Compiler Construction 2016/2017 Lexical Analysis

Peter Thiemann

November 2, 2016

Outline

(1) Lexical Analysis

Lexical Analysis

source --> [scanner] --> tokens

Scanner:

- partitions input into lexemes - the basic unit of syntax
- maps lexemes into tokens
- $\mathrm{x}=\mathrm{x}+1$; becomes
<id, x> <sym, => <id, x> <sym,+> <num, 1> <sym,;>
- typical tokens: number, id, +, -, ${ }^{*}, /$, do, end
- eliminates white space (tabs, blanks, comments)
- a key issue is speed

Specification of a scanner

- lexemes
- tokens
- mapping from lexemes to tokens
- lexemes should be recognized efficiently
\Rightarrow specify lexemes using regular expressions
\Rightarrow compile regular expressions to deterministic finite automata
\Rightarrow recognize lexemes in linear time (i.e., as fast as possible)

Regular expressions

Let Σ be a fixed alphabet (in practice Unicode).
Define the set of regular expressions (over Σ).
(1) ε is a regular expression.
(2) a is a regular expression, if $a \in \Sigma$.
(3) If r and s are regular expressions, then

- $(r \mid s)$ is a regular expression (alternation).
- ($r s$) is a regular expression (concatenation).
- ($r *$) is a regular expression (closure).

If we adopt a precedence for operators, the extra parentheses can go away. We assume closure, then concatenation, then alternation as the order of precedence.

Language recognized by RE/Step 1

We write $N(r)$ if a RE r recognizes the empty word.

$$
\begin{aligned}
N(\varepsilon) & =\text { true } \\
N(a) & =\text { false } \\
N(r \mid s) & =N(r) \vee N(s) \\
N(r s) & =N(r) \wedge N(s) \\
N(r *) & =\text { true }
\end{aligned}
$$

Language recognized by RE/Step 2

For $a \in \Sigma$, RE r recognizes the word aw if there is an RE in $\partial_{a}(r)$ that recognizes word w.

$$
\begin{aligned}
\partial_{a}(\varepsilon) & =\emptyset \\
\partial_{a}(a) & =\{\varepsilon\} \\
\partial_{a}(b) & =\emptyset \quad a \neq b \in \Sigma \\
\partial_{a}(r \mid s) & =\partial_{a}(r) \cup \partial_{a}(s) \\
\partial_{a}(r s) & =\partial_{a}(r) \cdot s \cup\left(\text { if } N(r) \text { then } \partial_{a}(s) \text { else } \emptyset\right) \\
\partial_{a}(r *) & =\partial_{a}(r) \cdot(r *)
\end{aligned}
$$

Construction of DFA

- ∂_{a} is transition function of a NFA
- the powerset construction yields a DFA for r
- set of states Q
- $\{r\} \in Q$
- for all $q \in Q, s \in q$, and $a \in \Sigma: \bigcup\left\{\partial_{a}(s) \mid s \in q\right\} \in Q$
- $\delta(q, a)=\bigcup\left\{\partial_{a}(s) \mid s \in q\right\}$
- initial state $\{r\}$

Example: Numbers

$$
\begin{aligned}
& 0 \mid(1 \mid 2)(0|1| 2) \star \\
& -0->\quad \text { eps } \\
& -1,2->(0|1| 2) \star \\
& -0,1,2->(0|1| 2) \star \\
& \quad Q=\{0 \mid(1 \mid 2)(0|1| 2) \star, \text { eps, }(0|1| 2) \star, \emptyset\}
\end{aligned}
$$

Language recognized by RE/Summary

- Step 1 and 2 are easy to implement
- Optimized version of this approach is used in professional regexp matchers
- Is equivalent to a nondeterministic finite automaton
- Can be compiled to a deterministic automaton that runs in linear time (this is done by scanner generators like lex)
- Generators offer further extensions of RE for convenience: character classes, repetitions $r\{m, n\}$, context r / s

Examples

White space

[\t][\t]*
Keywords and operators
if
then
\star
Comments (approximate)

$$
/ \backslash \star[\wedge \star] \star \backslash \star /
$$

Examples/2

Identifiers

$$
[a-z A-Z]\left[a-z A-Z 0-9 _\right] *
$$

Numbers

$$
\begin{aligned}
& 0 \mid[1-9][0-9] * \\
& (0 \mid[1-9][0-9] *) ? .[0-9] *
\end{aligned}
$$

Disambiguation and the longest match

- A scanner tries to match all specified lexeme kinds at once
\Rightarrow it run several automata in parallel
- Problem: ambiguous matching
- Keyword: do
- Identifier: door
- Approach: Principle of the longest match choose the longest input accepted by one of the automata
- In this example: return <id, door>

Scanner implementation

- Suppose there are $n \geq 1$ token classes.
- Class i is recognized by a DFA with states Q^{i}, initial state q_{0}^{i}, transition function δ^{i}, and accepting states F^{i}.
- The state of the scanner is a vector $\vec{q} \in Q^{1} \times \cdots \times Q^{n}$
- Input is available in array in from position p

Scanner implementation

$$
\begin{aligned}
& I c \leftarrow 0 \\
& l p \leftarrow p \\
& \vec{q} \leftarrow \overrightarrow{q_{0}} \\
& \quad \text { while(true) }
\end{aligned}
$$

$a \leftarrow i n[p++]$
$\vec{q} \leftarrow \vec{\delta}(\vec{q}, a)$
$c \leftarrow \min \left\{i \mid q^{i} \in F^{i}\right\}$
if $c>0$
then $\mathrm{Ic} \leftarrow c$; $l p \leftarrow p$
else if \vec{q} is a sink state
then $p \leftarrow l p$; return lc
last accepted class: none position after last lexeme initial state
get character and advance
apply all transitions in parallel
find matches
if there is a match ...
save class and position

Optimization

- All characters in a character class behave the same
\Rightarrow Map character to its class before applying the transition
\Rightarrow Table char_class

	a-z	A-Z	$0-9$	other
value	letter	letter	digit	other

- Transition maps state and character class to next state
\Rightarrow Table next_state

class	0	1	2	3
letter	1	1	-	-
digit	3	1	-	-
other	3	2	-	-

- Table final_state
- Change table \Leftrightarrow change language

Language features that can cause problems

PL/I has no reserved words

if then then then = else; else else = then;
FORTRAN and Algol68 ignore blanks

```
do 10 i = 1,25
do 10 i = 1.25
```


String constants

special characters in strings

Finite closures

- some languages limit identifier lengths
- adds states to count length
- FORTRAN 66: 6 characters

