}\} \cup\{\mathrm{x}\} \\
& L V_{\text {entry }}(2)=L V_{\text {exit }}(2) \backslash\{\mathrm{z}\} \\
& L V_{\text {entry }}(3)=L \boldsymbol{L} V_{\text {exit }}(3) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(4)=L \boldsymbol{L} V_{\text {exit }}(4) \cup\{\mathrm{y}, \mathrm{z}\} \\
& L V_{\text {entry }}(5)=L V_{\text {exit }}(5) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(6)=L V_{\text {exit }}(6) \backslash\{\mathrm{y}\} \\
& L V_{\text {exit }}(1)=L V_{\text {entry }}(2) \\
& L V_{\text {exit }}(2)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(3)=L V_{\text {entry }}(4) \cup L V_{\text {entry }}(6) \\
& L V_{\text {exit }}(4)=L \boldsymbol{L} V_{\text {entry }}(5) \\
& L V_{\text {exit }}(5)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(6)=\emptyset
\end{aligned}
$$

WHAT ON EARTH IS GOING ON?

- What is being defined by these equations ?
- What data flow logic is being expressed?
- How can the equations be solved ?

The equations define the values of in all 12 program point descriptions

$$
L V_{\text {entry }}(1), \ldots, L V_{\text {entry }}(6), L V_{\text {exit }}(1), \ldots, L V_{\text {exit }}(6)
$$

in terms of each other.
This is a recursive system of data flow equations to describe the program's computational behavior.

Solution to the equation system: This is called a fixpoint.
Type of a solution to the equation system: L^{12}, where L is the description data flow lattice.

Type of the equation system itself:

$$
F: L^{12} \rightarrow L^{12}
$$

FLOW EQUATION DIMENSIONS

- Time dependence. Possibilities:
- Future analysis: the property depends on the computational future. Computed by backward data flow.
- Past analysis: the property depends on the computational past. Computed by forward data flow. - "must" or "may" dependence:
- Path modality dependence. Possibilities:
- may path dependence (for some path)
- must path dependence (for all paths)
- These make four combinations. For example:
- Both $L V$ and $R D$ are may path dependencies
- Live variables $L V$ is a future analysis (= backward data flow)
- Reaching definitions $R D$ is a past analysis (= forward data flow)

FLOW EQUATIONS: REFLECT THE 4 COMBINATIONS

Future/past: what is defined in terms of what in the equations, e.g.,
future: $L V_{\text {entry }}(\ell)=\ldots L V_{\text {exit }}(\ell) \ldots$
past: $\quad L V_{\text {exit }}(\ell)=\ldots L V_{\text {entry }}(\ell) \ldots$
All-paths/some-path: find greatest or least fixpoint solution to equations
Fixpoints: lfp (least fixpoint) for \exists path dependence

$$
\operatorname{lfp}(F)=\bigsqcup_{n \rightarrow \infty} F^{n}(\perp, \perp, \ldots, \perp)
$$

$g f p$ (greatest fixpoint) for \forall path dependence

$$
g f p(F)=\sqcap_{n \rightarrow \infty} F^{n}(\top, \top, \ldots, \top)
$$

Combining flows from several blocks into one:

- Use \sqcup when computing least fixpoint (some-path properties)
- Use \sqcap when computing greatest fixpoint (all-path properties)

4 EXAMPLES OF THE 4 COMBINATIONS

Type of flow equations:	What's analysed		How it's computed	
$F: \mathrm{Lab}_{*} \rightarrow$ dataflow lattice L	Time dependency	Path modality	Data flow	Kind of fixpoint
$R D: \mathrm{Lab}_{*} \rightarrow \mathcal{P}\left(\operatorname{Var}_{*} \times \mathrm{Lab}_{*}{ }^{\text {a }}\right)$	past	\exists	forward	least
$L V: \mathrm{Lab}_{*} \rightarrow \mathcal{P}\left(\mathrm{Var}_{*}\right)$	future	\exists	backward	least
$A E: \mathrm{Lab}_{*} \rightarrow \mathcal{P}\left(\operatorname{Exp}_{*}\right)$	past	\forall	forward	greatest
$V B: \mathrm{Lab}_{*} \rightarrow \mathcal{P}\left(\operatorname{Exp}_{*}\right)$	future	\forall	backward	greatest

$R D=$ Reaching definitions
$L V=$ Live variables
$A E=$ Available expressions
$V B=$ Very busy expressions

