
Prof. Dr. Peter Thiemann
Matthias Keil Winter Semester 2016/2017

Compiler Construction
http://proglang.informatik.uni-freiburg.de/teaching/compilerbau/2016ws/

Exercise Sheet 1

1 Visitor pattern (2+2+2 Points)

In the lecture, a simple straight-line programming language was introduced (cf. slides 28–
30). Assume that programs to be interpreted are given in abstract syntax as described by
the presented implementation.

Example The program a := (print(3),5) is represented as

Stm prog = new AssignStm("a",new EseqExp(new PrintStm(

new LastExpList(new NumExp(3))),new NumExp(5)));

1. Implement a visitor which gives the maximum number of arguments of any print
statement within any subexpression of a given statement. Extend the given abstract
syntax classes with appropriate methods.

2. Implement a pretty-printing visitor for the straight-line programming language.

3. Implement an interpreter for programs in the straight-line programming language.
Remember that expression sequences are evaluated from left to right. Interpreting
expressions is more complicated than interpreting statements as expressions return a
value and have side effects. Hint: The interpreter can also be implemented with the
visitor pattern.

Hint: The course page contains a ZIP file with an Eclipse project skeleton for this exercise.

2 Tool dry-run (0 Points)

Visit the exercise page1. There you will find SableCC and the Library Package. The
Standard Project Template for exercise 3 contains an Ant build script which you can use to
generate Java code for the parser, compile and run your Java code and build a submission
Jar. Check that the Standard Project Template works with your version of Eclipse, and
make yourself familiar with the build targets.

1http://proglang.informatik.uni-freiburg.de/teaching/compilerbau/2016ws/exercises/



3 Shopping list (3+1 Points)

You have to lex and parse a shopping list. Each line of the shopping list contains a shopping
item. Each item consists of

• the amount (number of pieces),

• a description of the product, and

• the price per piece in Euro.

They are seperated by a comma.
Example:

12, eggs , 0.20

3, parcels of TOP spaghetti, 2.00

6, bottles 7up , 0.90

2, bottles of French wine , 12.50

1. Write a lexer and parser specification of shopping lists for the above format for
SableCC.

2. Compute the total prize for all items on a (parsed) shopping list. Output the price in
the correct format. For the above example, the total prize is 38.80. Structure your
code according to the visitor design pattern.
Hint: SableCC already provides a class DepthFirstAdapter in the generated analysis.*

package. Extending this class will save you a lot of work.

Test your implementation with the provided test cases.

Submission

• Deadline: 03.11.2016, 12:00 (noon). Late submissions will not be accepted.

• Submit your solution to the subversion repository. Your submission will consist of one
folder (exercise1) which includes your solution.

• Your solution to exercise 1.1 must be sent as a .jar file named interp-<your name>.jar.
It must (at least) contain the source code of the extended abstract syntax classes, a
class PrettyPrintVisitor, a class MaxArgsVisitor and a class Interpreter.

• Your solution to exercise 1.3 must be sent as an executable .jar file named shopping-<your

name>.jar2. When invoking your solution with

java -jar shopping-<your name>.jar list.txt

it should output the total price.

• Make sure that your .jar files always contain the source files of your program.

2Standard Project Template: edit project.properties


