
Prof. Dr. Peter Thiemann
Matthias Keil Winter Semester 2016/2017

Compiler Construction
http://proglang.informatik.uni-freiburg.de/teaching/compilerbau/2016ws/

Exercise Sheet 3

1 Type-checking MiniJava - Solution

MiniJava is a strongly typed language with explicit types. This means that the type of every
variable and every expression is known at compile-time. Detecting type-errors early (i.e. at
compile time) supports programmers in writing (fail-)safe code.
MiniJava adheres for the most part to the type rules of Java. It provides two basic types
for booleans and integers, and two reference types for integer arrays and objects. Types are
defined by

τ ::= int | bool | int[] | C

for all C ∈ dom(CT) where the class table CT is a mapping from class names to class
declarations. There exists a subtype relation ≺ between the types. This relation is reflexive
and transitive (but not symmetric). For simplicity, we identify the class name with the class
type here.

τ ≺ τ
τ1 ≺ τ2 τ2 ≺ τ3

τ1 ≺ τ3
CT (C) = class C extends D { ... }

C ≺ D

Remark: One major difference between Java and MiniJava is that MiniJava does not specify
Object to be the superclass of all other classes.

Type judgments define whether an expression, a statement, etc. is well-typed. For expres-
sions, we use the type judgment Γ `e e : τ to say that an expression e is well-typed in Γ
with type τ . The typing context (or type environment) Γ contains all variables with their
types which are defined when typing the expression.
For the arithmetic and boolean expressions the type rules are straight-forward, for example:

Γ `e e1 : int Γ `e e2 : int

Γ `e e1 + e2 : int

Γ `e e1 : int Γ `e e2 : int

Γ `e e1 < e2 : bool

Γ `e e : bool

Γ `e !e : bool

The rules for −, ∗ and && are defined analogously. For constants, the type rules are trivial,
as is the one for object allocation:

Γ `e false : bool Γ `e true : bool Γ `e i : int Γ `e newC() : C

The type of a variable can be determined by looking it up in the type environment:

id : τ ∈ Γ

Γ `e id : τ

A bit more involved is the type rule for method invocation:

Γ `e e : C
paramsT (m,C) = (τ1, . . . , τn) returnT (m,C) = τ ∀ei : Γ `e ei : σi, σi ≺ τi

Γ `e e.m(e1, . . . , en) : τ

Here, paramsT (m,C) denotes the types of the formal parameters of method m in class C.
returnT (m,C) denotes the return type of this method.
Because statements don’t have a type, we use a different judgment Γ `s s to denote well-
typed statements. The corresponding type rules then have the following form:

Γ `e e : int

Γ `s System.out.println(e);

Γ `e e1 : τ1 Γ `e e2 : τ2 τ2 ≺ τ1
Γ `s e1 = e2;

Γ `e e : bool Γ `s s
Γ `s while(e) do s

Γ `e e : bool Γ `s s1 Γ `s s2
Γ `s if (e) s1 else s2

∀si : Γ `s si
Γ `s {s1 . . . sn}

Further, a class is well-typed if all its methods are well-typed. A method is well-typed if its
statement list is well-typed and the type of its return expression is a subtype of its return
type. When type-checking a class or method, this must be entered with the correct type in
Γ, as well as all fields of the class and the respective formal parameters and local variables
of the method.

Solution: Type rules

To increase readability, we use x to denote the sequence x1, . . . , xn. Similarly, f : τ stands
for f1 : τ1, . . . , fn : τn, and so on.

Arrays

Γ `e e : int

Γ `e new int[e] : int[]

Γ `e e : int[]

Γ `e e.length : int

Γ `e e1 : int[] Γ `e e2 : int

Γ `e e1[e2] : int

Class typing

x : σ `s si
`c class C {public static void main (String[] p){ σ x; s; } }

f : τ , this :C `m mi

`c class C {τ f ; m }

fields(C) = g : σ g : σ, this :C `m mi override(mi, C,D)

`c class C extends D {τ f ; m }

Method typing

Γ′ = Γ, p : τ , x : σ Γ′ `s si Γ′ `e e : τ ′ τ ′ ≺ τ
Γ `m public τ m (τ p){ σ x; s; return e; }

Auxiliary definitions

CT (C) = class C {τ f ; m }
fields(C) = f : τ

CT (C) = class C extends D {τ f ; m } fields(D) = g : σ

fields(C) = g : σ, f : τ

def(m,D) implies
returnT (m,C) ≺ returnT (m,D), paramsT (m,C) = paramsT (m,D)

override(m,C,D)

CT (C) = class C {τ f ; m } m defined in m

def(m,C)

CT (C) = class C extends D {τ f ; m } m defined in m

def(m,C)

CT (C) = class C extends D {τ f ; m } def(m,D)

def(m,C)

Supplementary definitions (optional)

def(mi, C) mi = public τ m (τ p) {σ x; s; return e; }
paramsT (m,C) = (τ)

def(mi, C) mi = public τ m (τ p) {σ x; s; return e; }
returnT (m,C) = τ