RELATIONS TO LATTICES ETC. FROM APPENDIX A

Form of the data flow equation system:

$$
\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{2 n}\right)=\left(e_{1}(\overrightarrow{\boldsymbol{X}}), e_{2}(\overrightarrow{\boldsymbol{X}}), \ldots, e_{2 n}(\overrightarrow{\boldsymbol{X}})\right)
$$

where set expressions $e_{e}, \ldots, e_{2 n}$ are built from $X_{1}, X_{2}, \ldots, X_{2 n}$ by set operations such as \cup, \cap, \and constants.
This defines a function

$$
F: \mathcal{P}(D)^{2 n} \rightarrow \mathcal{P}(D)^{2 n}
$$

$$
\text { (where } D=\text { set of descriptions, } n=\text { number of labels) }
$$

on the lattice

$$
L=(L, \sqsubseteq, \sqcup, \sqcap, \perp, \top))=(\mathcal{P}(D), \subseteq, \cup \cap, \emptyset, D))
$$

Fixpoints: $\operatorname{lfp}(\boldsymbol{F})=\bigsqcup_{n \rightarrow \infty} \boldsymbol{F}^{n}(\perp, \perp, \ldots, \perp), \operatorname{gfp}(\boldsymbol{F})=\sqcap_{n \rightarrow \infty} \boldsymbol{F}^{n}(\top, \ldots, \top)$

1. $\mathcal{P}(D)$ is a lattice, so $F\left(X_{1}, X_{2}, \ldots, X_{2 n}\right)$ exists.
2. $\mathcal{P}(D)$ is complete, so $l f p(F), g f p(F)$ both exist.
3. Ascending (descending) chain condition: ensures that $l f p(F), g f p(F)$ are finitely computable.

CHAOTIC ITERATION

Effect is to compute the least (or greatest) fixpoint by repeatedly applying the equations

- Apply them in any order
- until no sets can be changed
- Initialisation of the sets:
- Least fixpoint: start with every set empty (\perp of the lattice)
- Greatest fixpoint: start with every set equal to (\top of the lattice)
- Amazing fact: it doesn't matter what order is chosen (hence the name "chaotic")

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE FACTORIAL PROGRAM BY CHAOTIC ITERATION 1

$$
\begin{aligned}
& \left.\left.[y:=x]^{1 ;} ; \mathrm{z}:=1\right]^{2} \text {; while }[\mathrm{y}>1]^{3} \text { do ([z:=z*y] }{ }^{4} \text {; }[y:=y-1]^{5}\right) ;[y:=0]^{6} \text {; } \\
& L V_{\text {entry }}(1)=L V_{\text {exit }}(1) \backslash\{\mathrm{y}\} \cup\{\mathrm{x}\} \\
& L V_{\text {entry }}(2)=L V_{\text {exit }}(2) \backslash\{z\} \\
& L V_{\text {entry }}(3)=L V_{\text {exit }}(3) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(4)=L V_{\text {exit }}(4) \cup\{\mathrm{y}, \mathrm{z}\} \\
& L V_{\text {entry }}(5)=L V_{\text {exit }}(5) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(6)=L V_{\text {exit }}(6) \backslash\{y\} \\
& L V_{\text {exit }}(1)=L V_{\text {entry }}(2) \\
& L V_{\text {exit }}(2)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(3)=L V_{\text {entry }}(4) \cup L V_{\text {entry }}(6) \\
& L V_{\text {exit }}(4)=L V_{\text {entry }}(5) \\
& L V_{\text {exit }}(5)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(6)=\emptyset
\end{aligned}
$$

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE

 FACTORIAL PROGRAM BY CHAOTIC ITERATION 2$$
\begin{aligned}
& \left.[y:=x]^{1 ;} ; \mathrm{z}:=1\right]^{2} \text {; while }[\mathrm{y}>1]^{3} \text { do ([z:=z*y] }{ }^{4} ;[\mathrm{y}:=\mathrm{y}-1]^{5} \text {); }[\mathrm{y}:=0]^{6} \text {; } \\
& L V_{\text {entry }}(1)=L V_{\text {exit }}(1) \backslash\{\mathrm{y}\} \cup\{\mathrm{x}\} \\
& L V_{\text {entry }}(2)=L V_{\text {exit }}(2) \backslash\{z\} \\
& L V_{\text {entry }}(3)=L V_{\text {exit }}(3) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(4)=L V_{\text {exit }}(4) \cup\{\mathrm{y}, \mathrm{z}\} \\
& L V_{\text {entry }}(5)=L V_{\text {exit }}(5) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(6)=L V_{\text {exit }}(6) \backslash\{y\} \\
& L V_{\text {exit }}(1)=L V_{\text {entry }}(2) \\
& L V_{\text {exit }}(2)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(3)=L V_{\text {entry }}(4) \cup L V_{\text {entry }}(6) \\
& L V_{\text {exit }}(4)=L V_{\text {entry }}(5) \\
& L V_{\text {exit }}(5)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(6)=\emptyset
\end{aligned}
$$

