
36 CHAPTER 2. SYNTAX ANALYSIS2.3 Bottom-Up ParsingRe
ursive-des
ent parsing is simple to implement, but requires an LL(k) grammar tobe e�e
tive. While most real programming languages have LL(k) grammars, theseare rarely the ones given in a language de�nition. Usually, substantial 
hanges arerequired, and the result is rarely as straightforward as the original. (Even moreproblems arise in the 
ontext of attribute grammars�but more about that later.)Consequently, it is desirable to use a parsing te
hnique whi
h 
an deal with alarger 
lass of grammars dire
tly�the re
ursive-as
ent te
hnique. (This te
hniqueis also known as bottom-up or LR parsing, where LR stands for left-to-right pro-
essing of the input and 
onstru
tion of a reversed rightmost derivation.) Re
ursiveas
ent usually works dire
tly for grammars that o

ur in programming languagede�nitions. However, it is harder to understand and implement than re
ursive-des
ent parsing, and naive implementations lead to slower parsers. Still, it is themost popular te
hnique for automati
ally generating parsers, probably largely dueto the Unix utility ya

 whi
h generates su
h parsers.Again, a formal notation is more suitable for 
at
hing the essen
e of this te
h-nique. An implementation follows dire
tly from it. The presentation here followsthat in [ST95℄ and [ST00℄.2.3.1 Overview of Bottom-Up ParsingA bottom-up parser 
onstru
ts a reversed rightmost derivation while pro
essing theinput. Intuitively, it starts building the derivation tree from the leftmost 
orner bya

umulating a right-sentential form.The typi
al state of a bottom-up parser is a pair � � w of a sta
k � and theremaining input w, so that �w is a right-sentential form. Parsing pro
eeds a

ordingto the following steps.1. The initial state is �w, that is, the sta
k is empty and the full input is available.2. In state � �w, apply one of the following alternatives(a) If � = �
 su
h that A ! 
 2 P , then redu
e this produ
tion and
hange state to �A � w.(b) If w = aw0, then shift the terminal a and 
hange state to �a � w0.(
) If � = S and w = �, then parsing �nishes with su

ess.Reje
t the input if none of the alternatives applies.3. If the sta
k of the 
urrent state is su
h that a redu
tion state is eventuallyrea
hable, then 
ontinue with item 2. Otherwise reje
t the input.Item 2 is nondeterministi
 in several respe
ts. There may be more than one way tosplit � into � and the handle 
; for a 
hosen handle 
 there may be several ruleswith right side 
; the parser 
ould shift instead of trying to redu
e.Evidently, the work horses of the parser are the two a
tions redu
e and shift.Hen
e, bottom-up parsers are often 
alled shift-redu
e parsers.7 ExampleLet's tra
e a shift-redu
e parser a

epting the word 2+x*x using the grammar for



2.3. BOTTOM-UP PARSING 37arithmeti
 expressions from Example 4.�2+ x � x shift2 �+x � x redu
e F ! 2F �+x � x redu
e E ! FE �+x � x redu
e T ! ET �+x � x shiftT+ � x � x shiftT+x � �x redu
e F ! xT+F � �x redu
e F ! ET+E � �x shiftT+E� � x shiftT+E�x� redu
e F ! xT+E�F� redu
e E ! E�FT+E� redu
e T ! T+ET� su

