Compiler Construction 2016/2017 Syntax Analysis

Peter Thiemann

November 2, 2016

Outline

(1) Syntax Analysis

- Recursive top-down parsing
- Nonrecursive top-down parsing
- Bottom-up parsing

Syntax Analysis

tokens --> [parser] --> IR

Parser

- recognize context-free syntax
- guide context-sensitive analysis
- construct IR(s)
- produce meaningful error messages
- attempt error correction

Syntax/Expressions

An expression grammar in BNF

```
1 <goal> ::= <expr>
2 <expr> ::= <expr> <op> <expr>
3 | num
4
    | id
5 <op> : := +
6
7
8
```

Simple expressions with numbers and identifiers

Derivation

- To derive a word/sentence from a BNF, we start with the goal variable
- In each derivation step, we replace a variable with the right hand side of one of its rules
- leftmost derivation: choose the leftmost variable in each step
- rightmost derivation: choose the rightmost variable in each step
- parsing is the discovery of a derivation: given a sentence, find a derivation from the goal variable that produces this sentence

Derivation, formally

- We write α, β, γ for (possibly empty) strings of terminal symbols and variables
- If N is a variable and $N::=\beta$ is a rule for N, then we write $\alpha N \gamma \Rightarrow \alpha \beta \gamma$ for a single derivation step
- We write $\alpha \Rightarrow^{*} \beta$ if there is a (possibly empty) sequence of derivation steps from α to β
- We write $\alpha \Rightarrow^{+} \beta$ if there is a non-empty sequence of derivation steps from α to β

Example: $x+2$ * y

- Compare leftmost derivation with rightmost derivation

Grammar with built-in precedence

G-ETF

- Enforces precedence

Example: $x+2$ * y with precedence

- Only one possible derivation

Ambiguity

If a grammar has more than one derivation for a single sentence, then it is ambiguous Example:

```
<stmt> ::= if <expr> then <stmt>
    | if <expr> then <stmt> else <stmt>
    | other stmts
```

Consider deriving the sentence:
if $E 1$ then if $E 2$ then $S 1$ else $S 2$
It has two derivations.

Ambiguity fixed

May be able to eliminate ambiguities by rearranging the grammar:

```
<stmt> ::= <matched>
    | <unmatched>
<matched> ::= if <expr> then <matched> else <matched>
    | other stmts
<unmatched> ::= if <expr> then <stmt>
    | if <expr> then <matched> else <unmatched>
```

This grammar generates the same language as the ambiguous grammar, but applies the common sense rule: match each else with the closest unmatched then Generally accepted resolution of this ambiguity

Two approaches to parsing

Top-down parsing

- start at the root of the derivation tree
- extend derivation by "guessing" the next production
- may require backtracking

Bottom-up parsing

- start at the leaves of the derivation tree
- combine tree fragments to larger fragments
- bookkeeping of successful fragments (by finite automaton)

Outline

(1) Syntax Analysis

- Recursive top-down parsing
- Nonrecursive top-down parsing
- Bottom-up parsing

Top-down parsing / Recursive descent

Approach

- Define a procedure for each syntactic variable
- The procedure for N
- consumes token sequences derivable from N
- has an alternative path for each rule for N
- The code for a rule $N::=\alpha$ consists of a code fragment for each symbol in α
- consider the symbols in α from left to right
- a terminal symbol consumes the symbol
- a variable N^{\prime} calls the procedure for N^{\prime}

Recursive descent for G-ETF

```
// <factor> ::= NUM | ID
IR factor() {
    if( cur_token == NUM ) {
        next_token(); return IR_NUM;
    }
    if( cur_token == ID ) {
        next_token(); return IR_ID;
    }
    syntax_error("NUM or ID expected");
}
```


Recursive descent for G-ETF/2

```
/* <term> ::= <term> * <factor>
    | <term> / <factor>
    | <factor>
**/
IR term() {
    if( ??? ) {
        term(); check(MUL); factor();
        return IR_MUL(...);
    }
    if( ??? ) {
        term(); check(DIV); factor();
        return IR_DIV(...);
    }
    return factor();
}
```


Trouble with recursive descent / top-down parsing

Alternatives

- How do we decide on one of the productions?
- Would it help to look at the next token?

Trouble with recursive descent / top-down parsing

Alternatives

- How do we decide on one of the productions?
- Would it help to look at the next token?

Left recursion

- If we choose the first or second rule, we end up in an infinite recursion without consuming input.

Fact: Top-down parsers cannot deal with left recursion

- A variable N in a BNF is left recursive, if there is a derivation such that $N \Rightarrow^{+} N \alpha$, where α is an arbitrary string of variables and terminals.

Fact: Top-down parsers cannot deal with left recursion

- A variable N in a BNF is left recursive, if there is a derivation such that $N \Rightarrow^{+} N \alpha$, where α is an arbitrary string of variables and terminals.
- Fact: if a BNF has a left recursive variable, then top-down parsing for this BNF may not terminate.

Fact: Top-down parsers cannot deal with left recursion

- A variable N in a BNF is left recursive, if there is a derivation such that $N \Rightarrow^{+} N \alpha$, where α is an arbitrary string of variables and terminals.
- Fact: if a BNF has a left recursive variable, then top-down parsing for this BNF may not terminate.
- Cure: remove left recursion by transforming the BNF

Elimination of direct left recursion

- Suppose G has a left recursive variable A with rules

$$
A \rightarrow A \alpha_{1}|\cdots| A \alpha_{n}\left|\beta_{1}\right| \cdots \mid \beta_{m}
$$

where none of the β_{i} starts with A and all $\alpha_{j} \neq \varepsilon$

- Add a new variable A^{\prime}
- Remove all productions for A
- Add new productions

$$
\begin{aligned}
A & \rightarrow \beta_{1} A^{\prime}|\cdots| \beta_{m} A^{\prime} \\
A^{\prime} & \rightarrow \varepsilon\left|\alpha_{1} A^{\prime}\right| \cdots \mid \alpha_{n} A^{\prime}
\end{aligned}
$$