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE

 FACTORIAL PROGRAM BY CHAOTIC ITERATION 3$$
\begin{aligned}
& \left.[y:=x]^{1} ;[z:=1]^{2} \text {; while }[y>1]^{3} \text { do ([z:=z*y] }{ }^{4} ;[y:=y-1]^{5}\right) ;[y:=0]^{6} \text {; } \\
& L V_{\text {entry }}(1)=L V_{\text {exit }}(1) \backslash\{\mathrm{y}\} \cup\{\mathrm{x}\} \\
& L V_{\text {entry }}(2)=L V_{\text {exit }}(2) \backslash\{z\} \\
& L V_{\text {entry }}(3)=L V_{\text {exit }}(3) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(4)=L V_{\text {exit }}(4) \cup\{\mathrm{y}, \mathrm{z}\} \\
& L V_{\text {entry }}(5)=L V_{\text {exit }}(5) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(6)=L V_{\text {exit }}(6) \backslash\{\mathrm{y}\} \\
& L V_{\text {exit }}(1)=L V_{\text {entry }}(2) \\
& L V_{\text {exit }}(2)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(3)=L V_{\text {entry }}(4) \cup L V_{\text {entry }}(6) \\
& L V_{\text {exit }}(4)=L V_{\text {entry }}(5) \\
& L V_{\text {exit }}(5)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(6)=\emptyset
\end{aligned}
$$

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE

 FACTORIAL PROGRAM BY CHAOTIC ITERATION 4$$
\begin{aligned}
& \left.[y:=x]^{1 ;} ; \mathrm{z}:=1\right]^{2} \text {; while }[\mathrm{y}>1]^{3} \text { do ([z:=z*y] }{ }^{4} ;[\mathrm{y}:=\mathrm{y}-1]^{5} \text {); }[\mathrm{y}:=0]^{6} \text {; } \\
& L V_{\text {entry }}(1)=L V_{\text {exit }}(1) \backslash\{\mathrm{y}\} \cup\{\mathrm{x}\} \\
& L V_{\text {entry }}(2)=L V_{\text {exit }}(2) \backslash\{z\} \\
& L V_{\text {entry }}(3)=L V_{\text {exit }}(3) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(4)=L V_{\text {exit }}(4) \cup\{\mathrm{y}, \mathrm{z}\} \\
& L V_{\text {entry }}(5)=L V_{\text {exit }}(5) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(6)=L V_{\text {exit }}(6) \backslash\{y\} \\
& L V_{\text {exit }}(1)=L V_{\text {entry }}(2) \\
& L V_{\text {exit }}(2)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(3)=L V_{\text {entry }}(4) \cup L V_{\text {entry }}(6) \\
& L V_{\text {exit }}(4)=L V_{\text {entry }}(5) \\
& L V_{\text {exit }}(5)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(6)=\emptyset
\end{aligned}
$$

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE FACTORIAL PROGRAM BY CHAOTIC ITERATION 5

$$
\begin{aligned}
& \left.[y:=x]^{1} ;[z:=1]^{2} \text {; while }[y>1]^{3} \text { do ([z:=z*y] }{ }^{4} \text {; }[y:=y-1]^{5}\right) ;[y:=0]^{6} \text {; } \\
& L V_{\text {entry }}(1)=L V_{\text {exit }}(1) \backslash\{\mathrm{y}\} \cup\{\mathrm{x}\} \\
& L V_{\text {entry }}(2)=L V_{\text {exit }}(2) \backslash\{z\} \\
& L V_{\text {entry }}(3)=L V_{\text {exit }}(3) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(4)=L V_{\text {exit }}(4) \cup\{\mathrm{y}, \mathrm{z}\} \\
& L V_{\text {entry }}(5)=L V_{\text {exit }}(5) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(6)=L V_{\text {exit }}(6) \backslash\{y\} \\
& L V_{\text {exit }}(1)=L V_{\text {entry }}(2) \\
& L V_{\text {exit }}(2)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(3)=L V_{\text {entry }}(4) \cup L V_{\text {entry }}(6) \\
& L V_{\text {exit }}(4)=L V_{\text {entry }}(5) \\
& L V_{\text {exit }}(5)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(6)=\emptyset
\end{aligned}
$$