ess2.3.2 The Chara
teristi
 AutomatonOne part of a bottom-up parser is mysterious. How does the parser know whi
ha
tion it should perform just by looking at the sta
k? This se
tion demonstratesthat it is feasible to do so via the theory of LR parsing.To begin with, an LR parser requires a trivial restri
tion on its input grammarto simplify its termination 
ondition:2.13 De�nition (Start-separated)A start-separated 
ontext-free grammar G = (N;T; P; S0) has exa
tly one produ
-tion with left-hand side S0 of the form S0 ! S. 2From here on, all grammars are start-separated.We start of by formalizing the possible sta
k 
ontents during a derivation asviable pre�xes of the grammar.2.14 De�nitionLet S �)r �Aw )r �
w a rightmost derivation of a 
ontext-free grammar G. Inthis situation, 
 is a handle of the right-sentential form �
w and every pre�x of �
is a viable pre�x of G.As it turns out, the language of viable pre�xes of G is a regular language. In thefollowing, we will 
onstru
t a nondeterministi
 �nite automaton for this language,the 
hara
teristi
 automaton of G.To build the set of states for the 
hara
teristi
 automaton requires to abstra
tfrom the a
tual state of the parser. The proper abstra
tion is a 
ontext-free item ofthe grammar.2.15 De�nition (
ontext-free item)The set Items(G) of 
ontext-free items ofG 
onsists of all triples of the formA! ���where A! �� 2 P . 2Intuitively, an item A! � �� abstra
ts a parser state 
��vw if there is a rightmostderivation S �)r 
Aw and � �) v. The formal de�nition spe
i�es this 
onne
tionsby 
alling an item valid.



38 CHAPTER 2. SYNTAX ANALYSIS2.16 De�nitionAn item A ! � � � is valid for viable pre�x 
� if there is a rightmost derivationS �)r 
Aw �)r 
��w. 2Now we 
an state the automaton that re
ognizes the set of viable pre�xes.2.17 De�nitionLet G = (N;T; P; S0) be a 
ontext-free grammar. The 
hara
teristi
 NFA of G is
har(G) = (Q;N [ T; q0; Æ; F ) with� Q = Items(G)� q0 = S0 ! �S� F = fA! �� j A! � 2 Pg� Æ(A! � �X�;X) 3 A! �X � �� Æ(A! � � B�; �) 3 B ! �
 if B ! 
 2 P .8 ExampleConstru
t 
har(G) for the grammar of arithmeti
 expressions. The table belowomits items without transitions.item n symbol 2 x ( ) + � T E F[S ! �T ℄ [S ! T �℄[T ! �E℄ [T ! E�℄[T ! �T+E℄ [T ! T � +E℄[E ! �F ℄ [E ! F �℄[E ! �E�F ℄ [E ! E � �F ℄[F ! �2℄ [F ! 2�℄[F ! �x℄ [F ! x�℄[F ! �(T )℄ [F ! ( � T )℄[F ! ( � T)℄ [F ! (T � )℄[T ! T � +E℄ [T ! T+ � E℄[E ! E � �F ℄ [E ! E� � F ℄[F ! (T � )℄ [F ! (T )�℄[T ! T+ � E℄ [T ! T+E�℄[E ! E� � F ℄ [E ! E�F �℄and the " transitions:[S ! �T ℄ "7! [T ! �E℄; [T ! �T+E℄[T ! �E℄ "7! [E ! �F ℄; [E ! �E�F ℄[T ! �T+E℄ "7! [T ! �E℄; [T ! �T+E℄[E ! �F ℄ "7! [F ! �2℄; [F ! �x℄; [F ! �(T )℄[E ! �E�F ℄ "7! [E ! �F ℄; [E ! �E�F ℄[F ! ( � T )℄ "7! [T ! �E℄; [T ! �T+E℄[T ! T+ � E℄ "7! [E ! �F ℄; [E ! �E�F ℄[E ! E� � F ℄ "7! [F ! �2℄; [F ! �x℄; [F ! �(T )℄ 22.3.3 LR(0) ParsingAs a �rst step towards a deterministi
 parsing engine, we 
onstru
t a deterministi
version of the 
hara
teristi
 automaton.2.18 De�nition (Predi
tion and Closure)Ea
h state q 2 P(Items(G)) has an asso
iated set of predi
t items:predi
t(q) := �B ! �
 j A! � � � ++ B ! �
for A! � � � 2 q	



