
36 CHAPTER 2. SYNTAX ANALYSIS2.3 Bottom-Up ParsingReursive-desent parsing is simple to implement, but requires an LL(k) grammar tobe e�etive. While most real programming languages have LL(k) grammars, theseare rarely the ones given in a language de�nition. Usually, substantial hanges arerequired, and the result is rarely as straightforward as the original. (Even moreproblems arise in the ontext of attribute grammars�but more about that later.)Consequently, it is desirable to use a parsing tehnique whih an deal with alarger lass of grammars diretly�the reursive-asent tehnique. (This tehniqueis also known as bottom-up or LR parsing, where LR stands for left-to-right pro-essing of the input and onstrution of a reversed rightmost derivation.) Reursiveasent usually works diretly for grammars that our in programming languagede�nitions. However, it is harder to understand and implement than reursive-desent parsing, and naive implementations lead to slower parsers. Still, it is themost popular tehnique for automatially generating parsers, probably largely dueto the Unix utility ya whih generates suh parsers.Again, a formal notation is more suitable for athing the essene of this teh-nique. An implementation follows diretly from it. The presentation here followsthat in [ST95℄ and [ST00℄.2.3.1 Overview of Bottom-Up ParsingA bottom-up parser onstruts a reversed rightmost derivation while proessing theinput. Intuitively, it starts building the derivation tree from the leftmost orner byaumulating a right-sentential form.The typial state of a bottom-up parser is a pair � � w of a stak � and theremaining input w, so that �w is a right-sentential form. Parsing proeeds aordingto the following steps.1. The initial state is �w, that is, the stak is empty and the full input is available.2. In state � �w, apply one of the following alternatives(a) If � = � suh that A !  2 P , then redue this prodution andhange state to �A � w.(b) If w = aw0, then shift the terminal a and hange state to �a � w0.() If � = S and w = �, then parsing �nishes with suess.Rejet the input if none of the alternatives applies.3. If the stak of the urrent state is suh that a redution state is eventuallyreahable, then ontinue with item 2. Otherwise rejet the input.Item 2 is nondeterministi in several respets. There may be more than one way tosplit � into � and the handle ; for a hosen handle  there may be several ruleswith right side ; the parser ould shift instead of trying to redue.Evidently, the work horses of the parser are the two ations redue and shift.Hene, bottom-up parsers are often alled shift-redue parsers.7 ExampleLet's trae a shift-redue parser aepting the word 2+x*x using the grammar for



2.3. BOTTOM-UP PARSING 37arithmeti expressions from Example 4.�2+ x � x shift2 �+x � x redue F ! 2F �+x � x redue E ! FE �+x � x redue T ! ET �+x � x shiftT+ � x � x shiftT+x � �x redue F ! xT+F � �x redue F ! ET+E � �x shiftT+E� � x shiftT+E�x� redue F ! xT+E�F� redue E ! E�FT+E� redue T ! T+ET� suess2.3.2 The Charateristi AutomatonOne part of a bottom-up parser is mysterious. How does the parser know whihation it should perform just by looking at the stak? This setion demonstratesthat it is feasible to do so via the theory of LR parsing.To begin with, an LR parser requires a trivial restrition on its input grammarto simplify its termination ondition:2.13 De�nition (Start-separated)A start-separated ontext-free grammar G = (N;T; P; S0) has exatly one produ-tion with left-hand side S0 of the form S0 ! S. 2From here on, all grammars are start-separated.We start of by formalizing the possible stak ontents during a derivation asviable pre�xes of the grammar.2.14 De�nitionLet S �)r �Aw )r �w a rightmost derivation of a ontext-free grammar G. Inthis situation,  is a handle of the right-sentential form �w and every pre�x of �is a viable pre�x of G.As it turns out, the language of viable pre�xes of G is a regular language. In thefollowing, we will onstrut a nondeterministi �nite automaton for this language,the harateristi automaton of G.To build the set of states for the harateristi automaton requires to abstratfrom the atual state of the parser. The proper abstration is a ontext-free item ofthe grammar.2.15 De�nition (ontext-free item)The set Items(G) of ontext-free items ofG onsists of all triples of the formA! ���where A! �� 2 P . 2Intuitively, an item A! � �� abstrats a parser state ��vw if there is a rightmostderivation S �)r Aw and � �) v. The formal de�nition spei�es this onnetionsby alling an item valid.