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE FACTORIAL PROGRAM BY CHAOTIC ITERATION 6

$$
\begin{aligned}
& \text { [y:=x] } \left.{ }^{1} ;[z:=1]^{2} \text {; while }[y>1]^{3} \text { do ([z:=z*y] }{ }^{4} ;[y:=y-1]^{5}\right) ;[y:=0]^{6} \text {; } \\
& L V_{\text {entry }}(1)=L V_{\text {exit }}(1) \backslash\{\mathrm{y}\} \cup\{\mathrm{x}\} \\
& L V_{\text {entry }}(2)=L V_{\text {exit }}(2) \backslash\{z\} \\
& L V_{\text {entry }}(3)=L V_{\text {exit }}(3) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(4)=L V_{\text {exit }}(4) \cup\{\mathrm{y}, \mathrm{z}\} \\
& L V_{\text {entry }}(5)=L V_{\text {exit }}(5) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(6)=L V_{\text {exit }}(6) \backslash\{y\} \\
& L V_{\text {exit }}(1)=L V_{\text {entry }}(2) \\
& L V_{\text {exit }}(2)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(3)=L V_{\text {entry }}(4) \cup L V_{\text {entry }}(6) \\
& L V_{\text {exit }}(4)=L V_{\text {entry }}(5) \\
& L V_{\text {exit }}(5)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(6)=\emptyset
\end{aligned}
$$

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE FACTORIAL PROGRAM BY CHAOTIC ITERATION 7

$$
\begin{aligned}
& \left.[y:=x]^{1} ;[z:=1]^{2} \text {; while }[y>1]^{3} \text { do ([z:=z*y] }{ }^{4} \text {; }[y:=y-1]^{5}\right) ;[y:=0]^{6} \text {; } \\
& L V_{\text {entry }}(1)=L V_{\text {exit }}(1) \backslash\{\mathrm{y}\} \cup\{\mathrm{x}\} \\
& L V_{\text {entry }}(2)=L V_{\text {exit }}(2) \backslash\{z\} \\
& L V_{\text {entry }}(3)=L V_{\text {exit }}(3) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(4)=L V_{\text {exit }}(4) \cup\{\mathrm{y}, \mathrm{z}\} \\
& L V_{\text {entry }}(5)=L V_{\text {exit }}(5) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(6)=L V_{\text {exit }}(6) \backslash\{y\} \\
& L V_{\text {exit }}(1)=L V_{\text {entry }}(2) \\
& L V_{\text {exit }}(2)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(3)=L V_{\text {entry }}(4) \cup L V_{\text {entry }}(6) \\
& L V_{\text {exit }}(4)=L V_{\text {entry }}(5) \\
& L V_{\text {exit }}(5)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(6)=\emptyset
\end{aligned}
$$

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE

 FACTORIAL PROGRAM BY CHAOTIC ITERATION 8$$
\begin{aligned}
& \left.[y:=x]^{1} ;[z:=1]^{2} \text {; while }[y>1]^{3} \text { do ([z:=z*y] }{ }^{4} \text {; }[y:=y-1]^{5}\right) ;[y:=0]^{6} \text {; } \\
& L V_{\text {entry }}(1)=L V_{\text {exit }}(1) \backslash\{\mathrm{y}\} \cup\{\mathrm{x}\} \\
& L V_{\text {entry }}(2)=L V_{\text {exit }}(2) \backslash\{z\} \\
& L V_{\text {entry }}(3)=L V_{\text {exit }}(3) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(4)=L V_{\text {exit }}(4) \cup\{\mathrm{y}, \mathrm{z}\} \\
& L V_{\text {entry }}(5)=L V_{\text {exit }}(5) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(6)=L V_{\text {exit }}(6) \backslash\{y\} \\
& L V_{\text {exit }}(1)=L V_{\text {entry }}(2) \\
& L V_{\text {exit }}(2)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(3)=L V_{\text {entry }}(4) \cup L V_{\text {entry }}(6) \\
& L V_{\text {exit }}(4)=L V_{\text {entry }}(5) \\
& L V_{\text {exit }}(5)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(6)=\emptyset
\end{aligned}
$$