- This transformation is always possible: same language, but A no longer left recursive

Example: transforming G-ETF

Original grammar G-ETF

After elimination of left recursion

```
<goal> ::= <expr>
<expr> ::= <term> <expr'>
<expr'> ::= + <term> <expr'>
        | - <term> <expr'>
<term> ::= <factor> <term'>
<term'> ::= * <factor> <term'>
    | / <factor> <term'>
    |
<factor> ::= num
    | id
```

\rightarrow

Twist: different derivation trees

- elimination of left recursion changes the derivation trees
- consider $10-2+3$

What about alternatives?

```
/* <term'> ::= * <factor> <term'>
                        | / <factor> <term'>
**/
IR term1(IR arg1) {
    if( cur_token == MUL ) {
        next_token(); IR arg2 = factor();
        return term1(IR_MUL(arg1, arg2));
    }
    if( cur_token == DIV ) {
        next_token(); IR arg2 = factor();;
        return term1(IR_DIV(arg1, arg2));
    }
    if ( cur_token ??? ) {
        return arg1;
    }
    syntax_error ("MUL, DIV, or ??? expected");
}
```

- Solution: lookahead - what is the next token?

How do we select between several alternative rules?

- Solution: lookahead - what is the next token?
- But how do we determine lookahead symbols?

How do we select between several alternative rules?

- Solution: lookahead - what is the next token?
- But how do we determine lookahead symbols?

First symbols

For each right hand side α of a rule and $k>0$, we want to determine

$$
\operatorname{FIRS}_{k}(\alpha)=\left\{\left.w\right|_{k} \mid \alpha \Rightarrow^{*} w\right\}
$$

How do we select between several alternative rules?

- Solution: lookahead - what is the next token?
- But how do we determine lookahead symbols?

First symbols

For each right hand side α of a rule and $k>0$, we want to determine

$$
\operatorname{FIRS}_{k}(\alpha)=\left\{\left.w\right|_{k} \mid \alpha \Rightarrow^{*} w\right\}
$$

k-Cutoff of a word

$$
\left.w\right|_{k}= \begin{cases}w & |w| \leq k \\ w_{1} & w=w_{1} w_{2},\left|w_{1}\right|=k\end{cases}
$$

First symbols

Computing first symbols

$$
\begin{aligned}
\operatorname{FIRS}_{k}(\varepsilon) & =\{\varepsilon\} \\
\operatorname{FIRS}_{k}(a \alpha) & =\left\{\left.(a w)\right|_{k} \mid w \in \operatorname{FIRST}_{k}(\alpha)\right\} \\
\operatorname{FIRS}_{k}(N \alpha) & =\left\{\left.(v w)\right|_{k} \mid v \in \operatorname{FIRST}_{k}(N), w \in \operatorname{FIRST}_{k}(\alpha)\right\}
\end{aligned}
$$

First symbols

Computing first symbols

$$
\begin{aligned}
\operatorname{FIRST}_{k}(\varepsilon) & =\{\varepsilon\} \\
\operatorname{FIRST}_{k}(a \alpha) & =\left\{\left.(a w)\right|_{k} \mid w \in \operatorname{FIRST}_{k}(\alpha)\right\} \\
\operatorname{FIRS}_{k}(N \alpha) & =\left\{\left.(v w)\right|_{k} \mid v \in \operatorname{FIRS}_{k}(N), w \in \operatorname{FIRS}_{k}(\alpha)\right\}
\end{aligned}
$$

Computing first symbols for N

$$
\operatorname{FIRS}_{k}(N)=\bigcup\left\{F I R S T_{k}(\alpha) \mid N::=\alpha \text { is a rule }\right\}
$$

Example G-ETF/LR and $k=1$

```
<goal> ::= <expr>
<expr> ::= <term> <expr'>
<expr'> ::= + <term> <expr'>
        | - <term> <expr'>
<term> ::= <factor> <term'>
<term'> ::= * <factor> <term'>
    | / <factor> <term'>
<factor> ::= num
    | id
```


Example G-ETF/LR and $k=1$

```
<goal> ::= <expr>
<expr> ::= <term><expr'>
<expr'> ::= + <term> <expr'>
        | - <term> <expr'>
<term> ::= <factor> <term'>
<term'> ::= * <factor> <term'>
    | / <factor> <term'>
<factor> ::= num
    | id
```

```
\(\operatorname{FIRST}_{1}(G)=\operatorname{FIRST}_{1}(E)\)
\(\operatorname{FIRST}_{1}(E)=\operatorname{FIRST}_{1}(T) \odot \operatorname{FIRST}_{1}\left(E^{\prime}\right)\)
\(\operatorname{FIRST}_{1}\left(E^{\prime}\right)=\{+,-, \varepsilon\}\)
\(\operatorname{FIRST}_{1}(T)=\operatorname{FIRST}_{1}(F) \odot \operatorname{FIRST}_{1}\left(T^{\prime}\right)\)
    \(=\{\) num, id \(\}\)
\(\operatorname{FIRS}_{1}\left(T^{\prime}\right)=\{*, /, \varepsilon\}\)
\(\operatorname{FIRST}_{1}(F)=\{\) num, id \(\}\)
```


Example G-ETF/LR and $k=1$

```
<goal> ::= <expr>
<expr> ::= <term> <expr'>
<expr'> ::= + <term> <expr'>
        | - <term> <expr'>
<term> ::= <factor> <term'>
<term'> ::= * <factor> <term'>
    | / <factor> <term'>
<factor> ::= num
    | id
```

```
\(\operatorname{FIRST}_{1}(G)=\operatorname{FIRST}_{1}(E)\)
\(\operatorname{FIRST}_{1}(E)=\operatorname{FIRST}_{1}(T) \odot \operatorname{FIRST}_{1}\left(E^{\prime}\right)\)
    \(=\{\) num, id \(\}\)
\(\operatorname{FIRST}_{1}\left(E^{\prime}\right)=\{+,-, \varepsilon\}\)
\(\operatorname{FIRST}_{1}(T)=\operatorname{FIRST}_{1}(F) \odot \operatorname{FIRST}_{1}\left(T^{\prime}\right)\)
    \(=\{\) num, id \(\}\)
\(\operatorname{FIRS}_{1}\left(T^{\prime}\right)=\{*, /, \varepsilon\}\)
\(\operatorname{FIRST}_{1}(F)=\{\) num, id \(\}\)
```