38 CHAPTER 2. SYNTAX ANALYSIS2.16 De�nitionAn item A ! � � � is valid for viable pre�x � if there is a rightmost derivationS �)r Aw �)r ��w. 2Now we an state the automaton that reognizes the set of viable pre�xes.2.17 De�nitionLet G = (N;T; P; S0) be a ontext-free grammar. The harateristi NFA of G ishar(G) = (Q;N [ T; q0; Æ; F ) with� Q = Items(G)� q0 = S0 ! �S� F = fA! �� j A! � 2 Pg� Æ(A! � �X�;X) 3 A! �X � �� Æ(A! � � B�; �) 3 B ! � if B !  2 P .8 ExampleConstrut har(G) for the grammar of arithmeti expressions. The table belowomits items without transitions.item n symbol 2 x ( ) + � T E F[S ! �T ℄ [S ! T �℄[T ! �E℄ [T ! E�℄[T ! �T+E℄ [T ! T � +E℄[E ! �F ℄ [E ! F �℄[E ! �E�F ℄ [E ! E � �F ℄[F ! �2℄ [F ! 2�℄[F ! �x℄ [F ! x�℄[F ! �(T )℄ [F ! ( � T )℄[F ! ( � T)℄ [F ! (T � )℄[T ! T � +E℄ [T ! T+ � E℄[E ! E � �F ℄ [E ! E� � F ℄[F ! (T � )℄ [F ! (T )�℄[T ! T+ � E℄ [T ! T+E�℄[E ! E� � F ℄ [E ! E�F �℄and the " transitions:[S ! �T ℄ "7! [T ! �E℄; [T ! �T+E℄[T ! �E℄ "7! [E ! �F ℄; [E ! �E�F ℄[T ! �T+E℄ "7! [T ! �E℄; [T ! �T+E℄[E ! �F ℄ "7! [F ! �2℄; [F ! �x℄; [F ! �(T )℄[E ! �E�F ℄ "7! [E ! �F ℄; [E ! �E�F ℄[F ! ( � T )℄ "7! [T ! �E℄; [T ! �T+E℄[T ! T+ � E℄ "7! [E ! �F ℄; [E ! �E�F ℄[E ! E� � F ℄ "7! [F ! �2℄; [F ! �x℄; [F ! �(T )℄ 22.3.3 LR(0) ParsingAs a �rst step towards a deterministi parsing engine, we onstrut a deterministiversion of the harateristi automaton.2.18 De�nition (Predition and Closure)Eah state q 2 P(Items(G)) has an assoiated set of predit items:predit(q) := �B ! � j A! � � � ++ B ! �for A! � � � 2 q	



2.3. BOTTOM-UP PARSING 39where ++ is the transitive losure of the relation + de�ned byA! � �B� + B ! �ÆThe union of q and predit(q) is alled the losure of q. Heneforth,q := q [ predit(q)denotes the losure of a state q. 2The predit items of a state q are preditions on what derivations the parser mayenter next when in state q. The elements of predit(q) are exatly those at the endof leftmost-symbol derivations starting from items in q.2.19 De�nitionThe set of LR states for grammar G is LR-state(G) = fq 2 P(Items(G)) j q = qg.With these de�nitions, it is straightforward to diretly de�ne the deterministiversion of the harateristi automaton.2.20 De�nitionThe LR-DFA of G is (Q;N [ T; goto; q0; F ) where� Q = LR-state(G)� goto(q;X) = fA! �X � � j A! � �X� 2 qg� q0 = fS0 ! �Sg� F = fq 2 Q j A! �� 2 qg9 ExampleThe LR-DFA for the grammar of arithmeti expressions is fairly large, so we ontentourselves with a grammar for a sublanguage.S ! T T ! F T ! T�F F ! x F ! (T )
S −> T.
T −> T.*F

T −> T*.F
F −> .x
F −> .(T)

T −> T*F.