2.3. BOTTOM-UP PARSING 39where ++ is the transitive 
losure of the relation + de�ned byA! � �B� + B ! �ÆThe union of q and predi
t(q) is 
alled the 
losure of q. Hen
eforth,q := q [ predi
t(q)denotes the 
losure of a state q. 2The predi
t items of a state q are predi
tions on what derivations the parser mayenter next when in state q. The elements of predi
t(q) are exa
tly those at the endof leftmost-symbol derivations starting from items in q.2.19 De�nitionThe set of LR states for grammar G is LR-state(G) = fq 2 P(Items(G)) j q = qg.With these de�nitions, it is straightforward to dire
tly de�ne the deterministi
version of the 
hara
teristi
 automaton.2.20 De�nitionThe LR-DFA of G is (Q;N [ T; goto; q0; F ) where� Q = LR-state(G)� goto(q;X) = fA! �X � � j A! � �X� 2 qg� q0 = fS0 ! �Sg� F = fq 2 Q j A! �� 2 qg9 ExampleThe LR-DFA for the grammar of arithmeti
 expressions is fairly large, so we 
ontentourselves with a grammar for a sublanguage.S ! T T ! F T ! T�F F ! x F ! (T )
S −> T.
T −> T.*F

T −> T*.F
F −> .x
F −> .(T)

T −> T*F.

F −> x.

S −> .T
T −> .F
T −> .T*F
F −> .x
F −> .(T)

T * F

x

(

F −> (.T)
T −> .F
T −> .T*F
F −> .x
F −> .(T)

T −> F.
F

F

x

(

(

F −> (T.)
T −> T.*F

x *

F −> (T).
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5

7

8

6

4

The parser is driven dire
tly from the LR-DFA of the grammar.Putting the parts together results in the de�nition of a nondeterministi
 parserfor G. The parser 
onsists of two mutually re
ursive fun
tions parse and shift.Fun
tion parse has three 
hoi
es. If the 
urrent state q (whi
h is always on top ofthe sta
k) 
ontains a redu
e item A ! ��, then it removes j�j symbols from thesta
k and attempts to shift the left-hand side A from that state. If it makes senseto shift the next symbol, it does so. Finally, if the input is depleted and there is
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e item for the start produ
tion, then it signals su

ess. The shift fun
tionjust 
hanges state by invoking goto on the top state of the sta
k and pushing theresulting new state.parse(sta
k ; w) = let q = top(sta
k) inWfshift(a; sta
k ; w0) j w = aw0; A! � � a� 2 qg_ Wfshift(A; pop(j�j; sta
k ); w) j A! �� 2 qg_ w = � ^ S0 ! S� 2 q ^ jsta
k j = 1shift(X; sta
k ; w) = let q = top(sta
k) inparse(push(goto(q;X); sta
k); w)Again, the spe
i�
ation is nondeterministi
, in general. But we obtain a goodidea of the sour
es of nondeterminism by examining the 
urrent state q of the LR-DFA. Spe
i�
ally, the nondeterminism is 
aused by two kinds of unsuitable statesin the LR-DFA:1. State q has a redu
e-redu
e 
on�i
t if it 
ontains two di�erent redu
e itemsA! �� and B ! ��.2. State q has a shift-redu
e 
on�i
t if it 
ontains a redu
e item A! �� anda shift item B ! � � a
 on a terminal symbol a.However, the LR-DFA for a grammar G may be free of 
on�i
ts already. In this
ase, G is a LR(0) grammar be
ause it is amenable to deterministi
 LR-parsingwithout any lookahead.10 ExampleThe grammar for arithmeti
 expressions has no redu
e-redu
e 
on�i
ts, but thereare shift-redu
e 
on�i
ts in the following states:fT ! E�; E ! E � �FgfT ! T+E�; E ! E � �FgfS0 ! T �; T ! T �+EgThe grammar for simpli�ed arithmeti
 expressions from Example 9 has a shift-redu
e 
on�i
t in state 1: fS ! T �; T ! T � �Fg:Hen
e, neither grammar is an LR(0) grammar.2.3.4 Implementation of LR(0) ParsingThis subse
tion 
ontains a 
omplete implementation of a (nondeterministi
) sta
k-based LR(0) parser. This parser 
omputes the predi
t and 
losure fun
tions on the�y as follows.(* LR(0) 
losure of an item set *)let 
losure g items =let re
 worker prestate worklist =mat
h worklist with[℄ ->prestate| item::items ->mat
h Item.rhs_rest item withCfg.NT (n)::_ ->



