36 CHAPTER 2. SYNTAX ANALYSIS

2.3 Bottom-Up Parsing

Recursive-descent parsing is simple to implement, but requires an LL(k) grammar to
be effective. While most real programming languages have LL(k) grammars, these
are rarely the ones given in a language definition. Usually, substantial changes are
required, and the result is rarely as straightforward as the original. (Even more
problems arise in the context of attribute grammars—but more about that later.)

Consequently, it is desirable to use a parsing technique which can deal with a
larger class of grammars directly—the recursive-ascent technique. (This technique
is also known as bottom-up or LR parsing, where LR stands for left-to-right pro-
cessing of the input and construction of a reversed rightmost derivation.) Recursive
ascent usually works directly for grammars that occur in programming language
definitions. However, it is harder to understand and implement than recursive-
descent parsing, and naive implementations lead to slower parsers. Still, it is the
most popular technique for automatically generating parsers, probably largely due
to the Unix utility yacc which generates such parsers.

Again, a formal notation is more suitable for catching the essence of this tech-

nique. An implementation follows directly from it. The presentation here follows
that in | | and [|

2.3.1 Overview of Bottom-Up Parsing

A bottom-up parser constructs a reversed rightmost derivation while processing the
input. Intuitively, it starts building the derivation tree from the leftmost corner by
accumulating a right-sentential form.

The typical state of a bottom-up parser is a pair o e w of a stack a and the
remaining input w, so that aw is a right-sentential form. Parsing proceeds according
to the following steps.

1. The initial state is ew, that is, the stack is empty and the full input is available.
2. In state a e w, apply one of the following alternatives
(a) If & = By such that A — v € P, then reduce this production and
change state to SA e w.

(b) If w = aw’, then shift the terminal a and change state to aa e w'.

(c) If = S and w = ¢, then parsing finishes with success.
Reject the input if none of the alternatives applies.

3. If the stack of the current state is such that a reduction state is eventually
reachable, then continue with item 2. Otherwise reject the input.

Ttem 2 is nondeterministic in several respects. There may be more than one way to
split « into 8 and the handle ~y; for a chosen handle v there may be several rules
with right side ; the parser could shift instead of trying to reduce.

Evidently, the work horses of the parser are the two actions reduce and shift.
Hence, bottom-up parsers are often called shift-reduce parsers.

7 Example
Let’s trace a shift-reduce parser accepting the word 2+x*x using the grammar for

2.3. BOTTOM-UP PARSING 37

arithmetic expressions from Example 4.

o2 + xxx shift

20 +xxx reduce F' — 2
Fe+xxx reduce FE =+ F
Ee+xxx reduceT — F
T e +x*xx shift

T+ ex*xx shift

T+xexx reduce FF — x
T+F exx reduce FF - F
T+E e xx shift

T+Exex shift

T+Exxe reduce F' — x
T+Ex«Fe reduce E — ExF
T+FEe reduce T' - T+FE
Te success

2.3.2 The Characteristic Automaton

One part of a bottom-up parser is mysterious. How does the parser know which
action it should perform just by looking at the stack? This section demonstrates
that it is feasible to do so via the theory of LR parsing.

To begin with, an LR parser requires a trivial restriction on its input grammar
to simplify its termination condition:

2.13 Definition (Start-separated)
A start-separated context-free grammar G = (N, T, P,S') has exactly one produc-
tion with left-hand side S’ of the form S' — S.

O

From here on, all grammars are start-separated.
We start of by formalizing the possible stack contents during a derivation as
viable prefizes of the grammar.

2.14 Deginition

Let S & BAw =" fyw a rightmost derivation of a context-free grammar G. In
this situation, 7 is a handle of the right-sentential form [~yw and every prefix of 37y
is a viable prefix of G.

As it turns out, the language of viable prefixes of G is a regular language. In the
following, we will construct a nondeterministic finite automaton for this language,
the characteristic automaton of G.

To build the set of states for the characteristic automaton requires to abstract
from the actual state of the parser. The proper abstraction is a contezt-free item of
the grammar.

2.15 Definition (context-free item)
The set Items(G) of context-free items of G consists of all triples of the form A — a-f3
where A — a8 € P.

a

Intuitively, an item A — « - abstracts a parser state ya e vw if there is a rightmost

* T * .y . . .
derivation S = vyAw and B = v. The formal definition specifies this connections
by calling an item valid.

38

2.16 Definition
An item A — « - [is valid for viable prefix vy« if there is a rightmost derivation

=" vyAw =y yafw.