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE

 FACTORIAL PROGRAM BY CHAOTIC ITERATION 9$$
\begin{aligned}
& \left.[y:=x]^{1 ;} ; \mathrm{z}:=1\right]^{2} \text {; while }[\mathrm{y}>1]^{3} \text { do ([z:=z*y] }{ }^{4} ;[\mathrm{y}:=\mathrm{y}-1]^{5} \text {); }[\mathrm{y}:=0]^{6} \text {; } \\
& L V_{\text {entry }}(1)=L V_{\text {exit }}(1) \backslash\{\mathrm{y}\} \cup\{\mathrm{x}\} \\
& L V_{\text {entry }}(2)=L V_{\text {exit }}(2) \backslash\{z\} \\
& L V_{\text {entry }}(3)=L V_{\text {exit }}(3) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(4)=L V_{\text {exit }}(4) \cup\{\mathrm{y}, \mathrm{z}\} \\
& L V_{\text {entry }}(5)=L V_{\text {exit }}(5) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(6)=L V_{\text {exit }}(6) \backslash\{y\} \\
& L V_{\text {exit }}(1)=L V_{\text {entry }}(2) \\
& L V_{\text {exit }}(2)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(3)=L V_{\text {entry }}(4) \cup L V_{\text {entry }}(6) \\
& L V_{\text {exit }}(4)=L V_{\text {entry }}(5) \\
& L V_{\text {exit }}(5)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(6)=\emptyset
\end{aligned}
$$

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE FACTORIAL PROGRAM BY CHAOTIC ITERATION 10

$$
\begin{aligned}
& \left.[y:=x]^{1} ;[z:=1]^{2} \text {; while }[y>1]^{3} \text { do ([z:=z*y] }{ }^{4} \text {; }[y:=y-1]^{5}\right) ;[y:=0]^{6} \text {; } \\
& L V_{\text {entry }}(1)=L V_{\text {exit }}(1) \backslash\{\mathrm{y}\} \cup\{\mathrm{x}\} \\
& L V_{\text {entry }}(2)=L V_{\text {exit }}(2) \backslash\{z\} \\
& L V_{\text {entry }}(3)=L V_{\text {exit }}(3) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(4)=L V_{\text {exit }}(4) \cup\{\mathrm{y}, \mathrm{z}\} \\
& L V_{\text {entry }}(5)=L V_{\text {exit }}(5) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(6)=L V_{\text {exit }}(6) \backslash\{y\} \\
& L V_{\text {exit }}(1)=L V_{\text {entry }}(2) \\
& L V_{\text {exit }}(2)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(3)=L V_{\text {entry }}(4) \cup L V_{\text {entry }}(6) \\
& L V_{\text {exit }}(4)=L V_{\text {entry }}(5) \\
& L V_{\text {exit }}(5)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(6)=\emptyset
\end{aligned}
$$

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE FACTORIAL PROGRAM BY CHAOTIC ITERATION 11

$$
\begin{aligned}
& \left.[y:=x]^{1} ;[z:=1]^{2} \text {; while }[y>1]^{3} \text { do ([z:=z*y] }{ }^{4} \text {; }[y:=y-1]^{5}\right) ;[y:=0]^{6} \text {; } \\
& L V_{\text {entry }}(1)=L V_{\text {exit }}(1) \backslash\{\mathrm{y}\} \cup\{\mathrm{x}\} \\
& L V_{\text {entry }}(2)=L V_{\text {exit }}(2) \backslash\{z\} \\
& L V_{\text {entry }}(3)=L V_{\text {exit }}(3) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(4)=L V_{\text {exit }}(4) \cup\{\mathrm{y}, \mathrm{z}\} \\
& L V_{\text {entry }}(5)=L V_{\text {exit }}(5) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(6)=L V_{\text {exit }}(6) \backslash\{y\} \\
& L V_{\text {exit }}(1)=L V_{\text {entry }}(2) \\
& L V_{\text {exit }}(2)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(3)=L V_{\text {entry }}(4) \cup L V_{\text {entry }}(6) \\
& L V_{\text {exit }}(4)=L V_{\text {entry }}(5) \\
& L V_{\text {exit }}(5)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(6)=\emptyset
\end{aligned}
$$