2.3. BOTTOM-UP PARSING 41let produ
tions_with_n = Grammar.produ
tions_with_lhs g n inlet 
andidates = List.map Item.initial produ
tions_with_n inlet newitems = filter (fun
tion 
and -> List.mem 
and prestate) 
andidates inworker (newitems�prestate) (newitems�worklist)| _ ->worker prestate itemsinworker items itemsThe next fun
tion tests if the parser 
an shift a (terminal or nonterminal) symbolon an item.(* 
anshift : ('n,'t) symbol -> ('n,'t,'ext) Item.t -> bool *)let 
anshift symbol item =mat
h Item.rhs_rest item with[℄ -> false| x::_ -> x = symbolThe heart of the shift fun
tion 
omputes the shifted versions of the items whi
h
an be shifted on symbol. The result still needs to be 
losed with respe
t to thepredi
t items.(* goto : ('n,'t,'ext) Item.t list -> ('n,'t,'ext) Item.t list *)let goto state symbol =List.map Item.shift (filter (
anshift symbol) state)The main parser fun
tion, a

ept, 
ontains the above spe
i�ed fun
tions, parseand shift. It �rst prepares the initial state by 
losing over the predi
t item ofthe start produ
tion and then leaves the work to parse, whi
h works exa
tly asspe
i�ed.(* a

ept : ('n,'t,'ext) Cfg.grammar -> 't list -> bool *)let a

ept g inp =let start_produ
tion::_ = Grammar.produ
tions_with_lhs g (Cfg.start g) inlet initial_state = 
losure g [Item.initial start_produ
tion℄ inlet is_final_state state =mat
h state with[item℄ ->Item.produ
tion item = start_produ
tion && Item.
omplete item| _ ->falsein(* parse : ('n,'t,'ext) Item.t list list -> 't list -> bool *)let re
 parse sta
k inp =let state :: sta
k_rest = sta
k in(mat
h inp witht :: inp_rest ->List.exists (
anshift (Cfg.T (t))) state&& shift (Cfg.T (t)) sta
k inp_rest| [℄ ->is_final_state state && sta
k_rest = [℄)||List.exists(fun
tion redu
ible_item ->shift(Cfg.NT (Cfg.lhs (Item.produ
tion redu
ible_item)))



42 CHAPTER 2. SYNTAX ANALYSIS(drop (Item.position redu
ible_item) sta
k)inp)(filter Item.
omplete state)(* shift : ('n,'t) symbol -> ('n,'t,'ext) Item.t list list -> 't list -> bool *)and shift symbol sta
k inp =let state::_ = sta
k inparse (
losure g (goto state symbol)::sta
k) inpinparse [initial_state℄ inpThe auxiliary fun
tion List.exists takes a predi
ate and a list. It returns true ifthere is a list element whi
h makes the predi
ate true. The uses of List.exists
orrespond to the large disjun
tions in the spe
i�
ation.2.3.5 LR(k) ParsingThe standard medi
ine for resolving 
on�i
ts (and hen
e nondeterminism) is to addlookahead to the parsing engine. This se
tion �rst looks at the 
anoni
al way ofadding lookahead, whi
h turns out to be very expensive. Subsequent subse
tions
onsider simpler and more e�
ient means of adding lookahead information.2.21 De�nitionLet G = (N;T; P; S0) be a start separated 
ontext-free grammar. G is an LR(k)grammar if� S0 �)r �Aw )r ��w and� S0 �)r 
Bu)r ��v and� wjk = vjkimplies that � = 
, A = B, and u = v.LR(k) parsing is a very strong formalism as the following fa
ts demonstrate.1. If G is an LL(k) grammar, then G is an LR(k) grammar.2. If L is a deterministi
 