F −> x.

S −> .T
T −> .F
T −> .T*F
F −> .x
F −> .(T)

T * F

x

(

F −> (.T)
T −> .F
T −> .T*F
F −> .x
F −> .(T)

T −> F.
F

F

x

(

(

F −> (T.)
T −> T.*F

x *

F −> (T).

0 1 2 3

5

7

8

6

4

The parser is driven diretly from the LR-DFA of the grammar.Putting the parts together results in the de�nition of a nondeterministi parserfor G. The parser onsists of two mutually reursive funtions parse and shift.Funtion parse has three hoies. If the urrent state q (whih is always on top ofthe stak) ontains a redue item A ! ��, then it removes j�j symbols from thestak and attempts to shift the left-hand side A from that state. If it makes senseto shift the next symbol, it does so. Finally, if the input is depleted and there is



40 CHAPTER 2. SYNTAX ANALYSISa redue item for the start prodution, then it signals suess. The shift funtionjust hanges state by invoking goto on the top state of the stak and pushing theresulting new state.parse(stak ; w) = let q = top(stak) inWfshift(a; stak ; w0) j w = aw0; A! � � a� 2 qg_ Wfshift(A; pop(j�j; stak ); w) j A! �� 2 qg_ w = � ^ S0 ! S� 2 q ^ jstak j = 1shift(X; stak ; w) = let q = top(stak) inparse(push(goto(q;X); stak); w)Again, the spei�ation is nondeterministi, in general. But we obtain a goodidea of the soures of nondeterminism by examining the urrent state q of the LR-DFA. Spei�ally, the nondeterminism is aused by two kinds of unsuitable statesin the LR-DFA:1. State q has a redue-redue on�it if it ontains two di�erent redue itemsA! �� and B ! ��.2. State q has a shift-redue on�it if it ontains a redue item A! �� anda shift item B ! � � a on a terminal symbol a.However, the LR-DFA for a grammar G may be free of on�its already. In thisase, G is a LR(0) grammar beause it is amenable to deterministi LR-parsingwithout any lookahead.10 ExampleThe grammar for arithmeti expressions has no redue-redue on�its, but thereare shift-redue on�its in the following states:fT ! E�; E ! E � �FgfT ! T+E�; E ! E � �FgfS0 ! T �; T ! T �+EgThe grammar for simpli�ed arithmeti expressions from Example 9 has a shift-redue on�it in state 1: fS ! T �; T ! T � �Fg:Hene, neither grammar is an LR(0) grammar.2.3.4 Implementation of LR(0) ParsingThis subsetion ontains a omplete implementation of a (nondeterministi) stak-based LR(0) parser. This parser omputes the predit and losure funtions on the�y as follows.(* LR(0) losure of an item set *)let losure g items =let re worker prestate worklist =math worklist with[℄ ->prestate| item::items ->math Item.rhs_rest item withCfg.NT (n)::_ ->



2.3. BOTTOM-UP PARSING 41let produtions_with_n = Grammar.produtions_with_lhs g n inlet andidates = List.map Item.initial produtions_with_n inlet newitems = filter (funtion and -> List.mem and prestate) andidates inworker (newitems�prestate) (newitems�worklist)| _ ->worker prestate itemsinworker items itemsThe next funtion tests if the parser an shift a (terminal or nonterminal) symbolon an item.(* anshift : ('n,'t) symbol -> ('n,'t,'ext) Item.t -> bool *)let anshift symbol item =math Item.rhs_rest item with[℄ -> false| x::_ -> x = symbolThe heart of the shift funtion omputes the shifted versions of the items whihan be shifted on symbol. The result still needs to be losed with respet to thepredit items.(* goto : ('n,'t,'ext) Item.t list -> ('n,'t,'ext) Item.t list *)let goto state symbol =List.map Item.shift (filter (anshift symbol) state)The main parser funtion, aept, ontains the above spei�ed funtions, parseand shift. It �rst prepares the initial state by losing over the predit item ofthe start prodution and then leaves the work to parse, whih works exatly asspei�ed.(* aept : ('n,'t,'ext) Cfg.grammar -> 't list -> bool *)let aept g inp =let start_prodution::_ = Grammar.produtions_with_lhs g (Cfg.start g) inlet initial_state = losure g [Item.initial start_prodution℄ inlet is_final_state state =math state with[item℄ ->Item.prodution item = start_prodution && Item.omplete item| _ ->falsein(* parse : ('n,'t,'ext) Item.t list list -> 't list -> bool *)let re parse stak inp =let state :: stak_rest = stak in(math inp witht :: inp_rest ->List.exists (anshift (Cfg.T (t))) state&& shift (Cfg.T (t)) stak inp_rest| [℄ ->is_final_state state && stak_rest = [℄)||List.exists(funtion reduible_item ->shift(Cfg.NT (Cfg.lhs (Item.prodution reduible_item)))



