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Moore’s Law

Clock 
speed 

flattening 
sharply

Transistor 
count still 

rising
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Still on some of your 
desktops: The Uniprocesor

memory

cpu
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In the Enterprise: 
The Shared Memory 

Multiprocessor
(SMP) 

cache

BusBus

shared memory

cachecache
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Your New Desktop: 
The Multicore Processor

(CMP) 

cache

BusBus

shared memory

cachecache
All on the 
same chip

Sun 
T2000
Niagar
a
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Multicores Are Here

• “Intel's Intel ups ante with 4-core chip. New 
microprocessor, due this year, will be faster, 
use less electricity...” [San Fran Chronicle]

• “AMD will launch a dual-core version of its 
Opteron server processor at an event in New 
York on April 21.” [PC World]

• “Sun’s Niagara…will have eight cores, each 
core capable of running 4 threads in parallel, 
for 32 concurrently running threads. ….” 
[The Inquirer]
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Why do we care?

• Time no longer cures software 
bloat
– The “free ride” is over

• When you double your program’s 
path length
– You can’t just wait 6 months
– Your software must somehow exploit 

twice as much concurrency
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Traditional Scaling Process

User code

Traditional
Uniprocessor 

Speedup
1.8x1.8x

7x7x

3.6x3.6x

Time: Moore’s law
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Multicore Scaling Process

User code

Multicore

Speedup 1.8x1.8x

7x7x

3.6x3.6x

Unfortunately, not so simple…
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Real-World Scaling Process

1.8x1.8x 2x2x 2.9x2.9x

User code

Multicore

Speedup

Parallelization and Synchronization 
require great care… 
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Multicore Programming:  
Course Overview

• Fundamentals
– Models, algorithms, impossibility

• Real-World programming
– Architectures
– Techniques
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Multicore Programming:  
Course Overview

• Fundamentals
– Models, algorithms, impossibility

• Real-World programming
– Architectures
– Techniques

We don’t n
ecessarily

 

want t
o m

ake 

you experts
…
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Sequential Computation

memory

object object

thread
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Concurrent Computation

memory

object object

th
re

ad
s
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Asynchrony

• Sudden unpredictable delays
– Cache misses (short)
– Page faults (long)
– Scheduling quantum used up (really 

long)
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Model Summary

• Multiple threads
– Sometimes called processes

• Single shared memory
• Objects live in memory
• Unpredictable asynchronous 

delays
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Road Map

• We are going to focus on principles 
first, then practice
– Start with idealized models
– Look at simplistic problems
– Emphasize correctness over 

pragmatism
– “Correctness may be theoretical, but 

incorrectness has practical impact”
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Concurrency Jargon

• Hardware
– Processors

• Software
– Threads, processes

• Sometimes OK to confuse them, 
sometimes not.
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Parallel Primality Testing

• Challenge
– Print primes from 1 to 1010

• Given
– Ten-processor multiprocessor
– One thread per processor

• Goal
– Get ten-fold speedup (or close)
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Load Balancing

• Split the work evenly
• Each thread tests range of 109

…

…109 10102·1091

P0 P1 P9
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Procedure for Thread i

void primePrint {
  int i = ThreadID.get(); // IDs in {0..9}
  for (j = i*109+1, j<(i+1)*109; j++) {
    if (isPrime(j))
      print(j);
  }
}
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Issues

• Higher ranges have fewer primes
• Yet larger numbers harder to test
• Thread workloads

– Uneven
– Hard to predict
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Issues

• Higher ranges have fewer primes
• Yet larger numbers harder to test
• Thread workloads

– Uneven
– Hard to predict

• Need dynamic load balancing
re

jecte
d
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17

18

19

Shared Counter

each thread 
takes a 
number
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Procedure for Thread i

int counter = new Counter(1);
    
void primePrint {
  long j = 0;
  while (j < 1010) {
    j = counter.getAndIncrement();
    if (isPrime(j))
      print(j);
  }
}



Art of Multiprocessor 
Programming

26

Counter counter = new Counter(1);
    
void primePrint {
  long j = 0;
  while (j < 1010) {
    j = counter.getAndIncrement();
    if (isPrime(j))
      print(j);
  }
}

Procedure for Thread i

Shared counter
object
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Where Things Reside

cache

BusBus

cachecache

1

shared counter

shared 
memory

void primePrint {
  int i = 
ThreadID.get(); // IDs 
in {0..9}
  for (j = i*109+1, 
j<(i+1)*109; j++) {
    if (isPrime(j))
      print(j);
  }
}

code

Local 
variables
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Procedure for Thread i

