
Introduction

Companion slides for
The Art of Multiprocessor

Programming
by Maurice Herlihy & Nir Shavit

Art of Multiprocessor Programming 2

Moore’s Law

Clock
speed

flattening
sharply

Transistor
count still

rising

Art of Multiprocessor Programming 3

Still on some of your
desktops: The Uniprocesor

memory

cpu

Art of Multiprocessor Programming 4

In the Enterprise:
The Shared Memory

Multiprocessor
(SMP)

cache

BusBus

shared memory

cachecache

Art of Multiprocessor Programming 5

Your New Desktop:
The Multicore Processor

(CMP)

cache

BusBus

shared memory

cachecache
All on the
same chip

Sun
T2000
Niagar
a

Art of Multiprocessor Programming 6

Multicores Are Here

• “Intel's Intel ups ante with 4-core chip. New
microprocessor, due this year, will be faster,
use less electricity...” [San Fran Chronicle]

• “AMD will launch a dual-core version of its
Opteron server processor at an event in New
York on April 21.” [PC World]

• “Sun’s Niagara…will have eight cores, each
core capable of running 4 threads in parallel,
for 32 concurrently running threads. ….”
[The Inquirer]

Art of Multiprocessor Programming 7

Why do we care?

• Time no longer cures software
bloat
– The “free ride” is over

• When you double your program’s
path length
– You can’t just wait 6 months
– Your software must somehow exploit

twice as much concurrency

Art of Multiprocessor Programming 8

Traditional Scaling Process

User code

Traditional
Uniprocessor

Speedup
1.8x1.8x

7x7x

3.6x3.6x

Time: Moore’s law

Art of Multiprocessor Programming 9

Multicore Scaling Process

User code

Multicore

Speedup 1.8x1.8x

7x7x

3.6x3.6x

Unfortunately, not so simple…

Art of Multiprocessor Programming 10

Real-World Scaling Process

1.8x1.8x 2x2x 2.9x2.9x

User code

Multicore

Speedup

Parallelization and Synchronization
require great care…

Art of Multiprocessor Programming 11

Multicore Programming:
Course Overview

• Fundamentals
– Models, algorithms, impossibility

• Real-World programming
– Architectures
– Techniques

Art of Multiprocessor Programming 12

Multicore Programming:
Course Overview

• Fundamentals
– Models, algorithms, impossibility

• Real-World programming
– Architectures
– Techniques

We don’t n
ecessarily

want t
o m

ake

you experts
…

Art of Multiprocessor
Programming

13

Sequential Computation

memory

object object

thread

Art of Multiprocessor
Programming

14

Concurrent Computation

memory

object object

th
re

ad
s

Art of Multiprocessor Programming 15

Asynchrony

• Sudden unpredictable delays
– Cache misses (short)
– Page faults (long)
– Scheduling quantum used up (really

long)

Art of Multiprocessor Programming 16

Model Summary

• Multiple threads
– Sometimes called processes

• Single shared memory
• Objects live in memory
• Unpredictable asynchronous

delays

Art of Multiprocessor Programming 17

Road Map

• We are going to focus on principles
first, then practice
– Start with idealized models
– Look at simplistic problems
– Emphasize correctness over

pragmatism
– “Correctness may be theoretical, but

incorrectness has practical impact”

Art of Multiprocessor Programming 18

Concurrency Jargon

• Hardware
– Processors

• Software
– Threads, processes

• Sometimes OK to confuse them,
sometimes not.

Art of Multiprocessor Programming 19

Parallel Primality Testing

• Challenge
– Print primes from 1 to 1010

• Given
– Ten-processor multiprocessor
– One thread per processor

• Goal
– Get ten-fold speedup (or close)

Art of Multiprocessor Programming 20

Load Balancing

• Split the work evenly
• Each thread tests range of 109

…

…109 10102·1091

P0 P1 P9

Art of Multiprocessor
Programming

21

Procedure for Thread i

void primePrint {
 int i = ThreadID.get(); // IDs in {0..9}
 for (j = i*109+1, j<(i+1)*109; j++) {
 if (isPrime(j))
 print(j);
 }
}

Art of Multiprocessor Programming 22

Issues

• Higher ranges have fewer primes
• Yet larger numbers harder to test
• Thread workloads