Lookahead, 1. Attempt

- If $\boldsymbol{A}::=\alpha_{1}|\cdots| \alpha_{n}$ is the list of all rules for \boldsymbol{A}, then the first-sets of all right hand sides must be disjoint:

$$
\forall i \neq j: \operatorname{FIRS}_{1}\left(\alpha_{i}\right) \neq \operatorname{FIRST}_{1}\left(\alpha_{j}\right)
$$

- On input aw, the parser for N chooses the right hand side i with $\boldsymbol{a} \in \operatorname{FIRST}_{1}\left(\alpha_{i}\right)$
- Signal syntax error, if no such i exists.

Another example for FIRST

$$
\begin{array}{ll}
A::=B|C x| \varepsilon & \operatorname{FIRST}_{1}(A)=\operatorname{FIRST}_{1}(B) \cup F I R S T_{1}(C) \odot\{x\} \cup\{\varepsilon\} \\
B::=C \mid y A & \operatorname{FIRST}_{1}(B)=\operatorname{FIRST}_{1}(C) \cup\{y\} \\
C::=B \mid z & \operatorname{FIRST}_{1}(C)=\operatorname{FIRST}_{1}(B) \cup\{z\}
\end{array}
$$

Another example for FIRST

$$
\begin{array}{ll}
A::=B|C x| \varepsilon & \operatorname{FIRST}_{1}(A)=\operatorname{FIRST}_{1}(B) \cup \operatorname{FIRST}_{1}(C) \odot\{x\} \cup\{\varepsilon\} \\
B::=C \mid y A & \operatorname{FIRST}_{1}(B)=\operatorname{FIRST}_{1}(C) \cup\{y\} \\
C::=B \mid z & \operatorname{FIRST}_{1}(C)=\operatorname{FIRST}_{1}(B) \cup\{z\}
\end{array}
$$

Computing FIRST by fixpoint

	A	B	C
0	-	-	-
1	ε	y	z
2	y, z, ε	z, y	y, z
3	y, z, ε	z, y	y, z

no further change, fixpoint reached

Epsilon rules and FOLLOW

- What if there is a rule $A::=\varepsilon$?
- As $\operatorname{FIRST}(\varepsilon)=\varepsilon$, this rule is always applicable!

Epsilon rules and FOLLOW

- What if there is a rule $A::=\varepsilon$?
- As $\operatorname{FIRST}(\varepsilon)=\varepsilon$, this rule is always applicable!

Solution

Consider the symbols that can possibly follow A !

$$
\operatorname{FOLLOW}_{k}(A)=\left\{\left.w\right|_{k} \mid S \Rightarrow^{*} \alpha A w\right\}
$$

Computing FOLLOW

$$
\begin{gathered}
\operatorname{FOLLOW}_{k}(A)=\bigcup\left\{\operatorname{FIRST}_{k}(\beta) \odot_{k} \operatorname{FOLLOW}_{k}(B)\right. \\
\mid B::=\alpha A \beta \text { is a rule }\}
\end{gathered}
$$

We assume that the goal variable G does not appear on the right hand side of productions and that $\operatorname{FOLLOW}_{k}(G)=\{\varepsilon\}$

Example G-ETF/LR and FOLLOW 1

```
    FOLLOW (G)}={\mp@code{{\varepsilon}
<goal> ::= <expr>
<expr> ::= <term><expr'> FOLLOW ( 
<expr'> ::= + <term> <expr'>
    FOLLOW
<term'> ::= * <factor> <term'>
    | / <factor> <term'>
    |
<factor> ::= num
FOLLOW 
FOLLOW
```