Counter counter = new Counter(1);
    
void primePrint {
  long j = 0;
  while (j < 1010) {
    j = counter.getAndIncrement();
    if (isPrime(j))
      print(j);
  }
}

Stop when every 
value taken
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Counter counter = new Counter(1);
    
void primePrint {
  long j = 0;
  while (j < 1010) {
    j = counter.getAndIncrement();
    if (isPrime(j))
      print(j);
  }
}

Procedure for Thread i

Increment & 
return each new 

value
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Counter Implementation

public class Counter {
  private long value;

  public long getAndIncrement() {
    return value++;
  }
}
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Counter Implementation

public class Counter {
  private long value;

  public long getAndIncrement() {
    return value++;
  }
} OK for single thread,

not for concurrent threads



Art of Multiprocessor 
Programming

32

What It Means

public class Counter {
  private long value;

  public long getAndIncrement() {
    return value++;
  }
}
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What It Means

public class Counter {
  private long value;

  public long getAndIncrement() {
    return value++;
  }
}

 temp  = value;
 value = value + 1;
 return temp;
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time

Not so good…

Value… 1

read 
1

read 
1

write 
2

read 
2

write 
3

write 
2

2 3 2
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Is this problem inherent?

If we could only glue reads and writes… 

read

write read

write
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Challenge

public class Counter {
  private long value;

  public long getAndIncrement() {
    temp  = value;
    value = temp + 1;
    return temp;
  }
}
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Challenge

public class Counter {
  private long value;

  public long getAndIncrement() {
    temp  = value;
    value = temp + 1;
    return temp;
  }
}

Make these steps 
atomic (indivisible)



Art of Multiprocessor 
Programming

38

Hardware Solution

public class Counter {
  private long value;

  public long getAndIncrement() {
    temp  = value;
    value = temp + 1;
    return temp;
  }
} ReadModifyWrite()

instruction
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An Aside: Java™

public class Counter {
  private long value;

  public long getAndIncrement() {
    synchronized {
      temp  = value;
      value = temp + 1;
      }
    return temp;
  }
}
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An Aside: Java™

public class Counter {
  private long value;

  public long getAndIncrement() {
    synchronized {
      temp  = value;
      value = temp + 1;
      }
    return temp;
  }
}

Synchronized block
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An Aside: Java™

public class Counter {
  private long value;

  public long getAndIncrement() {
    synchronized {
      temp  = value;
      value = temp + 1;
      }
    return temp;
  }
}

Mutual Exclusion
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Mutual Exclusion or “Alice & 
Bob share a pond”

A B
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Alice has a pet

A B
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Bob has a pet

A B
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The Problem

A B

The pets don’t
get along
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Formalizing the Problem

• Two types of formal properties in 
asynchronous computation: 

• Safety Properties
– Nothing bad happens ever

• Liveness Properties 
– Something good happens eventually
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Formalizing our Problem

• Mutual Exclusion
– Both pets never in pond 

simultaneously
– This is a safety property

• No Deadlock
– if only one wants in, it gets in
– if both want in, one gets in.
– This is a liveness property
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Simple Protocol

• Idea
– Just look at the pond

• Gotcha
– Trees obscure the view
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Interpretation

• Threads can’t “see” what other 
threads are doing

• Explicit communication required 
for coordination
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Cell Phone Protocol

• Idea
– Bob calls Alice (or vice-versa)

• Gotcha
– Bob takes shower
– Alice recharges battery
– Bob out shopping for pet food …
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Interpretation

• Message-passing doesn’t work
• Recipient might not be

– Listening
– There at all

• Communication must be
– Persistent (like writing)
– Not transient (like speaking)
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Can Protocol

co
la

co
la
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Bob conveys a bit

A B

co
la
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Bob conveys a bit

A B

cola
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Can Protocol

• Idea
– Cans on Alice’s windowsill
– Strings lead to Bob’s house
– Bob pulls strings, knocks over cans

• Gotcha
– Cans cannot be reused
– Bob runs out of cans
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Interpretation

• Cannot solve mutual exclusion with 
interrupts
– Sender sets fixed bit in receiver’s 

space
– Receiver resets bit when ready
– Requires unbounded number of 

inturrupt bits
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Flag Protocol

A B
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Alice’s Protocol (sort of)

A B
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Bob’s Protocol (sort of)