42 CHAPTER 2. SYNTAX ANALYSIS(drop (Item.position reduible_item) stak)inp)(filter Item.omplete state)(* shift : ('n,'t) symbol -> ('n,'t,'ext) Item.t list list -> 't list -> bool *)and shift symbol stak inp =let state::_ = stak inparse (losure g (goto state symbol)::stak) inpinparse [initial_state℄ inpThe auxiliary funtion List.exists takes a prediate and a list. It returns true ifthere is a list element whih makes the prediate true. The uses of List.existsorrespond to the large disjuntions in the spei�ation.2.3.5 LR(k) ParsingThe standard mediine for resolving on�its (and hene nondeterminism) is to addlookahead to the parsing engine. This setion �rst looks at the anonial way ofadding lookahead, whih turns out to be very expensive. Subsequent subsetionsonsider simpler and more e�ient means of adding lookahead information.2.21 De�nitionLet G = (N;T; P; S0) be a start separated ontext-free grammar. G is an LR(k)grammar if� S0 �)r �Aw )r ��w and� S0 �)r Bu)r ��v and� wjk = vjkimplies that � = , A = B, and u = v.LR(k) parsing is a very strong formalism as the following fats demonstrate.1. If G is an LL(k) grammar, then G is an LR(k) grammar.2. If L is a deterministi ontext-free language, then L has a LR(1) grammar. Inpartiular: If L has an LR(k) grammar, then it also has an LR(1) grammar.The de�nition of the LR(k)-DFA enompasses essentially the same steps as theLR-DFA. The main di�erene is the extension of items by lookahead sets.2.22 De�nition (LR(k) item, LR(k) state)Let G be a start separated, ontext-free grammar. The set LR(k)-Items(G) ontainsall quadruples of the form A ! � � � (L) where A ! �� is a prodution of G andL � T�k. The set L indiates the set of lookahead strings for whih the item isvalid.If the lookahead is not used (or k = 0), it is omitted. A predit item has theform A! �� (L). 2The de�nition of a valid item extends smoothly. The important point in thede�nition is that the lookahead does not refer to the position of the dot in theitem but rather desribes the symbols that may follow the item's nonterminal in aderivation for whih the item is valid.