CHAPTER 2. SYNTAX ANALYSIS

a

Now we can state the automaton that recognizes the set of viable prefixes.

2.17 Definition
Let G = (N, T, P,S’) be a context-free grammar. The characteristic NFA of G is
char(G) = (Q,NUT,qo,0, F) with

e Q = Items(G)

e =5 -8

F={A—a |A—>a€eP}

e j(A—>a-XB,X)2A—aX-p

e)(A—a-BB,e)>B—-yifB—y€P.

8 Example

Construct char(G) for the grammar of arithmetic expressions. The table below

omits items without transitions.

item \ symbol | 2 x () + * T E F
S — -T] [S = T]
T — -E] [T - E-]
T — -T+E] [T - T - +E]
E — -F] [E — F']
E — -ExF] [E — E - xF]
[F — 2] [F — 2]
[F — -x] [F — x]
[F — -(T)] [F = (-T)]
F = (-T)] [F — (T)]
T - T - +E] [T - T+ - E]
E — E - xF] [E — Ex - F]
F = (T-)] [F = (T)]
T — T+ - E] [T - T+E-]
E — Ex - F| [E = ExF:]
and the € transitions:
[S — T s [T — -E),[T — T+E)]
[T — -E] s [E — -F],[E — -ExF)
[T — -T+E] & [T — -E|,[T = T+E)]
[E — -F] o [F = 2, [F — x],[F = (T)]
[E — -ExF] & [E — -F),[E — -ExF]
[F—=(-T)] & [T— E,[T— T+E]
[T — T+-E] & [E— -F|,[E = -ExF]
[E— Ex-F] & [F— -2,[F - x|,[F - -(T)]

2.3.3 LR(0) Parsing

As a first step towards a deterministic parsing engine, we construct a deterministic
version of the characteristic automaton.

2.18 Definition (Prediction and Closure)
Each state ¢ € P(Items(G)) has an associated set of predict items:

predict(q) ;= {B = y| A= a-BIT B—=

forA—)oz-Beq}

2.3. BOTTOM-UP PARSING 39

where || is the transitive closure of the relation || defined by
A—a-BB|yB—-6
The union of q and predict(q) is called the closure of q. Henceforth,
7 := q U predict(q)

denotes the closure of a state q.
O

The predict items of a state g are predictions on what derivations the parser may
enter next when in state g. The elements of predict(q) are exactly those at the end
of leftmost-symbol derivations starting from items in q.

2.19 Definition
The set of LR states for grammar G is LR-state(G) = {q € P(Items(G)) | ¢ = G}-

With these definitions, it is straightforward to directly define the deterministic
version of the characteristic automaton.

2.20 Definition
The LR-DFA of G is (@, N U T,goto, qo, F) where

Q = LR-state(G)

goto(¢g, X)={A—aX -f|A—=a-XBEq}

qoz{S’—>-S}
F={qeQ|A—acq}

9 Example
The LR-DFA for the grammar of arithmetic expressions is fairly large, so we content
ourselves with a grammar for a sublanguage.

S—=T T—F T — TxF F—x F—(T)

X
T 1 * F)
T->F —>T. F—> X
X o
F Ul e YW
F-> (T) (F i(N !
d F—>(.T) 1F—>(T.
T .~ F T ->TAF
T->.T*F
F-—>.x
(F—>.N TE —> ().

The parser is driven directly from the LR-DFA of the grammar.

Putting the parts together results in the definition of a nondeterministic parser
for G. The parser consists of two mutually recursive functions parse and shift.
Function parse has three choices. If the current state ¢ (which is always on top of
the stack) contains a reduce item A — «-, then it removes |a| symbols from the
stack and attempts to shift the left-hand side A from that state. If it makes sense
to shift the next symbol, it does so. Finally, if the input is depleted and there is

40 CHAPTER 2. SYNTAX ANALYSIS

a reduce item for the start production, then it signals success. The shift function
just changes state by invoking goto on the top state of the stack and pushing the
resulting new state.

let ¢ = top(stack) in

\/{shift(a, stack,w') |w = aw', A - a-af € ¢}
Vv \/{shift(4, pop(|e|, stack),w) | A = a- € q}
V w=eANS = S - €qA|stack| =1

parse(stack, w)

shift(X, stack,w) = let ¢ =top(stack) in
parse(push(goto(q, X), stack),w)

Again, the specification is nondeterministic, in general. But we obtain a good
idea of the sources of nondeterminism by examining the current state ¢ of the LR-
DFA. Specifically, the nondeterminism is caused by two kinds of unsuitable states
in the LR-DFA:

1. State ¢ has a reduce-reduce conflict if it contains two different reduce items
A— a-and B — (-

2. State g has a shift-reduce conflict if it contains a reduce item A — «- and
a shift item B — [- ay on a terminal symbol a.