A B
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Alice’s Protocol

• Raise flag
• Wait until Bob’s flag is down
• Unleash pet
• Lower flag when pet returns
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Bob’s Protocol

• Raise flag
• Wait until Alice’s flag is down
• Unleash pet
• Lower flag when pet returns

da
ng

er
!
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Bob’s Protocol (2nd try)

• Raise flag
• While Alice’s flag is up

– Lower flag
– Wait for Alice’s flag to go down
– Raise flag

• Unleash pet
• Lower flag when pet returns
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Bob’s Protocol

• Raise flag
• While Alice’s flag is up

– Lower flag
– Wait for Alice’s flag to go down
– Raise flag

• Unleash pet
• Lower flag when pet returns

Bob defers 
to Alice
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The Flag Principle

• Raise the flag
• Look at other’s flag
• Flag Principle:

– If each raises and looks, then
– Last to look must see both flags up
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Proof of Mutual Exclusion

• Assume both pets in pond
– Derive a contradiction
– By reasoning backwards

• Consider the last time Alice and Bob 
each looked before letting the pets 
in

• Without loss of generality assume 
Alice was the last to look… 
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Proof

time

Alice’s last look

Alice last raised her flag

Bob’s last 
look

QED

Alice must have seen Bob’s Flag. A Contradiction

Bob last raised 
flag
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Proof of No Deadlock

• If only one pet wants in, it gets in.
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Proof of No Deadlock

• If only one pet wants in, it gets in.
• Deadlock requires both continually 

trying to get in.
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Proof of No Deadlock

• If only one pet wants in, it gets in.
• Deadlock requires both continually 

trying to get in.
• If Bob sees Alice’s flag, he gives 

her priority (a gentleman…)

QED
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Remarks

• Protocol is unfair
– Bob’s pet might never get in

• Protocol uses waiting
– If Bob is eaten by his pet, Alice’s pet 

might never get in
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Moral of Story

•Mutual Exclusion cannot be solved 
by

–transient communication (cell phones)
– interrupts (cans)

•It can be solved by
–  one-bit shared variables 
–  that can be read or written 
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The Arbiter Problem (an 
aside)

Pick a 
point

Pick a 
point
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The Fable Continues

• Alice and Bob fall in love & marry
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The Fable Continues

• Alice and Bob fall in love & marry
• Then they fall out of love & divorce

– She gets the pets
– He has to feed them
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The Fable Continues

• Alice and Bob fall in love & marry
• Then they fall out of love & divorce

– She gets the pets
– He has to feed them

• Leading to a new coordination 
problem: Producer-Consumer 
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Bob Puts Food in the Pond

A
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mmm
…

Alice releases her pets to 
Feed

Bmmm
…
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Producer/Consumer

• Alice and Bob can’t meet
– Each has restraining order on other
– So he puts food in the pond
– And later, she releases the pets

• Avoid
– Releasing pets when there’s no food
– Putting out food if uneaten food 

remains
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Producer/Consumer

• Need a mechanism so that
– Bob lets Alice know when food has 

been put out
– Alice lets Bob know when to put out 

more food
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Surprise Solution

A B

co
la
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Bob puts food in Pond

A B

co
la
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Bob knocks over Can

A B

cola
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Alice Releases Pets

A B

cola

yum… B
yum…
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Alice Resets Can when Pets 
are Fed

A B

co
la
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Pseudocode

while (true) {
  while (can.isUp()){};
  pet.release();
  pet.recapture();
  can.reset();
}  

Alice’s code
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Pseudocode

while (true) {
  while (can.isUp()){};
  pet.release();
  pet.recapture();
  can.reset();
}  

Alice’s code

while (true) {
  while (can.isDown()){};
  pond.stockWithFood();
  can.knockOver();
}  

Bob’s code
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Correctness

• Mutual Exclusion
– Pets and Bob never together in pond
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Correctness
• Mutual Exclusion

– Pets and Bob never together in pond

• No Starvation
if Bob always willing to feed, and pets 

always famished, then pets eat 
infinitely often.
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Correctness
• Mutual Exclusion

– Pets and Bob never together in pond
• No Starvation

if Bob always willing to feed, and pets 
always famished, then pets eat 
infinitely often.

