
Prof. Dr. Peter Thiemann
Matthias Keil Winter Semester 2016/2017

Compiler Construction
http://proglang.informatik.uni-freiburg.de/teaching/compilerbau/2016ws/

Exercise Sheet 4

1 From MiniJava to Piglet (15 Points)

For the next step in our project, Piglet will serve as an intermediate representation. Piglet’s
grammar and semantics is defined as follows.

Grammar

Program ::= MAIN StmtList END Procedure*
StmtList ::= (Label? Stmt)*
Procedure ::= Label [IntegerLiteral] StmtExp

Stmt ::= NOOP
| ERROR
| CJUMP Exp Label
| JUMP Label
| HSTORE Exp IntegerLiteral Exp
| HLOAD Temp Exp IntegerLiteral
| MOVE Temp Exp
| PRINT Exp

StmtExp ::= BEGIN StmtList RETURN Exp END
Exp ::= StmtExp

| CALL Exp (Exp*)
| HALLOCATE Exp
| Operator Exp Exp
| Temp
| IntegerLiteral
| Label

Operator ::= LT
| PLUS
| MINUS
| TIMES

Temp ::= TEMP IntegerLiteral
IntegerLiteral ::= 〈integer literal〉

Label ::= 〈identifier〉

Semantics

Procedures
If we have a procedure p

p [5] s

which takes five arguments, they are accessible in the procedure body s as TEMP 0,
TEMP 1, ..., TEMP 4. Other temporaries (TEMP 5 and higher) are treated as
local variables within the procedure.

NOOP
Does nothing.

ERROR
Terminates the program execution with an error message.

CJUMP e l
If e evaluates to 1, then continue with the next statement, otherwise jump to label l.

LT
This is the < operator. It returns 0 for false and 1 for true. You also need to use this
operator to test whether a memory address is null (the value 0), by asking whether
the address is less than 1.

HALLOCATE e
The expression e should evaluate to an integer denoting to the number of bytes of
heapspace which is then allocated. The address of the newly allocated memory block
is returned as the result. Both integers and memory addresses (i.e., pointers) have a
size of 4 bytes, so in general you will allocate memory in multiples of 4.

HSTORE e1 i e2
Stores the value of expression e2 at address e1 with offset i. The expression e1 evaluates
to an address, the integer i is an offset from this address.

HLOAD t e i
Loads the value at address e with offset i into the temporary t. The expression e
evaluates to an address.

The semantics of all other constructs should be obvious.

Project - Part 3

Implement an AST transformation from MiniJava to Piglet.

• You may assume that there are arbitrarily many temporaries available.

• On the homepage, you will find a project template with a parser for Piglet and a
pretty-printer for Piglet, which you may want to use.

• You will also find parts of a type checker to build a class table. You are encouraged
to adapt it to your needs.

• When implementing the transformation, make sure that you construct new object
instances for each node. Otherwise the automatic management of child-parent links
damages the tree structure, which leads to NullPointerExceptions.

• You may assume that you are only translating type-correct MiniJava programs.

• Make sure that all labels are unique. For procedure labels, you might want to take a
composition of class name and corresponding method name.

• Do not forget to initialize newly allocated arrays and fields with zero.

• When transforming operations on arrays and objects, insert code to check at run-time
for ”index out of bounds” exceptions or ”null pointer” exceptions.

2 From Piglet to Spiglet (10 Points)

Spiglet is a subset of Piglet. It simplifies the IR by ”flattening” Piglet’s tree structure to
lists of (labeled) statements.

Grammar

Program ::= MAIN StmtList END Procedure*
StmtList ::= (Label? Stmt)*
Procedure ::= Label [IntegerLiteral] StmtExp

Stmt ::= NOOP
| ERROR
| CJUMP Temp Label
| JUMP Label
| HSTORE Temp IntegerLiteral Temp
| HLOAD Temp Temp IntegerLiteral
| MOVE Temp Exp
| PRINT SimpleExp

StmtExp ::= BEGIN StmtList RETURN SimpleExp END
Exp | CALL SimpleExp (Temp*)

| HALLOCATE SimpleExp
| Operator Temp SimpleExp
| SimpleExp

Operator ::= LT
| PLUS
| MINUS
| TIMES

SimpleExp | Temp
| IntegerLiteral
| Label

Temp ::= TEMP IntegerLiteral
IntegerLiteral ::= 〈integer literal〉

Label ::= 〈identifier〉

The grammar for Spiglet differs from that of Piglet in two ways:

• A list of Stmts followed by an expression is not an Exp in Spiglet.

• In many places, Exp is replaced with SimpleExp or Temp.

Project - Part 4

Implement a transformation from Piglet to Spiglet.

• On the homepage, you will find a project template with a parser for SPiglet, and also
a pretty-printer for SPiglet, which you can use.

• When implementing the transformation, make sure that you construct new object
instances for each node.

Submission

• Deadline: 12.01.2017, 12:00 (noon). Late submissions will not be accepted.

• Submit your solution to the subversion repository. Your submission will consist of one
folder (exercise4) which includes your solution.

• Rewrite method minijava.topiglet.MiniJavaToPigletTranslator.translateProgram

so that it calls your Piglet transformation for the given MiniJava AST.

• Rewrite method piglet.tospiglet.PigletToSpigletTranslator.translateProgram

so that it calls your Spiglet transformation for the given Piglet AST.

• Your solution will consist of: 1. a zip file J2P2S.zip as generated by ant submission

with the implementation of the two translators, and 2. a pdf intermediate-<your

name>.pdf with a description of the two transformations.

• You are strongly encouraged to test your solution with the provided test data. Add
test cases as you might think necessary. You need not submit your own test cases.

• The description must be limited to two pages. Submitting more than one page will
lead to reduction in points.

• The description may be either German or English. Clear and understandable style is
required.

