Compiler Construction 2016/2017 Lexical Analysis

Peter Thiemann

November 2, 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

source --> [scanner] --> tokens

Scanner:

- partitions input into lexemes the basic unit of syntax
- maps lexemes into tokens

<id, x> <sym,=> <id, x> <sym,+> <num, 1> <sym,;>

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- typical tokens: number, id, +, -, *, /, do, end
- eliminates white space (tabs, blanks, comments)
- a key issue is speed

- Iexemes
- tokens
- mapping from lexemes to tokens
- lexemes should be recognized efficiently
- \Rightarrow specify lexemes using regular expressions
- ⇒ compile regular expressions to deterministic finite automata
- \Rightarrow recognize lexemes in linear time (i.e., as fast as possible)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Let Σ be a fixed alphabet (in practice Unicode). Define the set of regular expressions (over Σ).

- ε is a regular expression.
- **2** *a* is a regular expression, if $a \in \Sigma$.
- If *r* and *s* are regular expressions, then
 - (r|s) is a regular expression (alternation).
 - (*rs*) is a regular expression (concatenation).
 - (*r**) is a regular expression (closure).

If we adopt a precedence for operators, the extra parentheses can go away. We assume closure, then concatenation, then alternation as the order of precedence. We write N(r) if a RE *r* recognizes the empty word.

$$egin{aligned} & \mathsf{N}(arepsilon) = \mathit{true} \ & \mathsf{N}(a) = \mathit{false} \ & \mathsf{N}(r|s) = \mathsf{N}(r) \lor \mathsf{N}(s) \ & \mathsf{N}(rs) = \mathsf{N}(r) \land \mathsf{N}(s) \ & \mathsf{N}(r*) = \mathit{true} \end{aligned}$$

For $a \in \Sigma$, RE *r* recognizes the word *aw* if there is an RE in $\partial_a(r)$ that recognizes word *w*.

$$\begin{array}{l} \partial_{a}(\varepsilon) = \emptyset \\ \partial_{a}(a) = \{\varepsilon\} \\ \partial_{a}(b) = \emptyset \quad a \neq b \in \Sigma \\ \partial_{a}(r|s) = \partial_{a}(r) \cup \partial_{a}(s) \\ \partial_{a}(rs) = \partial_{a}(r) \cdot s \cup (\text{if } N(r) \text{ then } \partial_{a}(s) \text{ else } \emptyset) \\ \partial_{a}(r*) = \partial_{a}(r) \cdot (r*) \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ∂_a is transition function of a NFA
- the powerset construction yields a DFA for r
- set of states Q

•
$$\{r\} \in Q$$

• for all $q \in Q$, $s \in q$, and $a \in \Sigma$: $\bigcup \{ \partial_a(s) \mid s \in q \} \in Q$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

•
$$\delta(q, a) = \bigcup \{\partial_a(s) \mid s \in q\}$$

initial state {r}

 $Q = \{0 \mid (1 \mid 2) \mid (0 \mid 1 \mid 2) \star, eps, (0 \mid 1 \mid 2) \star, \emptyset\}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- Step 1 and 2 are easy to implement
- Optimized version of this approach is used in professional regexp matchers
- Is equivalent to a nondeterministic finite automaton
- Can be compiled to a deterministic automaton that runs in linear time (this is done by scanner generators like lex)
- Generators offer further extensions of RE for convenience: character classes, repetitions r{m, n}, context r/s

(日) (日) (日) (日) (日) (日) (日)

White space

[\t][\t]*

Keywords and operators

if

then

*

Comments (approximate)

 $/ \setminus \star [\ ^ \star \] \star \setminus \star /$

◆□▼ ▲□▼ ▲目▼ ▲目▼ ▲□▼

Identifiers

Numbers

0 | [1-9] [0-9] * (0 | [1-9] [0-9] *)?.[0-9] *

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- A scanner tries to match all specified lexeme kinds at once
- \Rightarrow it run several automata in parallel
- Problem: ambiguous matching
 - Keyword: do
 - Identifier: door
- Approach: <u>Principle of the longest match</u> choose the longest input accepted by one of the automata

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• In this example: return <id, door>

- Suppose there are $n \ge 1$ token classes.
- Class *i* is recognized by a DFA with states Q^i , initial state q_0^i , transition function δ^i , and accepting states F^i .

(日) (日) (日) (日) (日) (日) (日)

- The state of the scanner is a vector $ec{q} \in Q^1 imes \cdots imes Q^n$
- Input is available in array in from position p

 $lc \leftarrow 0$ $lp \leftarrow p$ $\vec{q} \leftarrow \vec{q_0}$ while(true) $a \leftarrow in[p++]$ $\vec{q} \leftarrow \vec{\delta}(\vec{q}, a)$ $c \leftarrow \min\{i \mid q^i \in F^i\}$ if c > 0then $lc \leftarrow c$; $lp \leftarrow p$ else if \vec{q} is a sink state then $p \leftarrow lp$; return lc

last accepted class: none position after last lexeme initial state

get character and advance apply all transitions in parallel find matches if there is a match ... save class and position

Optimization

- All characters in a character class behave the same
- \Rightarrow Map character to its class before applying the transition
- ⇒ Table char_class

	a-z	A-Z	0-9	other
value	letter	letter	digit	other

- Transition maps state and character class to next state
- ⇒ Table next_state

class	0	1	2	3
letter	1	1		_
digit	3	1	—	—
other	3	2	—	

- Table final_state
- Change table ⇔ change language

Language features that can cause problems

PL/I has no reserved words

if then then then = else; else else = then;

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

FORTRAN and Algol68 ignore blanks

do 10 i = 1,25do 10 i = 1.25

String constants

special characters in strings

Finite closures

- some languages limit identifier lengths
- adds states to count length
- FORTRAN 66: 6 characters