– Uneven
– Hard to predict

Art of Multiprocessor Programming 23

Issues

• Higher ranges have fewer primes
• Yet larger numbers harder to test
• Thread workloads

– Uneven
– Hard to predict

• Need dynamic load balancing
re

jecte
d

Art of Multiprocessor
Programming

24

17

18

19

Shared Counter

each thread
takes a
number

Art of Multiprocessor
Programming

25

Procedure for Thread i

int counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
}

Art of Multiprocessor
Programming

26

Counter counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
}

Procedure for Thread i

Shared counter
object

Art of Multiprocessor Programming 27

Where Things Reside

cache

BusBus

cachecache

1

shared counter

shared
memory

void primePrint {
 int i =
ThreadID.get(); // IDs
in {0..9}
 for (j = i*109+1,
j<(i+1)*109; j++) {
 if (isPrime(j))
 print(j);
 }
}

code

Local
variables

Art of Multiprocessor
Programming

28

Procedure for Thread i

Counter counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
}

Stop when every
value taken

Art of Multiprocessor
Programming

29

Counter counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
}

Procedure for Thread i

Increment &
return each new

value

Art of Multiprocessor
Programming

30

Counter Implementation

public class Counter {
 private long value;

 public long getAndIncrement() {
 return value++;
 }
}

Art of Multiprocessor
Programming

31

Counter Implementation

public class Counter {
 private long value;

 public long getAndIncrement() {
 return value++;
 }
} OK for single thread,

not for concurrent threads

Art of Multiprocessor
Programming

32

What It Means

public class Counter {
 private long value;

 public long getAndIncrement() {
 return value++;
 }
}

Art of Multiprocessor
Programming

33

What It Means

public class Counter {
 private long value;

 public long getAndIncrement() {
 return value++;
 }
}

 temp = value;
 value = value + 1;
 return temp;

Art of Multiprocessor
Programming

34

time

Not so good…

Value… 1

read
1

read
1

write
2

read
2

write
3

write
2

2 3 2

Art of Multiprocessor
Programming

35

Is this problem inherent?

If we could only glue reads and writes…

read

write read

write

Art of Multiprocessor
Programming

36

Challenge

public class Counter {
 private long value;

 public long getAndIncrement() {
 temp = value;
 value = temp + 1;
 return temp;
 }
}

Art of Multiprocessor
Programming

37

Challenge

public class Counter {
 private long value;

 public long getAndIncrement() {
 temp = value;
 value = temp + 1;
 return temp;
 }
}

Make these steps
atomic (indivisible)

Art of Multiprocessor
Programming

38

Hardware Solution

public class Counter {
 private long value;

 public long getAndIncrement() {
 temp = value;
 value = temp + 1;
 return temp;
 }
} ReadModifyWrite()

instruction

Art of Multiprocessor
Programming

39

An Aside: Java™

public class Counter {
 private long value;

 public long getAndIncrement() {
 synchronized {
 temp = value;
 value = temp + 1;
 }
 return temp;
 }
}

Art of Multiprocessor
Programming

40

An Aside: Java™

public class Counter {
 private long value;

 public long getAndIncrement() {
 synchronized {
 temp = value;
 value = temp + 1;
 }
 return temp;
 }
}

Synchronized block

Art of Multiprocessor
Programming

41

An Aside: Java™

public class Counter {
 private long value;

 public long getAndIncrement() {
 synchronized {
 temp = value;
 value = temp + 1;
 }
 return temp;
 }
}

Mutual Exclusion

Art of Multiprocessor
Programming

42

Mutual Exclusion or “Alice &
Bob share a pond”

A B

Art of Multiprocessor
Programming

43

Alice has a pet

A B

Art of Multiprocessor
Programming

44

Bob has a pet

A B

Art of Multiprocessor
Programming

45

The Problem

A B

The pets don’t
get along

Art of Multiprocessor Programming 46

Formalizing the Problem

• Two types of formal properties in
asynchronous computation:

• Safety Properties
– Nothing bad happens ever

• Liveness Properties
– Something good happens eventually

Art of Multiprocessor Programming 47

Formalizing our Problem

• Mutual Exclusion
– Both pets never in pond

simultaneously
– This is a safety property

• No Deadlock
– if only one wants in, it gets in
– if both want in, one gets in.
– This is a liveness property