However, the LR-DFA for a grammar G may be free of conflicts already. In this
case, G is a LR(0) grammar because it is amenable to deterministic LR-parsing
without any lookahead.

10 Example
The grammar for arithmetic expressions has no reduce-reduce conflicts, but there
are shift-reduce conflicts in the following states:

{T - E., E — E-xF}
{I' -+ T+E., E— E-xF}
{8 =T, T—-T-+E}

The grammar for simplified arithmetic expressions from Example 9 has a shift-
reduce conflict in state 1:
{S—=T,T—=T-xF}.

Hence, neither grammar is an LR(0) grammar.

2.3.4 Implementation of LR(0) Parsing

This subsection contains a complete implementation of a (nondeterministic) stack-
based LR(0) parser. This parser computes the predict and closure functions on the
fly as follows.

(* LR(0) closure of an item set *)
let closure g items =
let rec worker prestate worklist =
match worklist with
a->
prestate
| item::items ->
match Item.rhs_rest item with
Cfg.NT (n)::_ ->

2.3. BOTTOM-UP PARSING 41

let productions_with_n = Grammar.productions_with_lhs g n

in

let candidates = List.map Item.initial productions_with_n in

let newitems = filter (function cand -> List.mem cand prestate) candidates in

worker (newitems@prestate) (newitems@worklist)
| ->
worker prestate items
in
worker items items

The next function tests if the parser can shift a (terminal or nonterminal) symbol
on an item.

(* canshift : (’n,’t) symbol -> (’n,’t,’ext) Item.t -> bool *)
let canshift symbol item =
match Item.rhs_rest item with
[1 -> false
| x::_ -> x = symbol

The heart of the shift function computes the shifted versions of the items which
can be shifted on symbol. The result still needs to be closed with respect to the
predict items.

(* goto : (’n,’t,’ext) Item.t list -> (’n,’t,’ext) Item.t list *)
let goto state symbol =
List.map Item.shift (filter (canshift symbol) state)

The main parser function, accept, contains the above specified functions, parse
and shift. It first prepares the initial state by closing over the predict item of
the start production and then leaves the work to parse, which works exactly as
specified.

(* accept : (’n,’t,’ext) Cfg.grammar -> ’t list -> bool *)
let accept g inp =
let start_production::_ = Grammar.productions_with_lhs g (Cfg.start
let initial_state = closure g [Item.initial start_production] in
let is_final_state state =
match state with

[item] ->
Item.production item = start_production && Item.complete item
[_ >
false

in
(* parse : (’n,’t,’ext) Item.t list list -> ’t list -> bool *)
let rec parse stack inp =

let state :: stack_rest = stack in
(match inp with
t :: inp_rest ->

List.exists (canshift (Cfg.T (t))) state
&& shift (Cfg.T (t)) stack inp_rest
o ->
is_final_state state && stack_rest = [])
I
List.exists
(function reducible_item ->
shift
(C£fg.NT (Cfg.lhs (Item.production reducible_item)))

g) in

42 CHAPTER 2. SYNTAX ANALYSIS

(drop (Item.position reducible_item) stack)
inp)
(filter Item.complete state)
(* shift : (°n,’t) symbol -> (’n,’t,’ext) Item.t list list -> ’t list -> bool *)
and shift symbol stack inp =
let state::_ = stack in
parse (closure g (goto state symbol)::stack) inp

in
parse [initial_state] inp

The auxiliary function List.exists takes a predicate and a list. It returns true if
there is a list element which makes the predicate true. The uses of List.exists
correspond to the large disjunctions in the specification.

2.3.5 LR(k) Parsing

The standard medicine for resolving conflicts (and hence nondeterminism) is to add
lookahead to the parsing engine. This section first looks at the canonical way of
adding lookahead, which turns out to be very expensive. Subsequent subsections
consider simpler and more efficient means of adding lookahead information.

2.21 Definition
Let G = (N,T,P,S') be a start separated context-free grammar. G is an LR(k)
grammar if

o 52" qAw =T affw and
o ' 3" yBu =" afv and
¢ W = Vg
implies that « = vy, A = B, and u = v.
LR (k) parsing is a very strong formalism as the following facts demonstrate.
1. If G is an LL(k) grammar, then G is an LR(k) grammar.