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE FACTORIAL PROGRAM BY CHAOTIC ITERATION 12

$$
\begin{aligned}
& \left.[y:=x]^{1} ;[z:=1]^{2} \text {; while }[y>1]^{3} \text { do ([z:=z*y] }{ }^{4} \text {; }[y:=y-1]^{5}\right) ;[y:=0]^{6} \text {; } \\
& L V_{\text {entry }}(1)=L V_{\text {exit }}(1) \backslash\{\mathrm{y}\} \cup\{\mathrm{x}\} \\
& L V_{\text {entry }}(2)=L V_{\text {exit }}(2) \backslash\{z\} \\
& L V_{\text {entry }}(3)=L V_{\text {exit }}(3) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(4)=L V_{\text {exit }}(4) \cup\{\mathrm{y}, \mathrm{z}\} \\
& L V_{\text {entry }}(5)=L V_{\text {exit }}(5) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(6)=L V_{\text {exit }}(6) \backslash\{y\} \\
& L V_{\text {exit }}(1)=L V_{\text {entry }}(2) \\
& L V_{\text {exit }}(2)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(3)=L V_{\text {entry }}(4) \cup L V_{\text {entry }}(6) \\
& L V_{\text {exit }}(4)=L V_{\text {entry }}(5) \\
& L V_{\text {exit }}(5)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(6)=\emptyset
\end{aligned}
$$

HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE FACTORIAL PROGRAM BY CHAOTIC ITERATION 13

$$
\begin{aligned}
& \left.[y:=x]^{1} ;[z:=1]^{2} \text {; while }[y>1]^{3} \text { do ([z:=z*y] }{ }^{4} \text {; }[y:=y-1]^{5}\right) ;[y:=0]^{6} \text {; } \\
& L V_{\text {entry }}(1)=L V_{\text {exit }}(1) \backslash\{\mathrm{y}\} \cup\{\mathrm{x}\} \\
& L V_{\text {entry }}(2)=L V_{\text {exit }}(2) \backslash\{z\} \\
& L V_{\text {entry }}(3)=L V_{\text {exit }}(3) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(4)=L V_{\text {exit }}(4) \cup\{\mathrm{y}, \mathrm{z}\} \\
& L V_{\text {entry }}(5)=L V_{\text {exit }}(5) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(6)=L V_{\text {exit }}(6) \backslash\{y\} \\
& L V_{\text {exit }}(1)=L V_{\text {entry }}(2) \\
& L V_{\text {exit }}(2)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(3)=L V_{\text {entry }}(4) \cup L V_{\text {entry }}(6) \\
& L V_{\text {exit }}(4)=L V_{\text {entry }}(5) \\
& L V_{\text {exit }}(5)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(6)=\emptyset
\end{aligned}
$$

THE ITERATION PROCESS CONVERGED! (AT LAST)

Chaotic iteration:
this always works, i.e., it always converges and to the same fixpoint
the final result is a safe description of the program's data flow.

- some iteration orders converge faster than others.

LOOKS LIKE MAGIC! WHERE DO THE FLOW EQUATIONS COME FROM?

Short answer: the result of much experience in writing analysis phases for real compilers. We'll see some examples.

Future/past: what is defined in terms of what in the equations, e.g.,
future: $L V_{\text {entry }}(\ell)=\ldots L V_{\text {exit }}(\ell) \ldots$
past: $\quad L V_{\text {exit }}(\ell)=\ldots L V_{\text {entry }}(\ell) \ldots$
All-paths/some-path: find greatest or least fixpoint solution to the equations
\checkmark lfp (least fixpoint) for \exists path dependence

- gfp (greatest fixpoint) for \forall path dependence

Combining flows from several blocks into one:

- Use \sqcup when computing least fixpoint (some-path properties)
- Use \sqcap when computing greatest fixpoint (all-path properties)

SEVERAL APPROACHES TO DATA FLOW ANALYSIS

- Data flow equations over a lattice (what we just saw)
- The "kill/gen" approach to data flow equations (a traditional compilerwriter's approach)
- Constraint based analysis
- Monotone frameworks (unified lattice-theoretic viewpoint; notationally complex)
- Type and effect systems
- Abstract interpretation

"KILL/GEN" DATA FLOW EQUATIONS

For a future analysis $A N$:

$$
A N_{e n t r y}(\ell)=A N_{e x i t}(\ell) \backslash \operatorname{kill}_{A N}\left(B^{\ell}\right) \sqcup \operatorname{gen}_{A N}\left(B^{\ell}\right)
$$

For a past analysis $A N$:

$$
A N_{e x i t}(\ell)=A N_{e n t r y}(\ell) \backslash \operatorname{kill}_{A N}\left(B^{\ell}\right) \sqcup \operatorname{gen}_{A N}\left(B^{\ell}\right)
$$

Idea, reasoning:
$-\operatorname{kill}_{A N}\left(B^{\ell}\right)$ expresses the data flow information that is over-written by statement B^{ℓ}
$-\operatorname{gen} n_{A N}\left(B^{\ell}\right)$ expresses the new data flow information that is added by statement B^{ℓ}

