1

© W N e G A W N

T T T S
W N = O © o N O A W RN R O

P. Thiemann, A. Bieniusa, P. Heidegger Winter term 2010/11

Lecture: Concurrency Theory and Practise
Exercise 2
http://proglang.informatik.uni-freiburg.de/teaching/concurrency/2010ws/

1 Theory

1.1 Atomic Integers

The Atomiclnteger class (in the java. util .concurrent.atomic package) is a container for an integer

value. One of its methods is boolean compareAndSet(int expect, int update). This method compares

the object’s current value to expect. If the values are equal, then it atomically replaces the

object’s value with update and returns true. Otherwise, it leaves the object’s value unchanged,

and returns false. This class also provides int get() which returns the object’s actual value.
Consider the FIFO queue implementation:

class IQueue<T> {
AtomicInteger head = new AtomicInteger (0);
AtomicInteger tail = new AtomiclInteger (0);
T[] items = (T[]) new Object[Integer .MAX VALUE];
public void enq(T x) {
int slot ;
do {
slot = tail.get();
} while (! tail.compareAndSet(slot, slot+1));
items [slot] = x;

public T deq() throws EmptyException {

T value;
int slot;
do {

slot = head.get();

value = items[slot];

if (value = null)

throw new EmptyException () ;

} while (! head.compareAndSet(slot , slot+1));
return value;

-

It stores its items in an array items, which, for simplicity, we will assume has unbounded
size. It has two AtomicInteger fields: tail is the index of the next slot from which to remove an
item, and head is the index of the next slot in which to place an item. Give an example showing
that this implementation is not linearizable.

1.2 Classifying histories

For each of the histories shown, are they quiescently consistent? Sequentially consistent? Lin-
earizable? Justify your answer. History 1:

r.read(1)
A N —
r.write(1) r.read(2)
B % | : |
r.write(2)
C P
History 2:
r.read(1)
A N —
r.write(1) r.read(1)
B % | : |
r.write(2)

C P

1

© o N e o W N

NN N B B R R e R R R e e
W N Rk O © ® N0 R W N = O

1.3 Strange methods....

Consider the following rather unusual implementation of a method m. In every history, the
ith time a thread calls m, the call returns after 2° steps. Is this method wait-free, bounded
wait-free, or neither?

1.4 A Bad cLHLock

Explain how the following implementation of CLHLock can go wrong:

public class BadCLHLock implements Lock {
// most recent lock holder
AtomicReference<Qnode> tail;
//thread—local wvariable
ThreadLocal<Qnode> myNode;

public void lock () {
Qnode gnode = myNode. get () ;
qnode.locked = true; // I am not done
// Make me the new tail, and find my predecessor
Qnode pred = tail.getAndSet(gnode);
// spin while predecessor holds lock
while (pred.locked) {}

}

public void unlock () {
// reuse my node mext time
myNode. get () . locked = false;

static class Qnode { // Queue node inner class
public boolean locked = false;

}

—

2 Practice

2.1 Simple Reader-Writer lock

Re-implement the SimpleReadWriteLock class using Java synchronized, wait(), notify (), and notifyAll
() constructs in place of explict locks and conditions.

2.2 Sharing bathrooms

In the shared bathroom problem, there are two classes of threads, called MALE and FE-
MALE.There is a single Bathroom resource that must be used in the following way:

1. persons of opposite sex may not occupy the bathroom simultaneously, and
2. everyone who needs to use the bathroom eventually enters.

The protocol is implemented via the following four procedures: enterMale() delays the caller
until it is ok for a male to enter the bathroom, leaveMale() is called when a male leaves the
bathroom, while enterFemale() and leaveFemale() do the same for females.

1. Implement this class using locks and condition variables.
2. Implement this class using synchronized, wait(), notify (), and notifyAll() constructs.

For each implementation, explain why it satisfies mutual exclusion and starvation-freedom.

Submission
e Deadline: 23.11.2010

e Please submit solutions in teams of 2 or 3 people. (Submission of single-person teams will
not be corrected!)