2. If L is a deterministic context-free language, then L has a LR(1) grammar. In
particular: If L has an LR(k) grammar, then it also has an LR(1) grammar.

The definition of the LR (k)-DFA encompasses essentially the same steps as the
LR-DFA. The main difference is the extension of items by lookahead sets.

2.22 Definition (LR (k) item, LR (k) state)
Let G be a start separated, context-free grammar. The set LR (k)-Items(G) contains
all quadruples of the form A — a - 3 (L) where A — af8 is a production of G and
L C T<F. The set L indicates the set of lookahead strings for which the item is
valid.

If the lookahead is not used (or k = 0), it is omitted. A predict item has the
form A — -a (L).

O

The definition of a valid item extends smoothly. The important point in the
definition is that the lookahead does not refer to the position of the dot in the
item but rather describes the symbols that may follow the item’s nonterminal in a
derivation for which the item is valid.

2.3. BOTTOM-UP PARSING 43

2.23 Definition
An item A — «a-f (L) is valid for viable prefix ya if there is a rightmost derivation

g ~yAw Ly yaBw and wy;, € L.
O

2.24 Definition (Predict items, Item transitions, State transitions)
FEach state q has an associated set of predict items:

predict(q) :== {B =y (M) | A—a-B (L) I+ B — -y (M)
for A = a-f (L)GQ}

where |} is the transitive closure of the relation || defined by
A— a-BB (L) B— -6 (firsty(BL)).

The relation |} also shows how to compute the lookahead of an item as the concate-
nation of the symbols that may follow the non-terminal on the left-hand side and
the lookahead of the original item.

The union of q and predict(q) is called the closure of q. Henceforth,

7 := q U predict(q)

denotes the closure of a state q.
O

The state set of the LR (k)-DFA is again formed from the set of LR (k) states.

2.25 Definition
The set of LR(k) states for grammar G is

LR(k)-state(G) = {q C LR(k)-Items(G) | ¢ =7}

The LR(k)-DFA just adds the treatment of lookahead to the LR-DFA: the goto
function preserves the lookaheads, the lookahead of the start production is {e}, and
the final states are not affected by lookahead at all.

2.26 Definition
The LR(k)-DFA of G is (Q,N U T, goto, qo, F) where

Q = LR(k)-state(G)

goto(¢g, X)={A—=aX -B(L)|A— a-XB (L) € q}
g ={5" =-S5 ({e})}

F={qeQl|A—a- (L)cq}

The parsing engine itself requires very little modification.

parse(stack, w)
= let ¢ = top(stack) in
V{shift(A, pop(|a|, stack),w) | A = a- (L) € q,w);, € L}
v V{shift(a, stack,w’) | w = aw’, A = a - af (L) € q,wy; € firsty(aBL)}
V w=eANS =5 ({e}) €q

shift(X, stack, w)
= let ¢ = top(stack) in
parse(push(goto(q, X), stack), w)

The following conflicts are possible (and lead to nondeterminism) in such a
parser:

44 CHAPTER 2. SYNTAX ANALYSIS

1. State ¢ has a reduce-reduce conflict if it contains two different reduce items
A—a- (L)and B — 3+ (M) such that LN M # 0.

2. State ¢ has a shift-reduce conflict if it contains a reduce item A — - (L)
and a shift item B — B -ay (M) on a terminal symbol a such that L N
firsty, (ay M) # 0.

The LR(k)-DFA does not contain reachable states that exhibit one of the conflicts
if and only if the grammar is LR(k).

2.3.6 Simple Lookahead

Pure LR parsers for realistic languages often lead to prohibitively big state au-
tomatons | ,], and thus to impractically big parsers. Fortunately, most
realistic formal languages are already amenable to treatment by SLR or LALR
parsers which introduce lookahead into essentially LR (0) parsers.

The SLR(k) parser corresponding to an LR(0) parser | | with states q(()o), e, qy(lo)
has states closures qo, . .., q,. In contrast to the LR(k) parser, the SLR(k) automa-

ton has the following states:
gii={A>a-B(p)| A= a-Beq”,pc follow,(A)}

Analogously, the predict items are the same as in the LR(0) case, only with added
lookahead:

predict(q;) :== {A — -8 (p) | A = a- 8 € predict® (ql@)), p € followy(A)}
The state transition goto is also just a variant the LR(0) case here called goto(®):
goto(g:, X) := g; for ¢\” = goto® (¢”), X)

The parsing engine for an SLR (k) parser is identical to the one for the LR(k) parser.
The only difference is in the computation of the lookahead sets. The effects of using
SLR(k) instead of LR (k) are as expected: generation time and size decrease, often
dramatically for realistic grammars.