Example G-ETF/LR and FOLLOW 1

```
FOLLOW \(_{1}(G)=\{\varepsilon\}\)
```

FOLLOW $_{1}(G)=\{\varepsilon\}$
$\operatorname{FOLLOW}_{1}(E)=\operatorname{FOLLOW}_{1}(G)$
$\operatorname{FOLLOW}_{1}(E)=\operatorname{FOLLOW}_{1}(G)$
$=\{\varepsilon\}$
$=\{\varepsilon\}$
$\operatorname{FOLLOW}_{1}\left(E^{\prime}\right)=\operatorname{FOLLOW}_{1}(E)$
$\operatorname{FOLLOW}_{1}\left(E^{\prime}\right)=\operatorname{FOLLOW}_{1}(E)$
$=\{\varepsilon\}$
$=\{\varepsilon\}$
$\operatorname{FOLLOW}_{1}(T)=\operatorname{FIRST}_{1}\left(E^{\prime}\right) \odot\left(\operatorname{FOLLOW}_{1}(E) \cup \operatorname{FOLLOW}_{1}\left(E^{\prime}\right)\right)$
$\operatorname{FOLLOW}_{1}(T)=\operatorname{FIRST}_{1}\left(E^{\prime}\right) \odot\left(\operatorname{FOLLOW}_{1}(E) \cup \operatorname{FOLLOW}_{1}\left(E^{\prime}\right)\right)$
$=\{+,-, \varepsilon\} \odot \operatorname{FOLLOW}_{1}\left(E^{\prime}\right)$
$=\{+,-, \varepsilon\} \odot \operatorname{FOLLOW}_{1}\left(E^{\prime}\right)$
$\operatorname{FOLLOW}_{1}\left(T^{\prime}\right)=\operatorname{FOLLOW}_{1}(T)$
$\operatorname{FOLLOW}_{1}\left(T^{\prime}\right)=\operatorname{FOLLOW}_{1}(T)$
$\operatorname{FOLLOW}_{1}(F)=\operatorname{FIRST}_{1}\left(T^{\prime}\right) \odot\left(\operatorname{FOLLOW}_{1}(T) \cup \operatorname{FOLLOW}_{1}\left(T^{\prime}\right)\right)$

```

\section*{Example G-ETF/LR and FOLLOW 1}
\[
\begin{aligned}
\operatorname{FOLLOW}_{1}(G) & =\{\varepsilon\} \\
\operatorname{FOLLOW}_{1}(E) & =\operatorname{FOLLOW}_{1}(G) \\
& =\{\varepsilon\} \\
\text { FOLLOW }_{1}\left(E^{\prime}\right) & =\operatorname{FOLLOW}_{1}(E) \\
& =\{\varepsilon\} \\
\operatorname{FOLLOW}_{1}(T) & =\operatorname{FIRST}_{1}\left(E^{\prime}\right) \odot\left(\operatorname{FOLLOW}_{1}(E) \cup \operatorname{FOLLOW}_{1}\left(E^{\prime}\right)\right) \\
& =\{+,-, \varepsilon\} \odot \operatorname{FOLLOW}_{1}\left(E^{\prime}\right) \\
& =\{+,-, \varepsilon\} \\
\operatorname{FOLLOW}_{1}\left(T^{\prime}\right) & \left.=F^{\prime}\right) \\
& =\{+,-, \varepsilon\} \\
\operatorname{FOLLOW}_{1}(F) & =F I R S T_{1}\left(T^{\prime}\right) \odot\left(F^{\prime}\right) \\
& =\{*, /, \varepsilon\} \odot\{+,-, \varepsilon\} \\
& =\{*, /,+,-, \varepsilon\}
\end{aligned}
\]

\section*{Lookahead, 2. Attempt}

\section*{Lookahead set for a rule}
\[
\operatorname{LA}_{k}(A::=\alpha)=\operatorname{FIRST}_{k}(\alpha) \odot_{k} \operatorname{FOLLOW}_{k}(A)
\]

\section*{Definition LL(k) grammar}

A BNF is an \(\mathrm{LL}(\mathrm{k})\) grammar, if for each variable \(A\) its rule set \(\boldsymbol{A}::=\alpha_{1}|\cdots| \alpha_{n}\) fulfills
\[
\forall i \neq j: L A_{k}\left(A::=\alpha_{i}\right) \cap L A_{k}\left(A::=\alpha_{j}\right)=\emptyset
\]

\section*{LL(k) Parsing}

On input \(w\), the parser for \(A\) chooses the unique right hand side \(\alpha_{i}\) such that \(\left.w\right|_{k} \in L A_{k}\left(A::=\alpha_{i}\right)\) and signals a syntax error if no such \(i\) exists.

\section*{Outline}
(1) Syntax Analysis
- Recursive top-down parsing
- Nonrecursive top-down parsing
- Bottom-up parsing

\section*{Nonrecursive top-down parsing}
- A top-down parser may be implemented without recursion using a pushdown automaton
- The pushdown keeps track of the terminals and variables that still need to be matched

\section*{The pushdown automaton}
- \(Q=\{q\}\) a single state, also serves as initial state
- \(\Sigma\) is the input alphabet
- \(\Gamma=\Sigma \cup V A R\), the set of terminals and variables, is the pushdown alphabet
- \(Z_{0}=G \in V A R\), the pushdown bottom symbol is the goal variable
- \(\delta\) is defined by
- \(\delta(q, \varepsilon, A) \ni(q, \alpha)\) if \(A::=\alpha\) is a rule
- \(\delta(q, a, a)=(q, \varepsilon)\)
- In the PDA, the choice of the rule is nondeterministic, in practice we disambiguate using \(\mathrm{LL}(\mathrm{k})\) grammars with lookahead

\section*{Nonrecursive top-down parser}

\section*{with parse table \(M\)}
```

push EOF
push Start_Symbol
token }\leftarrow next_token(
repeat
X \leftarrow Stack[tos]
if X is a terminal or EOF then
if X = token then
pop X
token }\leftarrow\mathrm{ next_token()
else error()
else /* X is a variable */
if M[X,token] = X ::= Y1Y2 ... Yk then
pop X
push Yk,...,Y2,Y1
else error()
until X = EOF

```

\section*{Parse table}

The parse table \(M\) maps a variable and a lookahead symbol (from the input) to a production (number)
```

1<<goal>

```
\begin{tabular}{|c||c|c|c|c|c|c|c|}
\hline & id & num & + & - & \(*\) & \(/\) & \(\$\) \\
\hline\(G\) & 1 & 1 & & & & & \\
\hline\(E\) & 2 & 2 & & & & & \\
\hline\(E^{\prime}\) & & & 3 & 4 & & & 5 \\
\hline\(T\) & 6 & 6 & & & & & \\
\hline\(T^{\prime}\) & & & 9 & 9 & 7 & 8 & 9 \\
\hline\(F\) & 10 & 11 & & & & & \\
\hline
\end{tabular}

\section*{LL(1) parse table construction}

Input: a BNF
Output: parsing table \(M\)
Algorithm:
(1) For all rules \(p\) of the form \(A::=\alpha\)
(1) For each \(a \in \operatorname{FIRST}_{1}(\alpha)\) : add \(p\) to \(M[A, a]\)
(2) If \(\varepsilon \in \operatorname{FIRST}_{1}(\alpha)\)
(1) For each \(b \in \operatorname{FOLLOW}_{1}(A)\) : add \(p\) to \(M[A, b]\)
(2) If \(\varepsilon \in \operatorname{FOLLOW}_{1}(A)\) : add \(p\) to \(M[A, \varepsilon]\)
(2) Set each undefined entry of \(M\) to error

Check: The BNF is \(\operatorname{LL}(1)\) if \(|M[A, a]| \leq 1\) for all \(A\) and \(a\).

\section*{A BNF that is not LL(1)}
```

<stmt> ::= if <expr> then <stmt>
| if <expr> then <stmt> else <stmt>

```

Both rules have the same FIRST sets because their right hand sides have the same prefix!

\section*{A BNF that is not LL(1)}
```