ontext-free language, then L has a LR(1) grammar. Inparti
ular: If L has an LR(k) grammar, then it also has an LR(1) grammar.The de�nition of the LR(k)-DFA en
ompasses essentially the same steps as theLR-DFA. The main di�eren
e is the extension of items by lookahead sets.2.22 De�nition (LR(k) item, LR(k) state)Let G be a start separated, 
ontext-free grammar. The set LR(k)-Items(G) 
ontainsall quadruples of the form A ! � � � (L) where A ! �� is a produ
tion of G andL � T�k. The set L indi
ates the set of lookahead strings for whi
h the item isvalid.If the lookahead is not used (or k = 0), it is omitted. A predi
t item has theform A! �� (L). 2The de�nition of a valid item extends smoothly. The important point in thede�nition is that the lookahead does not refer to the position of the dot in theitem but rather des
ribes the symbols that may follow the item's nonterminal in aderivation for whi
h the item is valid.



2.3. BOTTOM-UP PARSING 432.23 De�nitionAn item A! � �� (L) is valid for viable pre�x 
� if there is a rightmost derivationS �)r 
Aw �)r 
��w and wjk 2 L. 22.24 De�nition (Predi
t items, Item transitions, State transitions)Ea
h state q has an asso
iated set of predi
t items:predi
t(q) := �B ! �
 (M) j A! � � � (L) ++ B ! �
 (M)for A! � � � (L) 2 q	where ++ is the transitive 
losure of the relation + de�ned byA! � � B� (L) + B ! �Æ (�rstk(�L)).The relation + also shows how to 
ompute the lookahead of an item as the 
on
ate-nation of the symbols that may follow the non-terminal on the left-hand side andthe lookahead of the original item.The union of q and predi
t(q) is 
alled the 
losure of q. Hen
eforth,q := q [ predi
t(q)denotes the 
losure of a state q. 2The state set of the LR(k)-DFA is again formed from the set of LR(k) states.2.25 De�nitionThe set of LR(k) states for grammar G isLR(k)-state(G) = fq � LR(k)-Items(G) j q = qgThe LR(k)-DFA just adds the treatment of lookahead to the LR-DFA: the gotofun
tion preserves the lookaheads, the lookahead of the start produ
tion is f�g, andthe �nal states are not a�e
ted by lookahead at all.2.26 De�nitionThe LR(k)-DFA of G is (Q;N [ T; goto; q0; F ) where� Q = LR(k)-state(G)� goto(q;X) = fA! �X � � (L) j A! � �X� (L) 2 qg� q0 = fS0 ! �S (f�g)g� F = fq 2 Q j A! � � (L) 2 qgThe parsing engine itself requires very little modi�
ation.parse(sta
k ; w)= let q = top(sta
k) inWfshift(A; pop(j�j; sta
k ); w) j A! � � (L) 2 q; wjk 2 Lg_ Wfshift(a; sta
k ; w0) j w = aw0; A! � � a� (L) 2 q; wjk 2 �rstk(a�L)g_ w = � ^ S0 ! S � (f�g) 2 qshift(X; sta
k ; w)= let q = top(sta
k) inparse(push(goto(q;X); sta
k); w)The following 
on�i
ts are possible (and lead to nondeterminism) in su
h aparser:
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e-redu
e 
on�i
t if it 
ontains two di�erent redu
e itemsA! � � (L) and B ! � � (M) su
h that L \M 6= ;.2. State q has a shift-redu
e 
on�i
t if it 
ontains a redu
e item A! � � (L)and a shift item B ! � � a
 (M) on a terminal symbol a su
h that L \�rstk(a
 M) 6= ;.The LR(k)-DFA does not 
ontain rea
hable states that exhibit one of the 
on�i
tsif and only if the grammar is LR(k).2.3.6 Simple LookaheadPure LR parsers for realisti
 languages often lead to prohibitively big state au-tomatons [Cha87, ASU86℄, and thus to impra
ti
ally big parsers. Fortunately, mostrealisti
 formal languages are already amenable to treatment by SLR or LALRparsers whi
h introdu
e lookahead into essentially LR(0) parsers.The SLR(k) parser 
orresponding to an LR(0) parser [DeR71℄ with states q(0)0 ; : : : ; q(0)nhas states 
losures q0; : : : ; qn. In 
ontrast to the LR(k) parser, the SLR(k) automa-ton has the following states:qi := fA! � � � (�) j A! � � � 2 q(0)i ; � 2 followk(A)gAnalogously, the predi
t items are the same as in the LR(0) 
ase, only with addedlookahead:predi
t(qi) := fA! � � � (�) j A! � � � 2 predi
t(0)(q(0)i ); � 2 followk(A)gThe state transition goto is also just a variant the LR(0) 
ase here 
alled goto(0):goto(qi; X) := qj for q(0)j = goto(0)(q(0)i ; X)The parsing engine for an SLR(k) parser is identi
al to the one for the LR(k) parser.The only di�eren
e is in the 
omputation of the lookahead sets. The e�e
ts of usingSLR(k) instead of LR(k) are as expe
ted: generation time and size de
rease, oftendramati
ally for realisti
 grammars.11 ExampleThe grammar for arithmeti
 expressions is an SLR(1) grammar. To see this, wereview the unsuitable states of its LR-DFA and �nd that all 
on�i
ts 
an be resolvedby adding SLR(1) lookahead sets:fT ! E�; E ! E � �FgfT ! T+E�; E ! E � �FgfS0 ! T �; T ! T �+EgA