11 Example

The grammar for arithmetic expressions is an SLR(1) grammar. To see this, we
review the unsuitable states of its LR-DFA and find that all conflicts can be resolved
by adding SLR(1) lookahead sets:

{T - E., E - E-xF}
{T - T+E., E— E-+F}
{§' - T, T—T-+E}

According to SLR(1), the lookahead sets for the reduce items in question are the
follow; sets of T and S’. Examination of the grammar yields that

{e.), +}
{e}

In the first and second state, the conflict is resolved because the set follow; (T') does
not contain the single symbol * on which the state can shift. In the third state, the
conflict is also resolved because follow; (S’) does not contain +.

followy (T)
follow; (S")

a

2.3. BOTTOM-UP PARSING 45

2.3.7 LALR Lookahead Computation

The LALR method uses a more precise method of computing the lookahead, but
also works by decorating an LR(0) parser |]. Thus, the same methodology as
with the SLR case is applicable, merely replacing follow;, with the (more involved)
LALR lookahead function. Unfortunately, all efficient methods of computing LALR
lookahead sets require access to the entire LR(0) automaton in advance [)

))))

Here is the definition for the LALR(1) lookahead of an LR(0)-item. The main
novelty here is that the lookahead depends on the state of the automaton, too.

2.27 Definition
Let (Q,N UT,goto, qo, F') be the LR-DFA for a start-separated grammar G. Let
further g € @ and Z = A — « - § € q. The LALR(1) lookahead of Z in ¢ is

LAi(g,A = a-B) = {w | S =" yAw,q = goto* (g0, 7)}

The main interest is, of course, in the lookahead for the reduce items, that is, in
LA:(qg,A —), but the general definition makes it easier to find an obviously
computable definition for the lookahead sets.

This definition involves a quantification over all derivations, which makes it
pretty hard to implement. Following the calculation in Wilhelm’s textbook |],
it can be simplified as follows.

The first observation is that the lookahead for an item with the dot in the middle
can be expressed in terms of lookaheads for predict items, that is, items with the dot
at the left end of their right hand side. This transformation exploits the factoring of
goto* with respect to its input word, that is, goto*(qo, yat) = goto*(goto*(qo,), @)-

LAl(qu — o ﬁ)
{w | § = yAw,q = goto* (g0, 72)}

{wp | S = yAw,q" = goto*(qo,7),q = goto*(¢', @)}
= Uq:goto*(q’,a) LA, (qla A— aﬁ)

The goal is now to express the lookahead sets of predict items in terms of looka-
head sets of other predict items, thus giving raise to a system of equations on
lookahead sets. We write LA;(¢q, A) = LA;1(q, A — -a), noticing that the lookahead
set is independent of a.

A predict item can either be the start item S’ — -S, in which case the lookahead
set is {e} because the input word should be exhausted after something has been
derived from S, or the item A — -« is in g due to the closure operation. In the
second case, it must have been added by the predict operation so that the state ¢
must contain one or more items of the form B — - Ay. These two cases give rise

46 CHAPTER 2. SYNTAX ANALYSIS

to the following equations:

— r
LAl(qu SI) = {w|1 | SI ; ’YSI’LU, q= gOtO*(qo,’YOl)}
because vy =€, w =€, and ¢ = qo

= {¢

1/11\41 (,4) = {(uwv); |5 5" yaAuv, g = goto*(go, yar)}
= {(wv) | 8 =y vyBv =" yaABv =" yaAuv,
q = goto*(qo,va), B — a- AB € q}
= {(w) | 8 =y yBv =" yaABwv,
u € first1(8), ¢ = goto*(qo, ya), B — a - AB € q}
= {(uv)|1 | S’ =y yBuv,
u € firsty (8),v € I/u\éll(q’,B),
q = goto*(¢',a),q' = gottz*\(qo,'y),B —a-AB € q}
= UB—)a-ABEq Uq:goto*(qﬁa) (ﬁrStl(ﬁ)LAl (qla B))|1

This system of equations has (at most) |@Q| x |N| variables and it can be solved
by fixpoint iteration. More clever, essentially linear-time algorithms exist and are
documented in the literature. .

