
Java Concurrency: Thread Safety

Parallel Programming Practice

Susanne Cech Previtali
Thomas Gross

Last update: 2009-10-19, 09:27

2102: Parallel Programming Practice, HS 2009

Practical view on the memory model

Multiple threads share the same mutable shared variable without
appropriate synchronization

‣ Program is broken

‣ Incorrectly synchronized program

How to fix it

‣ Don’t share the variable

‣ Make the variable immutable (and initialize properly)

‣ Use synchronization whenever accessing the variable

2

2102: Parallel Programming Practice, HS 2009

Categorization of variables

3

Local ⇒ stack Shared ⇒ heap

Immutable Constant values
final fields,
Strings

Mutable
local variables,
arguments ⇒ stack

2102: Parallel Programming Practice, HS 2009

Today

Thread safety

‣ Atomicity

‣ Locking

Sharing objects

4

2102: Parallel Programming Practice, HS 2009

Thread safety

About state, but applied to code

Thread safe classes

‣ Class encapsulate its state

Thread safe programs

‣ May include not thread-safe classes

5

2102: Parallel Programming Practice, HS 2009

Definition

A class is thread-safe if

‣ it behaves correctly when accessed from multiple threads

‣ regardless of the interleaving of the execution of those threads

‣ with no additional synchronization on the part of the calling code

Thread-safe classes encapsulate any needed synchronization so that clients
need not provide their own

6

Goetz et al.: Java Concurrency in Practice, Chapter 2, p. 18.

conforms to its specification

2102: Parallel Programming Practice, HS 2009

Stateless Classes

Stateless classes are always thread-safe

‣ No fields

‣ References no fields from other classes

‣ Only transient state in local variables

7

@ThreadSafe
public class StatelessFactorizer implements Servlet {
 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 encodeIntoResponse(resp, factors);
 }
}

✓

2102: Parallel Programming Practice, HS 2009

Consider state addition

No happens-before ordering

8

public class UnsafeCountingFactorizer implements Servlet {
 private long count = 0;
 public long getCount() { return count; }
 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 count++;
 encodeIntoResponse(resp, factors);
 }
}

2102: Parallel Programming Practice, HS 2009

Atomicity

9

2102: Parallel Programming Practice, HS 2009

Race conditions

10

“He’s not here”“He’s not here”

When correctness depends on the relative timing or interleaving of threads

‣ Right answer relies on lucky timing (no happens-before ordering)

Starbucks example

Check-then-act

‣ Stale (“old”) observation is used to decide what to do next

‣ State change in between

2102: Parallel Programming Practice, HS 2009

Kinds of race conditions

Read-modify-write operation

‣ Increment operation

Check-then-act operations

‣ Lazy initialization

11

2102: Parallel Programming Practice, HS 2009

@NotThreadSafe
public class UnsafeCountingFactorizer implements Servlet {
 private long count = 0;
 public long getCount() { return count; }
 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 count++; // read-modify-write operation
 encodeIntoResponse(resp, factors);
 }
}

Read-modify-write operations

12

✕

T1 and T2 may write
the same value

2102: Parallel Programming Practice, HS 2009

Increment operation not atomic

Read-modify-write operations

‣ Define a a transformation of an object’s state in terms of its previous
state

‣ counter++;
‣ Know its previous value and make sure no one else changes/uses

the value while you are updating

Problem: Lost updates

13

T1

T2

R(count):9 ADD 9,1 W(count,10)

R(count):9 ADD 9,1 W(count,10)

2102: Parallel Programming Practice, HS 2009

Lazy initialization

‣ To defer initialization until the object is needed

‣ To ensure that it is initialized only once

Check-then-act operations

14

@NotThreadSafe
public class LazyInitRace {
 private ExpensiveObject instance = null;
 public ExpensiveObject getInstance() {
 if (instance == null)
 instance = new ExpensiveObject();
 return instance;
 }
}

✕

T1 and T2 may
receive two
different objects

2102: Parallel Programming Practice, HS 2009

Atomic operations

Operations A and B are atomic with respect to each other if

‣ from the perspective of TA when TB executes B

‣ either all of B has executed or none of it has

An atomic operation is one that

‣ Is atomic with respect to all operations, including itself, that operate on
the same state

15

2102: Parallel Programming Practice, HS 2009

Compound actions

Compound actions

‣ Sequences of operations that must be executed atomically to remain
thread-safe

Examples

‣ Read-modify-write operations

‣ Check-then-act operations

16

2102: Parallel Programming Practice, HS 2009

Atomicity for compound actions

Mechanisms

‣ Atomic variable classes (≥ Java 1.5)