Art of Multiprocessor Programming 48

Simple Protocol

• Idea
– Just look at the pond

• Gotcha
– Trees obscure the view

Art of Multiprocessor Programming 49

Interpretation

• Threads can’t “see” what other
threads are doing

• Explicit communication required
for coordination

Art of Multiprocessor Programming 50

Cell Phone Protocol

• Idea
– Bob calls Alice (or vice-versa)

• Gotcha
– Bob takes shower
– Alice recharges battery
– Bob out shopping for pet food …

Art of Multiprocessor Programming 51

Interpretation

• Message-passing doesn’t work
• Recipient might not be

– Listening
– There at all

• Communication must be
– Persistent (like writing)
– Not transient (like speaking)

Art of Multiprocessor
Programming

52

Can Protocol

co
la

co
la

Art of Multiprocessor
Programming

53

Bob conveys a bit

A B

co
la

Art of Multiprocessor
Programming

54

Bob conveys a bit

A B

cola

Art of Multiprocessor Programming 55

Can Protocol

• Idea
– Cans on Alice’s windowsill
– Strings lead to Bob’s house
– Bob pulls strings, knocks over cans

• Gotcha
– Cans cannot be reused
– Bob runs out of cans

Art of Multiprocessor Programming 56

Interpretation

• Cannot solve mutual exclusion with
interrupts
– Sender sets fixed bit in receiver’s

space
– Receiver resets bit when ready
– Requires unbounded number of

inturrupt bits

Art of Multiprocessor
Programming

57

Flag Protocol

A B

Art of Multiprocessor
Programming

58

Alice’s Protocol (sort of)

A B

Art of Multiprocessor
Programming

59

Bob’s Protocol (sort of)

A B

Art of Multiprocessor Programming 60

Alice’s Protocol

• Raise flag
• Wait until Bob’s flag is down
• Unleash pet
• Lower flag when pet returns

Art of Multiprocessor Programming 61

Bob’s Protocol

• Raise flag
• Wait until Alice’s flag is down
• Unleash pet
• Lower flag when pet returns

da
ng

er
!

Art of Multiprocessor Programming 62

Bob’s Protocol (2nd try)

• Raise flag
• While Alice’s flag is up

– Lower flag
– Wait for Alice’s flag to go down
– Raise flag

• Unleash pet
• Lower flag when pet returns

Art of Multiprocessor Programming 63

Bob’s Protocol

• Raise flag
• While Alice’s flag is up

– Lower flag
– Wait for Alice’s flag to go down
– Raise flag

• Unleash pet
• Lower flag when pet returns

Bob defers
to Alice

Art of Multiprocessor Programming 64

The Flag Principle

• Raise the flag
• Look at other’s flag
• Flag Principle:

– If each raises and looks, then
– Last to look must see both flags up

Art of Multiprocessor Programming 65

Proof of Mutual Exclusion

• Assume both pets in pond
– Derive a contradiction
– By reasoning backwards

• Consider the last time Alice and Bob
each looked before letting the pets
in

• Without loss of generality assume
Alice was the last to look…

Art of Multiprocessor
Programming

66

Proof

time

Alice’s last look

Alice last raised her flag

Bob’s last
look

QED

Alice must have seen Bob’s Flag. A Contradiction

Bob last raised
flag

Art of Multiprocessor Programming 67

Proof of No Deadlock

• If only one pet wants in, it gets in.

Art of Multiprocessor Programming 68

Proof of No Deadlock

• If only one pet wants in, it gets in.
• Deadlock requires both continually

trying to get in.