Example for live variable analysis: statement $[x:=y+z]^{3}$ will

- Generate $\{y, z\}$, so

$$
\begin{array}{r}
\operatorname{gen}_{L V}\left([\mathrm{x}:=\mathrm{y}+\mathrm{z}]^{3}\right)=\{\mathrm{y}, \mathrm{z}\} \\
\operatorname{kill}_{L V}\left([\mathrm{x}:=\mathrm{y}+\mathrm{z}]^{3}\right)=\{\mathrm{x}\}
\end{array}
$$

- Kill x, so

MORE CONCRETELY: LIVE VARIABLE FLOW EQUATIONS

$\left.[y:=x]^{1 ;} ; \mathrm{z}:=1\right]^{2}$; while $[y>1]^{3}$ do ([z:=z*y] $\left.{ }^{4} ;[y:=y-1]^{5}\right) ;[y:=0]^{6}$;

$$
\begin{aligned}
& L V_{\text {entry }}(1)=L V_{\text {exit }}(1) \backslash\{\mathrm{y}\} \cup\{\mathrm{x}\} \\
& L V_{\text {entry }}(2)=L V_{\text {exit }}(2) \backslash\{\mathrm{z}\} \\
& L V_{\text {entry }}(3)=L V_{\text {exit }}(3) \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(4)=L \boldsymbol{L} V_{\text {exit }}(4) \backslash\{\mathrm{z}\} \cup\{\mathrm{y}, \mathrm{z}\} \\
& L V_{\text {entry }}(5)=L V_{\text {exit }}(5) \backslash\{\mathrm{y}\} \cup\{\mathrm{y}\} \\
& L V_{\text {entry }}(6)=L V_{\text {exit }}(6) \backslash\{\mathrm{y}\} \\
& L V_{\text {exit }}(1)=L V_{\text {entry }}(2) \\
& L V_{\text {exit }}(2)=L V_{\text {entry }}(3) \\
& \boldsymbol{L} V_{\text {exit }}(3)=L V_{\text {entry }}(4) \cup L V_{\text {entry }}(6) \\
& L V_{\text {exit }}(4)=L V_{\text {entry }}(5) \\
& L V_{\text {exit }}(5)=L V_{\text {entry }}(3) \\
& L V_{\text {exit }}(6)=\emptyset
\end{aligned}
$$

Examples: $\operatorname{kill}_{L V}\left([\mathrm{z}:=\mathrm{z} * \mathrm{y}]^{4}\right)=\{z\}$ and $\operatorname{gen}_{L V}\left([\mathrm{z}:=\mathrm{z} * \mathrm{y}]^{4}\right)=\{\mathrm{y}, \mathrm{z}\}$

GENERAL DATA FLOW EQUATIONS: LIVE VARIABLES

$L V_{\text {exit }}(\ell)= \begin{cases}\emptyset & \text { if }[B]^{\ell} \text { a final block } \\ \bigcup\left\{L V_{\text {entry }}\left(\ell^{\prime}\right) \mid \ell^{\prime} \rightarrow \ell \text { in flow chart }\right\} & \text { otherwise }\end{cases}$
$L V_{\text {entry }}(\ell)=\left(L V_{\text {exit }}(\ell) \backslash k i l l_{L V}\left(B^{\ell}\right)\right) \cup g e n_{L V}\left(B^{\ell}\right)$
where B^{ℓ} is a block

- A future analysis, thus data flows backwards (from $L V_{e x i t}$ to $L V_{\text {entry }}$)
- An \exists path analysis, thus $l f p$ and use \cup to merge branches

Some auxiliary definitions

$$
\begin{array}{ll}
\operatorname{kill}_{L V}\left([x:=a]^{\ell}\right) & =\{x\} \\
\operatorname{kill}_{L V}\left([\mathrm{skip}]^{\ell}\right) & =\emptyset \\
\operatorname{kill}_{L V}\left([b]^{\ell}\right) & =\emptyset \\
\operatorname{gen}_{L V}\left([x:=a]^{\ell}\right) & =\text { FreeVariables }(a) \\
\operatorname{gen}_{L V}\left([\mathrm{skip}]^{\ell}\right) & =\emptyset \\
\operatorname{gen}_{L V}\left([b]^{\ell}\right) & =\text { FreeVariables }(b)
\end{array}
$$