ording to SLR(1), the lookahead sets for the redu
e items in question are thefollow1 sets of T and S0. Examination of the grammar yields thatfollow1(T ) = f�; );+gfollow1(S0) = f�gIn the �rst and se
ond state, the 
on�i
t is resolved be
ause the set follow1(T ) doesnot 
ontain the single symbol * on whi
h the state 
an shift. In the third state, the
on�i
t is also resolved be
ause follow1(S0) does not 
ontain +. 2



2.3. BOTTOM-UP PARSING 452.3.7 LALR Lookahead ComputationThe LALR method uses a more pre
ise method of 
omputing the lookahead, butalso works by de
orating an LR(0) parser [DeR69℄. Thus, the same methodology aswith the SLR 
ase is appli
able, merely repla
ing followk with the (more involved)LALR lookahead fun
tion. Unfortunately, all e�
ient methods of 
omputing LALRlookahead sets require a

ess to the entire LR(0) automaton in advan
e [DP82,PCC85, Ive86, PC87, Ive87b, Ive87a℄.Here is the de�nition for the LALR(1) lookahead of an LR(0)-item. The mainnovelty here is that the lookahead depends on the state of the automaton, too.
2.27 De�nitionLet (Q;N [ T; goto; q0; F ) be the LR-DFA for a start-separated grammar G. Letfurther q 2 Q and I = A! � � � 2 q. The LALR(1) lookahead of I in q isLA1(q; A! � � �) = fwj1 j S �)r 
Aw; q = goto�(q0; 
�)gThe main interest is, of 
ourse, in the lookahead for the redu
e items, that is, inLA1(q; A ! ��), but the general de�nition makes it easier to �nd an obviously
omputable de�nition for the lookahead sets.This de�nition involves a quanti�
ation over all derivations, whi
h makes itpretty hard to implement. Following the 
al
ulation in Wilhelm's textbook [WM92℄,it 
an be simpli�ed as follows.The �rst observation is that the lookahead for an item with the dot in the middle
an be expressed in terms of lookaheads for predi
t items, that is, items with the dotat the left end of their right hand side. This transformation exploits the fa
toring ofgoto� with respe
t to its input word, that is, goto�(q0; 
�) = goto�(goto�(q0; 
); �).LA1(q; A! � � �)= fwj1 j S �)r 
Aw; q = goto�(q0; 
�)g= fwj1 j S �)r 
Aw; q0 = goto�(q0; 
); q = goto�(q0; �)g= Sq=goto�(q0;�) LA1(q0; A! ���)The goal is now to express the lookahead sets of predi
t items in terms of looka-head sets of other predi
t items, thus giving raise to a system of equations onlookahead sets. We write 
LA1(q; A) = LA1(q; A! ��), noti
ing that the lookaheadset is independent of �.A predi
t item 
an either be the start item S0 ! �S, in whi
h 
ase the lookaheadset is f�g be
ause the input word should be exhausted after something has beenderived from S, or the item A ! �� is in q due to the 