2.3. BOTTOM-UP PARSING 432.23 De�nitionAn item A! � �� (L) is valid for viable pre�x � if there is a rightmost derivationS �)r Aw �)r ��w and wjk 2 L. 22.24 De�nition (Predit items, Item transitions, State transitions)Eah state q has an assoiated set of predit items:predit(q) := �B ! � (M) j A! � � � (L) ++ B ! � (M)for A! � � � (L) 2 q	where ++ is the transitive losure of the relation + de�ned byA! � � B� (L) + B ! �Æ (�rstk(�L)).The relation + also shows how to ompute the lookahead of an item as the onate-nation of the symbols that may follow the non-terminal on the left-hand side andthe lookahead of the original item.The union of q and predit(q) is alled the losure of q. Heneforth,q := q [ predit(q)denotes the losure of a state q. 2The state set of the LR(k)-DFA is again formed from the set of LR(k) states.2.25 De�nitionThe set of LR(k) states for grammar G isLR(k)-state(G) = fq � LR(k)-Items(G) j q = qgThe LR(k)-DFA just adds the treatment of lookahead to the LR-DFA: the gotofuntion preserves the lookaheads, the lookahead of the start prodution is f�g, andthe �nal states are not a�eted by lookahead at all.2.26 De�nitionThe LR(k)-DFA of G is (Q;N [ T; goto; q0; F ) where� Q = LR(k)-state(G)� goto(q;X) = fA! �X � � (L) j A! � �X� (L) 2 qg� q0 = fS0 ! �S (f�g)g� F = fq 2 Q j A! � � (L) 2 qgThe parsing engine itself requires very little modi�ation.parse(stak ; w)= let q = top(stak) inWfshift(A; pop(j�j; stak ); w) j A! � � (L) 2 q; wjk 2 Lg_ Wfshift(a; stak ; w0) j w = aw0; A! � � a� (L) 2 q; wjk 2 �rstk(a�L)g_ w = � ^ S0 ! S � (f�g) 2 qshift(X; stak ; w)= let q = top(stak) inparse(push(goto(q;X); stak); w)The following on�its are possible (and lead to nondeterminism) in suh aparser:



44 CHAPTER 2. SYNTAX ANALYSIS1. State q has a redue-redue on�it if it ontains two di�erent redue itemsA! � � (L) and B ! � � (M) suh that L \M 6= ;.2. State q has a shift-redue on�it if it ontains a redue item A! � � (L)and a shift item B ! � � a (M) on a terminal symbol a suh that L \�rstk(a M) 6= ;.The LR(k)-DFA does not ontain reahable states that exhibit one of the on�itsif and only if the grammar is LR(k).2.3.6 Simple LookaheadPure LR parsers for realisti languages often lead to prohibitively big state au-tomatons [Cha87, ASU86℄, and thus to impratially big parsers. Fortunately, mostrealisti formal languages are already amenable to treatment by SLR or LALRparsers whih introdue lookahead into essentially LR(0) parsers.The SLR(k) parser orresponding to an LR(0) parser [DeR71℄ with states q(0)0 ; : : : ; q(0)nhas states losures q0; : : : ; qn. In ontrast to the LR(k) parser, the SLR(k) automa-ton has the following states:qi := fA! � � � (�) j A! � � � 2 q(0)i ; � 2 followk(A)gAnalogously, the predit items are the same as in the LR(0) ase, only with addedlookahead:predit(qi) := fA! � � � (�) j A! � � � 2 predit(0)(q(0)i ); � 2 followk(A)gThe state transition goto is also just a variant the LR(0) ase here alled goto(0):goto(qi; X) := qj for q(0)j = goto(0)(q(0)i ; X)The parsing engine for an SLR(k) parser is idential to the one for the LR(k) parser.The only di�erene is in the omputation of the lookahead sets. The e�ets of usingSLR(k) instead of LR(k) are as expeted: generation time and size derease, oftendramatially for realisti grammars.11 ExampleThe grammar for arithmeti expressions is an SLR(1) grammar. To see this, wereview the unsuitable states of its LR-DFA and �nd that all on�its an be resolvedby adding SLR(1) lookahead sets:fT ! E�; E ! E � �FgfT ! T+E�; E ! E � �FgfS0 ! T �; T ! T �+EgAording to SLR(1), the lookahead sets for the redue items in question are thefollow1 sets of T and S0. Examination of the grammar yields thatfollow1(T ) = f�; );+gfollow1(S0) = f�gIn the �rst and seond state, the on�it is resolved beause the set follow1(T ) doesnot ontain the single symbol * on whih the state an shift. In the third state, theon�it is also resolved beause follow1(S0) does not ontain +. 2