• Producer/Consumer
The pets never enter pond unless there 

is food, and Bob never provides food 
if there is unconsumed food.

safety

liveness

safety
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Could Also Solve Using 
Flags

A B
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Waiting

• Both solutions use waiting
– while(mumble){}

• Waiting is problematic
– If one participant is delayed
– So is everyone else
– But delays are common & 

unpredictable
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The Fable drags on …

• Bob and Alice still have issues
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The Fable drags on …

• Bob and Alice still have issues
• So they need to communicate
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The Fable drags on …

• Bob and Alice still have issues
• So they need to communicate
• So they agree to use billboards …
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E
1

D
2C

3

Billboards are Large

B
3A

1

Letter
Tiles

From Scrabble™ box
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E
1

D
2C

3

Write One Letter at a Time …

B
3A

1

W
4
A

1
S

1

H
4
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To post a message

W
4
A

1
S

1
H

4
A

1
C

3
R

1
T

1
H

4
E

1

whe
w



Art of Multiprocessor 
Programming

98

S
1

Let’s send another 
message

S
1
E

1
L

1
L

1
L

1
V

4

L
1 A

1

M
3

A
1

A
1

P
3
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Uh-Oh

A
1

C
3

R
1

T
1
H

4
E

1
S

1
E

1
L

1
L

1

L
1

OK



Art of Multiprocessor Programming 100

Readers/Writers

• Devise a protocol so that
– Writer writes one letter at a time
– Reader reads one letter at a time
– Reader sees

• Old message or new message
• No mixed messages
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Readers/Writers 
(continued)

• Easy with mutual exclusion
• But mutual exclusion requires 

waiting
– One waits for the other
– Everyone executes sequentially

• Remarkably
– We can solve R/W without mutual 

exclusion
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Why do we care?

• We want as much of the code as 
possible to execute concurrently (in 
parallel)

• A larger sequential part implies 
reduced performance  

• Amdahl’s law: this relation is not 
linear…
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Amdahl’s Law

OldExecutionTime
NewExecutionTimeSpeedup=

…of computation given n CPUs instead of 1
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Amdahl’s Law

− + p
p

n

1

1
Speedup=
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Amdahl’s Law

− + p
p

n

1

1
Speedup=

Parallel 
fraction
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Amdahl’s Law

− + p
p

n

1

1
Speedup=

Parallel 
fraction

Sequential 
fraction
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Amdahl’s Law

− + p
p

n

1

1
Speedup=

Parallel 
fraction

Number of 
processors

Sequential 
fraction
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Example

• Ten processors
• 60% concurrent, 40% sequential
• How close to 10-fold speedup?
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Example

• Ten processors
• 60% concurrent, 40% sequential
• How close to 10-fold speedup?

10
6.0

6.01

1

+−
Speedup=2.17=
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Example

• Ten processors
• 80% concurrent, 20% sequential
• How close to 10-fold speedup?
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Example

• Ten processors
• 80% concurrent, 20% sequential
• How close to 10-fold speedup?

10
8.0

8.01

1

+−
Speedup=3.57=
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Example

• Ten processors
• 90% concurrent, 10% sequential
• How close to 10-fold speedup?
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Example

• Ten processors
• 90% concurrent, 10% sequential
• How close to 10-fold speedup?

10
9.0

9.01

1

+−
Speedup=5.26=
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Example

• Ten processors
• 99% concurrent, 01% sequential
• How close to 10-fold speedup?
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Example

• Ten processors
• 99% concurrent, 01% sequential
• How close to 10-fold speedup?

10
99.0

99.01

1

+−
Speedup=9.17=
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The Moral

• Making good use of our multiple 
processors (cores) means 

• Finding ways to effectively 
parallelize our code
– Minimize sequential parts
– Reduce idle time in which threads 

wait without
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Multicore Programming

• This is what this course is about… 
– The % that is not easy to make 

concurrent yet may have a large 
impact on overall speedup

• Next week: 
– A more serious look at mutual 

exclusion
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This work is licensed under a 
Creative Commons Attribution-ShareAlike 2.5 License. 

• You are free:
– to Share — to copy, distribute and transmit the work 
– to Remix — to adapt the work 

• Under the following conditions:
– Attribution. You must attribute the work to “The Art of 

Multiprocessor Programming” (but not in any way that 
suggests that the authors endorse you or your use of the 
work). 

– Share Alike. If you alter, transform, or build upon this 
work, you may distribute the resulting work only under the 
same, similar or a compatible license. 

• For any reuse or distribution, you must make clear to others 
the license terms of this work. The best way to do this is with 
a link to
– http://creativecommons.org/licenses/by-sa/3.0/. 

• Any of the above conditions can be waived if you get 
permission from the copyright holder. 

• Nothing in this license impairs or restricts the author's moral 
rights. 
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