GENERAL FLOW EQUATIONS: REACHING DEFINITIONS

$$
\begin{aligned}
& R D_{\text {entry }}(\ell)= \begin{cases}\{(x, ?) \mid x \in \text { Free Variables }(S)\} & \text { if }[B]^{\ell} \text { initial block } \\
\bigcup\left\{R D_{\text {exit }}\left(\ell^{\prime}\right) \mid \ell^{\prime} \rightarrow \ell \text { in flow chart }\right\} & \text { otherwise }\end{cases} \\
& R D_{\text {exit }}(\ell)=\left(R D_{\text {entry }}(\ell) \backslash k i l l_{R D}\left(B^{\ell}\right)\right) \cup \operatorname{gen}_{R D}\left(B^{\ell}\right) \\
& \text { where } B^{\ell} \text { is a block }
\end{aligned}
$$

- A past analysis, thus data flows forwards (from $R D_{\text {entry }}$ to $R D_{\text {exit }}$)
- An \exists path analysis, thus lfp and use \cup to merge branches

Some auxiliary definitions

$$
\begin{array}{ll}
\operatorname{kill}_{R D}\left([x:=a]^{\ell}\right) & =\{(x, ?)\} \cup\left\{\left(x, \ell^{\prime}\right) \mid \exists \text { assignment }[x:=\ldots]^{\ell^{\prime}}\right\} \\
\operatorname{kill}_{R D}\left([\text { skip }]^{\ell}\right) & =\emptyset \\
\operatorname{kill}_{R D}\left([b]^{\ell}\right) & =\emptyset \\
\operatorname{gen}_{R D}\left([x:=a]^{\ell}\right) & =\{(x, \ell)\} \\
\operatorname{gen}_{R D}\left([\text { skip }]^{\ell}\right) & =\emptyset \\
\operatorname{gen}_{R D}\left([b]^{\ell}\right) & =\emptyset
\end{array}
$$

CONSTRAINT SYSTEMS

Express flow equations in terms of set containments. $L V$ example:

$$
\begin{aligned}
& \left.[y:=x]^{1} ;[z:=1]^{2} \text {; while }[y>1]^{3} \text { do (}[z:=z * y]^{4} ;[y:=y-1]^{5}\right) ;[y:=0]^{6} \text {; } \\
& L V_{\text {entry }}(1) \supseteq L V_{\text {exit }}(1) \backslash\{\mathrm{y}\} \\
& L V_{\text {entry }}(1) \supseteq\{\mathrm{x}\} \\
& L V_{e x i t}(1) \supseteq L V_{e n t r y}(2) \\
& L V_{\text {entry }}(2) \supseteq L V_{\text {exit }}(2) \backslash\{z\} \\
& L V_{\text {exit }}(2) \supseteq L V_{\text {entry }}(3) \\
& L V_{\text {entry }}(3) \supseteq L V_{\text {exit }}(3) \\
& L V_{\text {entry }}(3) \supseteq\{\mathrm{y}\} \\
& L V_{\text {entry }}(4) \supseteq L V_{\text {exit }}(4) \\
& L V_{\text {entry }}(4) \supseteq\{\mathrm{y}, \mathrm{z}\} \\
& L V_{\text {entry }}(5) \supseteq L V_{\text {exit }}(5) \\
& L V_{\text {entry }}(5) \supseteq\{\mathrm{y}\} \\
& L V_{\text {entry }}(6) \supseteq L V_{\text {exit }}(6) \backslash\{y\} \\
& L V_{\text {exit }}(3) \supseteq L V_{\text {entry }}(4) \\
& L V_{\text {exit }}(3) \supseteq L V_{\text {entry }}(6) \\
& L V_{e x i t}(4) \supseteq L V_{e n t r y}(5) \\
& L V_{e x i t}(5) \supseteq L V_{e n t r y}(3)
\end{aligned}
$$

Exactly equivalent in this context. More generally: constraints can express more sophisticated flow analyses that are hard to describe by equations.

SEMANTIC CORRECTNESS, OR "SAFETY"

To show: that what the analysis says, is actually true of any computation.

- Starting point: the semantics of the programming language.
- Given a program S and an initial store σ, the semantics defines the set of possible (finite or infinite) computations

$$
\langle S, \sigma\rangle \rightarrow\left\langle S_{1}, \sigma_{1}\right\rangle \rightarrow\left\langle S_{2}, \sigma_{2}\right\rangle \rightarrow \ldots
$$

- Given: an analysis $A N$ of one (arbitrary) program
- Needed: a (logical and natural) connection between
- the result of the analysis; and
- the program's possible computations

This is the start of the field:

Semantics-based program manipulation