losure operation. In these
ond 
ase, it must have been added by the predi
t operation so that the state qmust 
ontain one or more items of the form B ! � � A
. These two 
ases give rise



46 CHAPTER 2. SYNTAX ANALYSISto the following equations:
LA1(q0; S0) = fwj1 j S0 �)r 
S0w; q = goto�(q0; 
�)gbe
ause 
 = �, w = �, and q = q0= f�g
LA1(q; A) = f(uv)j1 j S0 �)r 
�Auv; q = goto�(q0; 
�)g= f(uv)j1 j S0 �)r 
Bv )r 
�A�v �)r 
�Auv;q = goto�(q0; 
�); B ! � �A� 2 qg= f(uv)j1 j S0 �)r 
Bv )r 
�A�v;u 2 �rst1(�); q = goto�(q0; 
�); B ! � � A� 2 qg= f(uv)j1 j S0 �)r 
Bv;u 2 �rst1(�); v 2 
LA1(q0; B);q = goto�(q0; �); q0 = goto�(q0; 
); B ! � � A� 2 qg= SB!��A�2qSq=goto�(q0;�)(�rst1(�)
LA1(q0; B))j1This system of equations has (at most) jQj � jN j variables and it 
an be solvedby �xpoint iteration. More 
lever, essentially linear-time algorithms exist and aredo
umented in the literature.A solution of the system of equations for 
LA1 yields the desired result, thelookahead sets for the redu
e items, as follows:LA1(q; A! ��) = [goto�(q0;�)=q 
LA1(q0; A)2.4 Output of a ParserA parser whi
h just outputs yes or no is not of mu
h use in a 
ompiler. Hen
e, weaugment the parsing formalism with a notion of syntax representation whi
h 
anserve as parser output.2.28 De�nition (Syntax representation)Let T be the terminal alphabet. A parser parse : T � ! D generates a syntaxrepresentation from a set D if there is a fun
tion unparse : D ! T � su
h thatparse Æ unparse = idD. 2The main intention of the de�nition is to provide the minimum requirements forD. If the parser is based on 
ontext-free grammars, then the natural 
hoi
e for Dwould be the set of derivation trees of the grammar.In fa
t, both styles of parsers 
an 
onstru
t a derivation tree during parsing.The idea is 
onsider a produ
tion A0 ! w0A1w1 : : : Anwn as a tree 
onstru
torfun
tion that takes n derivation trees for nonterminals A1; : : : ; An and returns aderivation tree for nonterminal A0.A re
ursive-des
ent parser needs no additional stru
ture to do so. The fun
tion[A0℄, for parsing strings derived from A0, just applies the appropriate 
onstru
tor tothe derivation trees obtained from the 
alls to [A1℄; : : : ; [An℄ and returns he resultingtree along with the rest of the input.A shift-redu
e parser would be able to build the derivation tree on its sta
k. For
larity, however, we extend the generi
 shift-redu
e parser with an output sta
k.The idea is then to apply the tree 
onstru
tor fun
tion for A0 ! w0A1w1 : : : Anwnto the topmost n entries of the output sta
k and repla
e them with the resultingtree.