<stmt> ::= if <expr> then <stmt>
| if <expr> then <stmt> else <stmt>

```

Both rules have the same FIRST sets because their right hand sides have the same prefix!

\section*{Left factorization}
- Coalesce to a new rule
- Introduce new variable that derives the different suffixes
\[
\begin{aligned}
& \text { <stmt> }::=\text { if <expr> then <stmt> <stmt'> } \\
& \text { <stmt'> }::=\text { else <stmt> } \\
& \text { | /*empty*/ }
\end{aligned}
\]

\section*{Still not LL(1) . . .}
```

<stmt> ::= if <expr> then <stmt> <stmt'>
<stmt'> ::= else <stmt>
| /*empty*/

```
\(\operatorname{FIRST}_{1}(S)=\{\mathrm{if}\}\)
\(\operatorname{FIRST}_{1}\left(S^{\prime}\right)=\{\mathrm{else}, \varepsilon\}\)
\(\operatorname{FOLLOW}_{1}(S)=\operatorname{FIRST}_{1}\left(S^{\prime}\right) \cup \operatorname{FOLLOW}_{1}\left(S^{\prime}\right)\)
\(\operatorname{FOLLOW}_{1}\left(S^{\prime}\right)=\operatorname{FOLLOW}_{1}(S)\)

\section*{Still not LL(1) . . .}
```

<stmt> ::= if <expr> then <stmt> <stmt'>
<stmt'> ::= else <stmt>
| /*empty*/

```
\(\operatorname{FIRST}_{1}(S)=\{\mathrm{if}\}\)
\(\operatorname{FIRST}_{1}\left(S^{\prime}\right)=\{\mathrm{else}, \varepsilon\}\)
\(\operatorname{FOLLOW}_{1}(S)=\operatorname{FIRST}_{1}\left(S^{\prime}\right) \cup \operatorname{FOLLOW}_{1}\left(S^{\prime}\right)\)
\[
=\{e l \mathrm{se}, \varepsilon\} \cup F O L L O W_{1}\left(S^{\prime}\right)
\]
\(\operatorname{FOLLOW}_{1}\left(S^{\prime}\right)=\operatorname{FOLLOW}_{1}(S)\)

\section*{Still not LL(1) . . .}
\[
\begin{aligned}
& \text { <stmt> }::=\text { if <expr> then <stmt> <stmt'> } \\
& \text { <stmt'> }::=\text { else <stmt> } \\
& \text { | /*empty*/ }
\end{aligned}
\]
\(\operatorname{FIRST}_{1}(S)=\{\) if \(\}\)
\(\operatorname{FIRST}_{1}\left(S^{\prime}\right)=\{\mathrm{else}, \varepsilon\}\)
\(\operatorname{FOLLOW}_{1}(S)=\operatorname{FIRST}_{1}\left(S^{\prime}\right) \cup \operatorname{FOLLOW}_{1}\left(S^{\prime}\right)\)
\[
\begin{aligned}
& =\{\mathrm{else}, \varepsilon\} \cup \mathrm{FOLLOW}_{1}\left(S^{\prime}\right) \\
& =\{\mathrm{else}, \varepsilon\}
\end{aligned}
\]
\(\operatorname{FOLLOW}_{1}\left(S^{\prime}\right)=\operatorname{FOLLOW}_{1}(S)\)
\[
=\{\mathrm{else}, \varepsilon\}
\]

\section*{Still not LL(1) . . .}
```

<stmt> ::= if <expr> then <stmt> <stmt'>
<stmt'> ::= else <stmt>
| /*empty*/

```
\(\operatorname{FIRST}_{1}(S)=\{\) if \(\}\)
\(\operatorname{FIRST}_{1}\left(S^{\prime}\right)=\{\mathrm{else}, \varepsilon\}\)
\(\operatorname{FOLLOW}_{1}(S)=\operatorname{FIRST}_{1}\left(S^{\prime}\right) \cup \operatorname{FOLLOW}_{1}\left(S^{\prime}\right)\)
\[
\begin{aligned}
& =\{\mathrm{else}, \varepsilon\} \cup \mathrm{FOLLOW}_{1}\left(S^{\prime}\right) \\
& =\{\mathrm{else}, \varepsilon\}
\end{aligned}
\]
\(\operatorname{FOLLOW}_{1}\left(S^{\prime}\right)=\operatorname{FOLLOW}_{1}(S)\)
\(=\{\mathrm{else}, \varepsilon\}\)
\(L A_{1}\left(S^{\prime}::=\mathrm{else} S\right)=\{\mathrm{else}\}\)
\(L A_{1}\left(S^{\prime}::=\varepsilon\right)=\{\mathrm{else}, \varepsilon\}\)

\section*{Practical fix}

\section*{The rule}
<stmt'> ::= else <stmt>
gets precedence on input else.

\section*{Outline}
(1) Syntax Analysis
- Recursive top-down parsing
- Nonrecursive top-down parsing
- Bottom-up parsing

\section*{Bottom-up parsing}

\section*{Goal}

Given an input string and a BNF, construct a parse tree starting at the leaves and working up to the root.

\section*{Recall}

\section*{Sentential form}

For a BNF with start variable \(S\), every \(\alpha\) such that \(S \Rightarrow^{*} \alpha\) is a sentential form.
If \(\alpha \in \Sigma^{*}\), then \(\alpha\) is a sentence.
A left sentential form occurs in a left derivation.
A right sentential form occurs in a right derivation.

\section*{Bottom-up parsing}

\section*{Procedure:}
- The bottom-up parser repeatedly matches a right-sentential form of the language against the tree's upper frontier.
- At each match, it applies a reduction to build on the frontier:
- each reduction matches an upper frontier of the partially built tree to the RHS of some production
- each reduction adds a node on top of the frontier
- The final result is a rightmost derivation, in reverse.

\section*{Example}

\section*{Consider the BNF}
\[
\begin{array}{l|lll}
1 & S & ::=a A B e \\
2 & A & ::=A b c \\
3 & & \mid=b \\
4 & B::=d
\end{array}
\]
and the input string
abbcde
(Construct a rightmost derivation)

\section*{Handles}

To construct a the rightmost derivation, we need to find handles.

\section*{Handle}

A handle is a substring \(\alpha\) of the trees frontier that matches a rule \(A::=\alpha\) which is applied at that point in a rightmost derivation

\section*{Handles}

To construct a the rightmost derivation, we need to find handles.

\section*{Handle}

A handle is a substring \(\alpha\) of the trees frontier that matches a rule \(A::=\alpha\) which is applied at that point in a rightmost derivation

\section*{Formally}
- In a right-sentential form \(\alpha \beta w\), the string \(\beta\) is a handle for production \(A::=\beta\)
- if \(S \Rightarrow_{r m}^{*} \alpha A w \Rightarrow_{r m} \alpha \beta w\) then \(\beta\) is a handle for \(A::=\beta\) in \(\alpha \beta w\)

\section*{Example: G-ETF}
- A rightmost derivation for this grammar has unique handles.

\section*{Stack implementation}

One scheme to implement a handle-pruning, bottom-up parser is called a shift-reduce parser.
Shift-reduce parsers use a stack and an input buffer
(1) initialize stack with \$
(2) Repeat until the top of the stack is the goal symbol and the input token is \$
- find the handle
- if we don't have a handle on top of the stack, shift an input symbol onto the stack
- prune the handle if we have a handle for \(A::=\beta\) on the stack, reduce:
- pop \(|\beta|\) symbols off the stack
- push \(A\) onto the stack

\section*{Example}

Apply shift-reduce parsing to \(x-2 \star y\)
(1) Shift until top of stack is the right end of a handle
(2) Find the left end of the handle and reduce

\section*{Shift-reduce parsing}

A shift-reduce parser has just four canonical actions:
(1) shift - next input symbol is shifted onto the top of the stack
(2) reduce - right end of handle is on top of stack; locate left end of handle within the stack; pop handle off stack and push appropriate non-terminal LHS
(3) accept - terminate parsing and signal success
(4) error - call an error recovery routine

But how do we know
- that there is a complete handle on the stack?
- which handle to use?

\section*{LR parsing}

\section*{Recognize handles with a DFA [Knuth 1965]}
- DFA transitions shift states instead of symbols
- accepting states trigger reductions

\section*{Skeleton for LR parsing}
```