Art of Multiprocessor Programming 69

Proof of No Deadlock

• If only one pet wants in, it gets in.
• Deadlock requires both continually

trying to get in.
• If Bob sees Alice’s flag, he gives

her priority (a gentleman…)

QED

Art of Multiprocessor Programming 70

Remarks

• Protocol is unfair
– Bob’s pet might never get in

• Protocol uses waiting
– If Bob is eaten by his pet, Alice’s pet

might never get in

Art of Multiprocessor Programming 71

Moral of Story

•Mutual Exclusion cannot be solved
by

–transient communication (cell phones)
– interrupts (cans)

•It can be solved by
– one-bit shared variables
– that can be read or written

Art of Multiprocessor Programming 72

The Arbiter Problem (an
aside)

Pick a
point

Pick a
point

Art of Multiprocessor Programming 73

The Fable Continues

• Alice and Bob fall in love & marry

Art of Multiprocessor Programming 74

The Fable Continues

• Alice and Bob fall in love & marry
• Then they fall out of love & divorce

– She gets the pets
– He has to feed them

Art of Multiprocessor Programming 75

The Fable Continues

• Alice and Bob fall in love & marry
• Then they fall out of love & divorce

– She gets the pets
– He has to feed them

• Leading to a new coordination
problem: Producer-Consumer

Art of Multiprocessor
Programming

76

Bob Puts Food in the Pond

A

Art of Multiprocessor
Programming

77

mmm
…

Alice releases her pets to
Feed

Bmmm
…

Art of Multiprocessor Programming 78

Producer/Consumer

• Alice and Bob can’t meet
– Each has restraining order on other
– So he puts food in the pond
– And later, she releases the pets

• Avoid
– Releasing pets when there’s no food
– Putting out food if uneaten food

remains

Art of Multiprocessor Programming 79

Producer/Consumer

• Need a mechanism so that
– Bob lets Alice know when food has

been put out
– Alice lets Bob know when to put out

more food

Art of Multiprocessor
Programming

80

Surprise Solution

A B

co
la

Art of Multiprocessor
Programming

81

Bob puts food in Pond

A B

co
la

Art of Multiprocessor
Programming

82

Bob knocks over Can

A B

cola

Art of Multiprocessor
Programming

83

Alice Releases Pets

A B

cola

yum… B
yum…

Art of Multiprocessor
Programming

84

Alice Resets Can when Pets
are Fed

A B

co
la

Art of Multiprocessor
Programming

85

Pseudocode

while (true) {
 while (can.isUp()){};
 pet.release();
 pet.recapture();
 can.reset();
}

Alice’s code

Art of Multiprocessor
Programming

86

Pseudocode

while (true) {
 while (can.isUp()){};
 pet.release();
 pet.recapture();
 can.reset();
}

Alice’s code

while (true) {
 while (can.isDown()){};
 pond.stockWithFood();
 can.knockOver();
}

Bob’s code

Art of Multiprocessor Programming 87

Correctness

• Mutual Exclusion
– Pets and Bob never together in pond

Art of Multiprocessor Programming 88

Correctness
• Mutual Exclusion

– Pets and Bob never together in pond

• No Starvation
if Bob always willing to feed, and pets

always famished, then pets eat
infinitely often.

Art of Multiprocessor Programming 89

Correctness
• Mutual Exclusion

– Pets and Bob never together in pond
• No Starvation

if Bob always willing to feed, and pets
always famished, then pets eat
infinitely often.

• Producer/Consumer
The pets never enter pond unless there

is food, and Bob never provides food
if there is unconsumed food.

safety

liveness

safety

Art of Multiprocessor
Programming

90

Could Also Solve Using
Flags

A B

Art of Multiprocessor Programming 91

Waiting

• Both solutions use waiting
– while(mumble){}

• Waiting is problematic
– If one participant is delayed
– So is everyone else
– But delays are common &

unpredictable

Art of Multiprocessor Programming 92

The Fable drags on …

• Bob and Alice still have issues

Art of Multiprocessor Programming 93

The Fable drags on …

• Bob and Alice still have issues
• So they need to communicate

Art of Multiprocessor Programming 94

The Fable drags on …

• Bob and Alice still have issues
• So they need to communicate
• So they agree to use billboards …