2.4. OUTPUT OF A PARSER 4712 ExampleLet's revisit Example 7 with output generation. A 
on�guration is now a triple
 � w � � where � is a sta
k of derivation trees with entries separated by ::. Wewrite [A ! �℄ for the tree 
onstru
tor of A ! �. We put the argument trees inparentheses, but omit them if there are none.+ � 2+ x � x � shift2+ � +x � x � redu
e F ! 2F+ � +x � x � [F ! 2℄ redu
e E ! FE+ � +x � x � [T ! E℄([F ! 2℄) redu
e T ! ET+ � +x � x � [T ! E℄([F ! 2℄) shiftT++ � x � x � [T ! E℄([F ! 2℄) shiftT+x+ � �x � [T ! E℄([F ! 2℄) redu
e F ! xT+F+ � �x � [T ! E℄([F ! 2℄) :: [F ! x℄ redu
e F ! ET+E+ � �x � [T ! E℄([F ! 2℄) :: [E ! F ℄([F ! x℄) shiftT+E�+ � x � [T ! E℄([F ! 2℄) :: [E ! F ℄([F ! x℄) shiftT+E�x+ � � [T ! E℄([F ! 2℄) :: [E ! F ℄([F ! x℄) redu
e F ! xT+E�F+ � � [T ! E℄([F ! 2℄) :: [E ! F ℄([F ! x℄) :: [F ! x℄ redu
e E ! E�FT+E+ � � [T ! E℄([F ! 2℄) :: [E ! E�F ℄([E ! F ℄([F ! x℄); [F ! x℄) redu
e T ! T+ET+ � � [T ! T+E℄([T ! E℄([F ! 2℄); [E ! E�F ℄([E ! F ℄([F ! x℄); [F ! x℄)) su

essThe example shows 
learly that derivation trees may 
ontain information whi
his not relevant for the meaning of the phrase. In this 
ase, the 
hain produ
tionsE ! F and T ! E 
arry no meaning but they are 
luttering the derivation tree. Infa
t, the nonterminals E and T are only present to model operator pre
eden
es. Inother grammars, there may be nonterminals and produ
tions to make the grammarpalatable to the 
hosen parsing te
hnology, as in the expression grammar trans-formed for use with an LL(1) parser.However, the de�nition of a syntax representation leaves the freedom to 
hoose amore abstra
t representation that elides extra nonterminals and produ
tions. Su
ha representation, whi
h only 
arries semanti
ally relevant information, is 
alled anabstra
t syntax representation or abstra
t syntax tree (AST).For 
onvenien
e, abstra
t syntax is often de�ned by a grammar. This grammaris usually unsuitable for parsing (in fa
t, it is often ambiguous), but that is quite okbe
ause the interest is only in the derivation trees of the grammar. In a languagelike OCaml, abstra
t syntax �ts exa
tly with algebrai
 datatypes.13 ExampleHere is a grammar suitable for de�ning the abstra
t syntax of arithmeti
 expressions:A! 2 j x j A+A j A�AThe intended derivation tree for 2+x*x isPSfrag repla
ements A! A+AA! A�AA! 2 A! xA! xAn OCaml type de�nition expresses the same stru
ture more 
on
isely and providesa notation for the trees at the same time.type Expr = Two | Ex | Add of Expr * Expr | Mul of Expr * ExprAdd (Two, Mul (Ex, Ex))This expression provides a des
ription of the input string 2+x*x whi
h 
aptures allingredients for de�ning its meaning pre
isely. Moreover, OCaml provides notationand te
hniques for de�ning fun
tions to further pro
ess these trees.