push s0
token \leftarrow next_token()
while(true)
s \leftarrow top of stack
if action[s,token] = SHIFT(si) then
push si
token \leftarrow next_token()
else if action[s,token] = REDUCE(A ::= \beta) then
pop |\beta| states
s'}\leftarrow\mathrm{ top of stack
push goto[\mp@subsup{s}{}{\prime},A]
else if action[s, token] = ACCEPT then
return
else error()

```
- Accepting a sentence takes \(k\) shifts, / reduces, and 1 accept, where \(k\) is the length of the input string and \(/\) is the length of the rightmost derivation

\section*{Example tables}
```

1 <goal> ::= <expr>
2 <expr> ::= <term>+<expr>
3 | <term>
4 <term> ::= <factor>*<term>
5 | <factor>
6 <factor> ::= id

```
\begin{tabular}{|c|cccc|ccc|}
\hline state & \multicolumn{4}{|c|}{ ACTION } & \multicolumn{3}{c|}{ GOTO } \\
& id & + & \(*\) & \(\$\) & \(E\) & \(T\) & \(F\) \\
\hline \hline 0 & \(s 4\) & - & - & - & 1 & 2 & 3 \\
1 & - & - & - & acc & - & - & - \\
2 & - & \(s 5\) & - & \(r 3\) & - & - & - \\
3 & - & \(r 5\) & \(s 6\) & \(r 5\) & - & - & - \\
4 & - & \(r 6\) & \(r 6\) & \(r 6\) & - & - & - \\
5 & \(s 4\) & - & - & - & 7 & 2 & 3 \\
6 & \(s 4\) & - & - & - & - & 8 & 3 \\
7 & - & - & - & \(r 2\) & - & - & - \\
8 & - & \(r 4\) & - & \(r 4\) & - & - & - \\
\hline
\end{tabular}

\section*{Example using the tables}
```