Art of Multiprocessor
Programming

95

E
1

D
2C

3

Billboards are Large

B
3A

1

Letter
Tiles

From Scrabble™ box

Art of Multiprocessor
Programming

96

E
1

D
2C

3

Write One Letter at a Time …

B
3A

1

W
4
A

1
S

1

H
4

Art of Multiprocessor
Programming

97

To post a message

W
4
A

1
S

1
H

4
A

1
C

3
R

1
T

1
H

4
E

1

whe
w

Art of Multiprocessor
Programming

98

S
1

Let’s send another
message

S
1
E

1
L

1
L

1
L

1
V

4

L
1 A

1

M
3

A
1

A
1

P
3

Art of Multiprocessor
Programming

99

Uh-Oh

A
1

C
3

R
1

T
1
H

4
E

1
S

1
E

1
L

1
L

1

L
1

OK

Art of Multiprocessor Programming 100

Readers/Writers

• Devise a protocol so that
– Writer writes one letter at a time
– Reader reads one letter at a time
– Reader sees

• Old message or new message
• No mixed messages

Art of Multiprocessor Programming 101

Readers/Writers
(continued)

• Easy with mutual exclusion
• But mutual exclusion requires

waiting
– One waits for the other
– Everyone executes sequentially

• Remarkably
– We can solve R/W without mutual

exclusion

Art of Multiprocessor Programming 102

Why do we care?

• We want as much of the code as
possible to execute concurrently (in
parallel)

• A larger sequential part implies
reduced performance

• Amdahl’s law: this relation is not
linear…

Art of Multiprocessor Programming 103

Amdahl’s Law

OldExecutionTime
NewExecutionTimeSpeedup=

…of computation given n CPUs instead of 1

Art of Multiprocessor Programming 104

Amdahl’s Law

− + p
p

n

1

1
Speedup=

Art of Multiprocessor Programming 105

Amdahl’s Law

− + p
p

n

1

1
Speedup=

Parallel
fraction

Art of Multiprocessor Programming 106

Amdahl’s Law

− + p
p

n

1

1
Speedup=

Parallel
fraction

Sequential
fraction

Art of Multiprocessor Programming 107

Amdahl’s Law

− + p
p

n

1

1
Speedup=

Parallel
fraction

Number of
processors

Sequential
fraction

Art of Multiprocessor
Programming

108

Example

• Ten processors
• 60% concurrent, 40% sequential
• How close to 10-fold speedup?

Art of Multiprocessor
Programming

109

Example

• Ten processors
• 60% concurrent, 40% sequential
• How close to 10-fold speedup?

10
6.0

6.01

1

+−
Speedup=2.17=

Art of Multiprocessor
Programming

110

Example

• Ten processors
• 80% concurrent, 20% sequential
• How close to 10-fold speedup?

Art of Multiprocessor
Programming

111

Example

• Ten processors
• 80% concurrent, 20% sequential
• How close to 10-fold speedup?

10
8.0

8.01

1

+−
Speedup=3.57=

Art of Multiprocessor
Programming

112

Example

• Ten processors
• 90% concurrent, 10% sequential
• How close to 10-fold speedup?

Art of Multiprocessor
Programming

113

Example

• Ten processors
• 90% concurrent, 10% sequential
• How close to 10-fold speedup?

10
9.0

9.01

1

+−
Speedup=5.26=

Art of Multiprocessor
Programming

114

Example

• Ten processors
• 99% concurrent, 01% sequential
• How close to 10-fold speedup?

Art of Multiprocessor
Programming

115

Example

• Ten processors
• 99% concurrent, 01% sequential
• How close to 10-fold speedup?

10
99.0

99.01

1

+−
Speedup=9.17=

Art of Multiprocessor Programming 116

The Moral

• Making good use of our multiple
processors (cores) means

• Finding ways to effectively
parallelize our code
– Minimize sequential parts
– Reduce idle time in which threads

wait without

Art of Multiprocessor Programming 117

Multicore Programming

• This is what this course is about…
– The % that is not easy to make

concurrent yet may have a large
impact on overall speedup

• Next week:
– A more serious look at mutual

exclusion

Art of Multiprocessor
Programming

118

This work is licensed under a
Creative Commons Attribution-ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “The Art of

Multiprocessor Programming” (but not in any way that
suggests that the authors endorse you or your use of the
work).

– Share Alike. If you alter, transform, or build upon this
work, you may distribute the resulting work only under the
same, similar or a compatible license.

• For any reuse or distribution, you must make clear to others
the license terms of this work. The best way to do this is with
a link to
– http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get
permission from the copyright holder.

• Nothing in this license impairs or restricts the author's moral
rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