2.3. BOTTOM-UP PARSING 452.3.7 LALR Lookahead ComputationThe LALR method uses a more preise method of omputing the lookahead, butalso works by deorating an LR(0) parser [DeR69℄. Thus, the same methodology aswith the SLR ase is appliable, merely replaing followk with the (more involved)LALR lookahead funtion. Unfortunately, all e�ient methods of omputing LALRlookahead sets require aess to the entire LR(0) automaton in advane [DP82,PCC85, Ive86, PC87, Ive87b, Ive87a℄.Here is the de�nition for the LALR(1) lookahead of an LR(0)-item. The mainnovelty here is that the lookahead depends on the state of the automaton, too.
2.27 De�nitionLet (Q;N [ T; goto; q0; F ) be the LR-DFA for a start-separated grammar G. Letfurther q 2 Q and I = A! � � � 2 q. The LALR(1) lookahead of I in q isLA1(q; A! � � �) = fwj1 j S �)r Aw; q = goto�(q0; �)gThe main interest is, of ourse, in the lookahead for the redue items, that is, inLA1(q; A ! ��), but the general de�nition makes it easier to �nd an obviouslyomputable de�nition for the lookahead sets.This de�nition involves a quanti�ation over all derivations, whih makes itpretty hard to implement. Following the alulation in Wilhelm's textbook [WM92℄,it an be simpli�ed as follows.The �rst observation is that the lookahead for an item with the dot in the middlean be expressed in terms of lookaheads for predit items, that is, items with the dotat the left end of their right hand side. This transformation exploits the fatoring ofgoto� with respet to its input word, that is, goto�(q0; �) = goto�(goto�(q0; ); �).LA1(q; A! � � �)= fwj1 j S �)r Aw; q = goto�(q0; �)g= fwj1 j S �)r Aw; q0 = goto�(q0; ); q = goto�(q0; �)g= Sq=goto�(q0;�) LA1(q0; A! ���)The goal is now to express the lookahead sets of predit items in terms of looka-head sets of other predit items, thus giving raise to a system of equations onlookahead sets. We write LA1(q; A) = LA1(q; A! ��), notiing that the lookaheadset is independent of �.A predit item an either be the start item S0 ! �S, in whih ase the lookaheadset is f�g beause the input word should be exhausted after something has beenderived from S, or the item A ! �� is in q due to the losure operation. In theseond ase, it must have been added by the predit operation so that the state qmust ontain one or more items of the form B ! � � A. These two ases give rise



46 CHAPTER 2. SYNTAX ANALYSISto the following equations:LA1(q0; S0) = fwj1 j S0 �)r S0w; q = goto�(q0; �)gbeause  = �, w = �, and q = q0= f�gLA1(q; A) = f(uv)j1 j S0 �)r �Auv; q = goto�(q0; �)g= f(uv)j1 j S0 �)r Bv )r �A�v �)r �Auv;q = goto�(q0; �); B ! � �A� 2 qg= f(uv)j1 j S0 �)r Bv )r �A�v;u 2 �rst1(�); q = goto�(q0; �); B ! � � A� 2 qg= f(uv)j1 j S0 �)r Bv;u 2 �rst1(�); v 2 LA1(q0; B);q = goto�(q0; �); q0 = goto�(q0; ); B ! � � A� 2 qg= SB!��A�2qSq=goto�(q0;�)(�rst1(�)LA1(q0; B))j1This system of equations has (at most) jQj � jN j variables and it an be solvedby �xpoint iteration. More lever, essentially linear-time algorithms exist and aredoumented in the literature.A solution of the system of equations for LA1 yields the desired result, thelookahead sets for the redue items, as follows:LA1(q; A! ��) = [goto�(q0;�)=q LA1(q0; A)2.4 Output of a ParserA parser whih just outputs yes or no is not of muh use in a ompiler. Hene, weaugment the parsing formalism with a notion of syntax representation whih anserve as parser output.2.28 De�nition (Syntax representation)Let T be the terminal alphabet. A parser parse : T � ! D generates a syntaxrepresentation from a set D if there is a funtion unparse : D ! T � suh thatparse Æ unparse = idD. 2The main intention of the de�nition is to provide the minimum requirements forD. If the parser is based on ontext-free grammars, then the natural hoie for Dwould be the set of derivation trees of the grammar.In fat, both styles of parsers an onstrut a derivation tree during parsing.The idea is onsider a prodution A0 ! w0A1w1 : : : Anwn as a tree onstrutorfuntion that takes n derivation trees for nonterminals A1; : : : ; An and returns aderivation tree for nonterminal A0.A reursive-desent parser needs no additional struture to do so. The funtion[A0℄, for parsing strings derived from A0, just applies the appropriate onstrutor tothe derivation trees obtained from the alls to [A1℄; : : : ; [An℄ and returns he resultingtree along with the rest of the input.A shift-redue parser would be able to build the derivation tree on its stak. Forlarity, however, we extend the generi shift-redue parser with an output stak.The idea is then to apply the tree onstrutor funtion for A0 ! w0A1w1 : : : Anwnto the topmost n entries of the output stak and replae them with the resultingtree.