Start with Stack \$ 0 Input id * id + id \$

```

\section*{Formal definition of LR(k)}

A BNF is \(\operatorname{LR}(k)\) if
\[
S \Rightarrow_{r m}^{*} \alpha A w \Rightarrow_{r m} \alpha \beta w
\]
and
\[
S \Rightarrow{ }_{r m}^{*} \gamma B x \Rightarrow_{r m} \alpha \beta y
\]
and
\[
\left.w\right|_{k}=\left.y\right|_{k}
\]
implies that \(\alpha A y=\gamma B x\).

\section*{Why study LR grammars?}
- almost all context-free programming language constructs can be expressed naturally with an \(L R(1)\) grammar
- LR grammars are the most general grammar that can be parsed by a deterministic bottom-up parser
- LR(1) grammars have efficient parsers
- LR parsers detect errors as early as possible
- LR grammars are more general: Every \(\operatorname{LL}(\mathrm{k})\) grammar is also a LR(k) grammar

\section*{LR parsing}
- LR(1) - not useful in practice because tables are too big
- all deterministic languages have LR(1) grammar
- very large tables
- slow construction
- \(\operatorname{SLR}(1)\)
- smallest class of grammars
- smallest tables
- simple, fast construction
- LALR(1)
- expressivity between \(\operatorname{SLR}(1)\) and \(\operatorname{LR}(1)\)
- same number of states as \(\operatorname{SLR}(1)\)
- clever algorithm yields fast construction

\section*{Constructing LR parse tables}

Parser states are modeled with \(\underline{L R(k) \text { items. }}\)

\section*{Definition}

- \(A \rightarrow \alpha \beta\) is a rule; the - can divide the right hand side arbitrarily; intution: how much of the right hand side has been seen already
- \(w\) is a lookahead string containing at most \(k\) symbols

\section*{Constructing LR parse tables}

Parser states are modeled with \(\underline{L R(k) \text { items. }}\)

\section*{Definition}

- \(A \rightarrow \alpha \beta\) is a rule; the - can divide the right hand side arbitrarily; intution: how much of the right hand side has been seen already
- \(w\) is a lookahead string containing at most \(k\) symbols

\section*{Cases of interest}
- \(k=0: \operatorname{LR}(0)\) items play a role in \(\operatorname{SLR}(1)\) construction
- \(k=1: L R(1)\) items are used for constructing \(\operatorname{LR}(1)\) and LALR(1) parsers

\section*{Examples}

Consider LR(0) items without lookahead
- \([A \rightarrow \bullet a B C]\) indicates that the parser is now looking for input derived from \(a B C\)
- \([A \rightarrow a B \bullet C]\) indicates that input derived from \(a B\) has been seen, now looking for something derived from \(C\)
There are four items associated with \(A \rightarrow a B C\)

\section*{The characteristic finite state machine (CFSM)}

The CFSM for a grammar is a DFA which recognizes viable prefixes of right-sentential forms:

A viable prefix is any prefix that does not extend beyond the handle.

The CFSM accepts when a handle has been discovered and needs to be reduced.
A state of the CFSM is a set of items.
To construct the CFSM we need two functions wherer \(l\) is a set of items and \(X\) is a grammar symbol:
- closure0( \(I\) ) to build its states
- goto \(0(I, X)\) to determine its transitions

\section*{States of the CFSM - Closure}

The closure of an item \([A \rightarrow \alpha \bullet B \beta\) contains the item itself and any other item that can generate legal strings following \(\alpha\). Thus if the parser has a viable prefix \(\alpha\) on the stack, the remaining input should be derivable from \(B \beta\).

\section*{Closure0}

For a set \(I\) of \(\mathrm{LR}(0)\) items, the set closure \(0(I)\) is the smallest set such that
(1) \(I \subseteq\) closure \(0(I)\)
(2) If \([A \rightarrow \alpha \bullet B \beta] \in\) closure \(0(I)\) then
\[
[B \rightarrow \bullet \gamma] \in \text { closure } 0(I), \text { for all rules } B \rightarrow \gamma
\]

Implementation: start with first rule, repeat second rule until no further items can be added.

\section*{Transitions of the CFSM — Goto}

Let \(I\) be a set of \(\operatorname{LR}(0)\) items and \(X\) be a grammar symbol.
\[
\text { goto0 }(I, X)=\text { closure } 0(\{[A \rightarrow \alpha X \bullet \beta] \mid[A \rightarrow \alpha \bullet X \beta] \in I)
\]

If \(I\) is the set of items for a viable prefix \(\gamma \alpha\), then \(\operatorname{gotoo}(I, X)\) is the set of items for viable prefix \(\gamma \alpha X\).
Accepting states of the CFSM: I is accepting if it contains a reduce item of the form \([A \rightarrow \alpha \bullet]\).

\section*{Construction of the CFSM}

New start item \(\left[S^{\prime} \rightarrow \bullet S \$\right]\), where
- \(S^{\prime}\) is a new start symbol that does not occur on any RHS
- \(S\) is the previous start symbol
- \$ marks the end of input

Compute the set of states \(\mathcal{S}\) where each state is a set of items

\section*{Construction of the state set}
```

