Compiler Construction 2016/2017
Intro

Peter Thiemann

October 21, 2016

0 Introduction

What is a compiler?

@ a program that reads an executable program in one
language and translates it into an executable program in
another language

@ we expect the program produced by the compiler to exhibit
the same behavior as the original

What is an interpreter?

A program that reads an executable program and its input;
produces the results of running that program.

@ This course deals mainly with compilers
@ Many of the same issues arise in interpreters

Experience

What qualities are important in a compiler?
@ Correct code
© Output runs fast
© Compiler runs fast
© Compile time proportional to program size
©@ Support for separate compilation
© Good diagnostics for syntax errors
@ Works well with the debugger
© Good diagnostics for flow anomalies
© Cross language calls
@ Consistent, predictable optimization

Abstract View

source code —--> [compiler] —--> machine code

v
error messages

Traditional Two-Pass Compiler

source —-—> [front end] --> IR —--> [back end] -—-> machine code

| |
v v
errors

Implications

@ intermediate representation (IR)

@ front end maps legal code into IR

@ back end maps IR onto target machine
@ simplify retargeting

@ allows multiple front ends

@ multiple passes = better code

Front End

source —--> [scanner] —--> tokens —--> [parser] —--> IR

Responsibilities

@ recognize legal procedure

@ report errors

@ produce IR

@ preliminary storage map

@ shape the code for the back end

Scanner

source —-> [scanner] —--> tokens
Scanner:
@ partitions input into lexemes — the basic unit of syntax

@ maps lexemes into tokens
@ x = x + 1; becomes

<id, x> <sym,=> <id, x> <sym,+> <num, 1> <sym, ;>

@ typical tokens: number, id, +, -, *, /, do, end
@ eliminates white space (tabs, blanks, comments)
@ a key issue is speed

Front end/Parser

tokens —-—-> [parser] —--> IR

Parser

@ recognize context-free syntax

@ guide context-sensitive analysis

@ construct IR(s)

@ produce meaningful error messages
@ attempt error correction

Parser generators

Front End/Context-Free Syntax

Context-free syntax is specified with a context-free grammar,
often in Backus-Naur form (BNF).

<sheep noise> ::= baa
| baa <sheep noise>

The noises sheep make under normal circumstances
@ <sheep noise> variable, nonterminal symbol
@ ::=and | metasymbols

@ everything else: terminal symbols that appear in the input
@ convention: first variable is the goal or start variable

Syntax/Expressions

Context free syntax can be put to better use

1 <goal> ::= <expr>

2 <expr> ::= <expr> <op> <term>
3 | <term>

4 <term> ::= number

5 | id

6 <op> ::= +

7 (I

Simple expressions with addition and subtraction over tokens id
and number

Derive an expression

Starting from the goal variable, repeatedly replace a variable by
its right-hand side until no variables are left.
Ex:x + 2 - vy

Front End/IR

The result of parsing can be represented by a derivation tree.

Front End/AST

A derivation tree contains information that is useless for
compiling. Hence, use abstract syntax trees (AST) as IR.

Back End

IR ——> [instruction selection]
—-—> [register allocation] —--> machine code

Responsibilities

@ translate IR into target machine code

@ choose instructions for each IR operation

@ decide what to keep in registers at each point
@ ensure conformance with system interfaces

Back End/Instruction Selection

IR ——> [instruction selection] —--> IR’/

Instruction selection

@ produce compact, fast code

@ use available addressing modes
@ pattern matching problem

e ad hoc techniques

e tree pattern matching

e string pattern matching

e dynamic programming

Back End/Register Allocation

IR’ ——> [register allocation] —--> machine code

Register Allocation

@ have value in a register when used
@ limited resources

@ changes instruction choices

@ can move loads and stores

@ optimal allocation is difficult

Further Passes

IR ——> [transform] --> IR

Code Improvement

@ analyzes and changes IR

@ goal is to reduce runtime, space usage, energy usage, . ..
@ must preserve values

@ sometimes several passes, in certain order, run repeatedly

	Introduction