A solution of the system of equations for LA; yields the desired result, the
lookahead sets for the reduce items, as follows:

LA, A= a)=|J LA, A)

goto* (¢’ ,a)=q

2.4 Qutput of a Parser

A parser which just outputs yes or no is not of much use in a compiler. Hence, we
augment the parsing formalism with a notion of syntax representation which can
serve as parser output.

2.28 Definition (Syntax representation)
Let T be the terminal alphabet. A parser parse : T* — D generates a syntax
representation from a set D if there is a function unparse : D — T* such that
parse o unparse = idp.

O

The main intention of the definition is to provide the minimum requirements for
D. If the parser is based on context-free grammars, then the natural choice for D
would be the set of derivation trees of the grammar.

In fact, both styles of parsers can construct a derivation tree during parsing.
The idea is consider a production 4y — woA;w; ... A,w, as a tree constructor
function that takes n derivation trees for nonterminals Ay,..., A, and returns a
derivation tree for nonterminal Ay.

A recursive-descent parser needs no additional structure to do so. The function
[Ap], for parsing strings derived from Ay, just applies the appropriate constructor to
the derivation trees obtained from the calls to [44],...,[A;] and returns he resulting
tree along with the rest of the input.

A shift-reduce parser would be able to build the derivation tree on its stack. For
clarity, however, we extend the generic shift-reduce parser with an output stack.
The idea is then to apply the tree constructor function for A9 — woAjw; ... Aywy,
to the topmost n entries of the output stack and replace them with the resulting
tree.

2.4. OUTPUT OF A PARSER 47

12 Example
Let’s revisit Example 7 with output generation. A configuration is now a triple

v e w > II where II is a stack of derivation trees with entries separated by ::. We
write [A — o] for the tree constructor of A — . We put the argument trees in

parentheses, but omit them if there are none.

+ e 24+ xxx >
2+ e fxxx >
Ft+e +x%xx D> [F —2]
E+ e +xxx > [T — E)([F — 2])
T+ e +x*x > [T — E)([F — 2])
T++ e x*x > [T — E|([F — 2])
T+x+ & *x > [T — E|([F — 2])
T+F+ e xx > [T — E|([F — 2]) :: [F — x|
T+E+ e xx > [T — E)([F — 2]) :: [E — F)([F — x])
T+Ex+ e x > [T — E)([F — 2]) :: [E — F)([F — x])
T+Exx+ e > [T — E)([F — 2]) :: [E — F]([F — x])
T+ExF+ e > [T — E|([F — 2]) :: [E — F)([F — x]) :: [F — x]
T+E+ e > [T — E|([F — 2]) :: [E — ExF|([E — F]([F — x]),[F — x])
T+ e > [T — TH+E]([T — E|([F — 2]),[E — ExF|([E — F)|([F — x]),[F — x]))

shift

reduce F — 2
reduce E — F
reduce T — FE
shift

shift

reduce F — x
reduce F — FE
shift

shift

reduce F — x
reduce E — ExF
reduce T — T+E
success

The example shows clearly that derivation trees may contain information which
is not relevant for the meaning of the phrase. In this case, the chain productions
E — F and T — F carry no meaning but they are cluttering the derivation tree. In
fact, the nonterminals F and T are only present to model operator precedences. In
other grammars, there may be nonterminals and productions to make the grammar
palatable to the chosen parsing technology, as in the expression grammar trans-
formed for use with an LL(1) parser.

However, the definition of a syntax representation leaves the freedom to choose a
more abstract representation that elides extra nonterminals and productions. Such
a representation, which only carries semantically relevant information, is called an
abstract syntar representation or abstract syntaz tree (AST).

For convenience, abstract syntax is often defined by a grammar. This grammar
is usually unsuitable for parsing (in fact, it is often ambiguous), but that is quite ok
because the interest is only in the derivation trees of the grammar. In a language
like OCaml, abstract syntax fits exactly with algebraic datatypes.

13 Example
Here is a grammar suitable for defining the abstract syntax of arithmetic expressions:

A—=2|x| A+A| AxA
The intended derivation tree for 2+xx*x is
A— A+A

A—2 A — AxA

/N

A—x A—x

An OCaml type definition expresses the same structure more concisely and provides
a notation for the trees at the same time.

type Expr = Two | Ex | Add of Expr * Expr | Mul of Expr * Expr

Add (Two, Mul (Ex, Ex))

This expression provides a description of the input string 2+x*x which captures all
ingredients for defining its meaning precisely. Moreover, OCaml provides notation
and techniques for defining functions to further process these trees.