function items(G+ S')
I}\leftarrow\operatorname{closure0({[\mp@subsup{S}{}{\prime}->\bulletS\$]})
S}\leftarrow{I
\mathcal{W}}\leftarrow{I
while \mathcal{W}\not=\emptyset
remove some l from \mathcal{W}
for each grammar symbol }
let }\mp@subsup{I}{}{\prime}\leftarrow\operatorname{goto0(I,X)
if }\mp@subsup{I}{}{\prime}\not=\emptyset\mathrm{ and }\mp@subsup{I}{}{\prime}\not\in\mathcal{S}\mathrm{ then
add I' to \mathcal{W}}\mathrm{ and }\mathcal{S
return S

```

\section*{LR(0) example}
\[
\begin{array}{l|lll}
1 & S & \rightarrow & E \$ \\
2 & E & \rightarrow & E+T \\
3 & & \mid & T \\
4 & T & \rightarrow & \text { id } \\
5 & & \mid & (E)
\end{array}
\]

\section*{Construction of the LR(0) parse table}

Output: tables ACTION and GOTO
(1) Let \(\left\{I_{0}, I_{1}, \ldots\right\}=\operatorname{items}(G)\)
(2) State \(i\) of the CFSM corresponds to item \(I_{i}\)
- if \([A \rightarrow \alpha \bullet a \beta] \in I_{i}, a \in \Sigma\) and gotoo \(\left(I_{i}, a\right)=I_{j}\) then ACTION \([i, a]=\) SHIFT \(j\)
- If \([A \rightarrow \alpha \bullet] \in I_{i}\) and \(A \neq S^{\prime}\)
then ACTION \([i, a]=\) REDUCE \(A \rightarrow \alpha\), for all a
- If \(\left[S^{\prime} \rightarrow S \$ \bullet\right] \in I_{i}\)
then ACTION \([i, a]=\operatorname{ACCEPT}\), for all a
(3) If goto \(0\left(I_{i}, A\right)=I_{j}\) for variable \(A\) then GOTO \([i, A]=j\)
(4) set all undefined entries in ACTION and GOTO to ERROR
(5) initial state of parser corresponds to \(I_{0}=\) closure \(0\left(\left\{\left[S^{\prime} \rightarrow \bullet S \$\right]\right\}\right)\)

\section*{Example ACTION table}

\section*{Conflicts}
- If there are multiply defined entries in the ACTION table, then the grammar is not \(\mathrm{LR}(0)\).
- There are two kinds of conflict
- shift-reduce: shift and reduce are possible in the same item set
- reduce-reduce: two different reduce actions are possible in the same item set
- Examples
- \(A \rightarrow \varepsilon \mid a \alpha\) on input \(a\), shift a or reduce \(A \rightarrow \varepsilon\) ?
- \(a=b+c * d\) with expression grammar after reading c , should we shift or reduce?
- Use lookahead to resolve conflicts

\section*{SLR(1) - simple lookahead LR}

Add lookahead after computing the \(\operatorname{LR}(0)\) item sets
(1) Let \(\left\{I_{0}, I_{1}, \ldots\right\}=\operatorname{items}(G)\)
(2) State \(i\) of the CFSM corresponds to item \(I_{i}\)
- if \([A \rightarrow \alpha \bullet a \beta] \in I_{i}\), for \(a \neq \$\) and \(\operatorname{gotoo}\left(I_{i}, a\right)=I_{j}\) then ACTION \([i, a]=\operatorname{SHIFT} j\)
- If \([A \rightarrow \alpha \bullet] \in I_{i}\) and \(A \neq S^{\prime}\) then \(\operatorname{ACTION}[i, a]=\operatorname{REDUCE} A \rightarrow \alpha\), for all \(a \in \operatorname{FOLLOW}(A)\)
- If \(\left[S^{\prime} \rightarrow S \bullet \$\right] \in I_{i}\) then ACTION \([i, \$]=\) ACCEPT
(3) If goto \(0\left(I_{i}, A\right)=I_{j}\) for variable \(A\) then \(\operatorname{GOTO}[i, A]=j\)
(4) set all undefined entries in ACTION and GOTO to ERROR
(5) initial state of parser corresponds to
\[
I_{0}=\text { closure } 0\left(\left\{\left[S^{\prime} \rightarrow \bullet S \$\right]\right\}\right)
\]
- Items of the form \([A \rightarrow \alpha \bullet \beta, a]\) for \(\boldsymbol{a} \in \Sigma\)
- Propagate lookahead in construction to choose the correct reduction
- Lookahead has only effect on reduce items
- We can decide between reductions \([A \rightarrow \alpha \bullet, a]\) and [ \(B \rightarrow \alpha \bullet, b]\) by examining the lookahead.

\section*{Closure1}

\section*{Closure1}

For a set \(I\) of \(\mathrm{LR}(1)\) items, the set closure \(1(I)\) is the smallest set such that
(1) \(I \subseteq\) closure1 \((I)\)
(2) If \([\boldsymbol{A} \rightarrow \alpha \bullet B \beta, a] \in\) closure \(0(I)\) then
\([B \rightarrow \bullet \gamma, b] \in\) closure \(0(I)\), for all rules \(B \rightarrow \gamma\) and for all \(b \in \operatorname{FIRST}_{1}(\beta a)\).

\section*{Goto1}

Let I be a set of \(\operatorname{LR}(1)\) items and \(X\) be a grammar symbol.
\[
\text { goto1 }(I, X)=\text { closure1 }(\{[A \rightarrow \alpha X \bullet \beta, a] \mid[A \rightarrow \alpha \bullet X \beta, a] \in I)
\]

\section*{Construction of the CFSM}
as before

\section*{Construction of the LR(1) parse table}

Output: tables ACTION and GOTO
(1) Let \(\left\{I_{0}, l_{1}, \ldots\right\}=\operatorname{items}(G)\)
(2) State \(i\) of the CFSM corresponds to item \(I_{i}\)
- if \([A \rightarrow \alpha \bullet a \beta, b] \in I_{i}, a \neq \$\) and gotol \(\left(I_{i}, a\right)=I_{j}\) then ACTION \([i, a]=\operatorname{SHIFT} j\)
- If \([A \rightarrow \alpha \bullet, b] \in I_{i}\) and \(A \neq S^{\prime}\)
then ACTION \([i, b]=\) REDUCE \(A \rightarrow \alpha\)
- If \(\left[S^{\prime} \rightarrow S_{\bullet}, \$\right] \in I_{i}\)
then ACTION \([i, \$]=\) ACCEPT
(3) If gotol \(\left(I_{i}, A\right)=I_{j}\) for variable \(A\) then GOTO \([i, A]=j\)
(4) set all undefined entries in ACTION and GOTO to ERROR
(5) initial state of parser corresponds to \(I_{0}=\operatorname{closure} 1\left(\left\{\left[S^{\prime} \rightarrow \bullet S, \$\right]\right\}\right)\)

\section*{LALR(1) parsing}

The core of a set of \(L R(1)\) items is the set of \(L R(0)\) items obtained by stripping off all lookahead.
The following two sets have the same core:
- \(\{[A \rightarrow \alpha \bullet \beta, a],[A \rightarrow \alpha \bullet \beta, c]\}\)
- \(\{[A \rightarrow \alpha \bullet \beta, b],[A \rightarrow \alpha \bullet \beta, c]\}\)

\section*{Key idea}

If two \(L R(1)\) item sets have the same core, then we can merge their states in the ACTION and GOTO tables.

\section*{LALR(1) table construction}

Compared to \(\mathrm{LR}(1)\) we need a single new step:
For each core present among the set of \(L R(1)\) items, find all sets having that core and replace these sets by their union.

The goto function must be updated to reflect the replacement sets.

The resulting algorithm is very expensive.
There is a more efficient algorithm that analyses the \(\mathrm{LR}(0)\) CFSM.

\section*{Precedence and associativity}

Precedence and associativity can be used to resolve shift-reduce conflicts in ambiguous grammars.
- lookahead symbol has higher precedence \(\Rightarrow\) shift
- same precedence, left associative \(\Rightarrow\) reduce Advantages:
- more concise, albeit ambiguous, grammars
- shallower parse trees \(\Rightarrow\) fewer reductions

Classic application: expression grammars

\section*{Precedence applied}

With precedence and associativity we can use a very simple expression grammar without useless productions.
\[
E \rightarrow E * E|E / E| E+E|E-E|(E)|-E| \text { id } \mid \text { num }
\]

\section*{Left recursion vs right recursion}

\section*{Right recursion}
- required in top-down parsers for termination
- more stack space
- right-associative operators

\section*{Left recursion}
- works fine in bottom-up parsers
- limits required stack
- left associative operators```