2.4. OUTPUT OF A PARSER 4712 ExampleLet's revisit Example 7 with output generation. A on�guration is now a triple � w � � where � is a stak of derivation trees with entries separated by ::. Wewrite [A ! �℄ for the tree onstrutor of A ! �. We put the argument trees inparentheses, but omit them if there are none.+ � 2+ x � x � shift2+ � +x � x � redue F ! 2F+ � +x � x � [F ! 2℄ redue E ! FE+ � +x � x � [T ! E℄([F ! 2℄) redue T ! ET+ � +x � x � [T ! E℄([F ! 2℄) shiftT++ � x � x � [T ! E℄([F ! 2℄) shiftT+x+ � �x � [T ! E℄([F ! 2℄) redue F ! xT+F+ � �x � [T ! E℄([F ! 2℄) :: [F ! x℄ redue F ! ET+E+ � �x � [T ! E℄([F ! 2℄) :: [E ! F ℄([F ! x℄) shiftT+E�+ � x � [T ! E℄([F ! 2℄) :: [E ! F ℄([F ! x℄) shiftT+E�x+ � � [T ! E℄([F ! 2℄) :: [E ! F ℄([F ! x℄) redue F ! xT+E�F+ � � [T ! E℄([F ! 2℄) :: [E ! F ℄([F ! x℄) :: [F ! x℄ redue E ! E�FT+E+ � � [T ! E℄([F ! 2℄) :: [E ! E�F ℄([E ! F ℄([F ! x℄); [F ! x℄) redue T ! T+ET+ � � [T ! T+E℄([T ! E℄([F ! 2℄); [E ! E�F ℄([E ! F ℄([F ! x℄); [F ! x℄)) suessThe example shows learly that derivation trees may ontain information whihis not relevant for the meaning of the phrase. In this ase, the hain produtionsE ! F and T ! E arry no meaning but they are luttering the derivation tree. Infat, the nonterminals E and T are only present to model operator preedenes. Inother grammars, there may be nonterminals and produtions to make the grammarpalatable to the hosen parsing tehnology, as in the expression grammar trans-formed for use with an LL(1) parser.However, the de�nition of a syntax representation leaves the freedom to hoose amore abstrat representation that elides extra nonterminals and produtions. Suha representation, whih only arries semantially relevant information, is alled anabstrat syntax representation or abstrat syntax tree (AST).For onveniene, abstrat syntax is often de�ned by a grammar. This grammaris usually unsuitable for parsing (in fat, it is often ambiguous), but that is quite okbeause the interest is only in the derivation trees of the grammar. In a languagelike OCaml, abstrat syntax �ts exatly with algebrai datatypes.13 ExampleHere is a grammar suitable for de�ning the abstrat syntax of arithmeti expressions:A! 2 j x j A+A j A�AThe intended derivation tree for 2+x*x isPSfrag replaements A! A+AA! A�AA! 2 A! xA! xAn OCaml type de�nition expresses the same struture more onisely and providesa notation for the trees at the same time.type Expr = Two | Ex | Add of Expr * Expr | Mul of Expr * ExprAdd (Two, Mul (Ex, Ex))This expression provides a desription of the input string 2+x*x whih aptures allingredients for de�ning its meaning preisely. Moreover, OCaml provides notationand tehniques for de�ning funtions to further proess these trees.