‣ Locking

‣ Synchronized

17

2102: Parallel Programming Practice, HS 2009

Example fixed

18

@ThreadSafe
public class CountingFactorizer implements Servlet {
 private AtomicLong count = new AtomicLong(0);
 public long getCount() { return count.get(); }
 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 count.incrementAndGet(); // incr. and return current value
 encodeIntoResponse(resp, factors);
 }
}

✓

2102: Parallel Programming Practice, HS 2009

Atomic variable classes

19

2102: Parallel Programming Practice, HS 2009

Atomic variable classes

Package java.util.concurrent.atomic
‣ Lock-free and thread-safe

‣ Extension of volatile values, fields, and array elements

‣ Conditional update operation

20

boolean compareAndSet(expectedValue, updatedValue) {
 if (this.value == expectedValue) {
 this.value = updatedValue;
 return true;
 }
 return false;
}

atomic operation

Pseudo code!

2102: Parallel Programming Practice, HS 2009

Categorization of classes

Single value classes

‣ AtomicBoolean, AtomicInteger, AtomicLong, AtomicReference
Field updater classes

‣ AtomicIntegerFieldUpdater, AtomicLongFieldUpdater,
AtomicReferenceFieldUpdater

Array classes

‣ AtomicIntegerArray, AtomicLongArray, AtomicReferenceArray
Markable classes

‣ AtomicMarkableReference, AtomicStampedReference

21

2102: Parallel Programming Practice, HS 2009

1 Single value classes

Reads and writes to a single variable

Utility methods

‣ For AtomicLong and AtomicInteger

22

X get()
set(newValue)
compareAndSet(expect, update)
weakCompareAndSet(expect, update)

‣ Similar to compareAndSet()

‣ More efficient in the normal case

‣ May fail for no apparent reason

‣ Repeated invocation will eventually succeed

2102: Parallel Programming Practice, HS 2009

Memory effects of single value classes

23

Method Has memory effect of

get() volatile read

set() volatile write

weakCompareAndSet() ordered with other ops on variable,
non-volatile access

read-and-update operations volatile read and volatile write

compareAndSet()

AtomicLong, AtomicInteger

addAndGet(), getAndAdd()
decrementAndGet(), getAndDecrement()
incrementAndGet(), getAndIncrement()

All single value classes

2102: Parallel Programming Practice, HS 2009

2 Field updater classes

“Wrappers” around volatile field

‣ Reflection-based

‣ Compare-and-set operations for specific class-field pair

‣ Several fields of the same node are independently subject of atomic
updates

‣ Used inside Java library

Usage

‣ Occasionally need atomic get/set operations

24

2102: Parallel Programming Practice, HS 2009

Java library example

java.io.BufferedInputStream

25

protected volatile byte[] buf;
static AtomicReferenceFieldUpdater<BufferedInputStream, byte[]>
 bufUpdater = AtomicReferenceFieldUpdater.newUpdater
 (BufferedInputStream.class, byte[].class, “buf”);

type holding the updatable field

field type

field nameclass holding the field class of the field

if (bufUpdater.compareAndSet(this, buffer, null)) { ... }

updateobject expect

2102: Parallel Programming Practice, HS 2009

3 Atomic array classes

Array elements can be updated atomically

‣ AtomicIntegerArray
‣ AtomicLongArray
‣ AtomicReferenceArray<E>

Some methods

26

E get(int i)
boolean set(int i, E newVal)
E getAndSet(int i, E newVal)
boolean compareAndSet(int i, E expected, E update)
boolean weakCompareAndSet(int i, E expected, E update)

E..base class of elements
int for AtomicIntegerArray
long for AtomicLongArray

2102: Parallel Programming Practice, HS 2009

4 Markable classes

AtomicMarkableReference<V>
‣ Objects internally "boxed" [reference, boolean] pairs

‣ Pairs can be updated atomically

AtomicStampedReference<V>
‣ Objects internally "boxed" [reference, integer] pairs

‣ Pairs can be updated atomically

27

2102: Parallel Programming Practice, HS 2009

When atomic classes are not enough

28

@NotThreadSafe
public class UnsafeCachingFactorizer implements Servlet {
 private AtomicReference<BigInteger> lastNumber = new ...
 private AtomicReference<BigInteger[]> lastFactors = new ...
 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 if (i.equals(lastNumber.get())
 encodeIntoResponse(resp, lastFactors.get());
 else {
 BigInteger[] factors = factor(i);
 lastNumber.set(i); // must be updated
 lastFactors.set(factors); // atomically
 encodeIntoResponse(resp, factors);
 }
 }}

✕

2102: Parallel Programming Practice, HS 2009

Locking

29

2102: Parallel Programming Practice, HS 2009

Guarding state with locks

Make compound action atomic by

‣ Holding a lock for the entire duration of the compound action

‣ All accesses of the variable with the same lock

‣ reads and writes

A variable guarded by a lock

30

2102: Parallel Programming Practice, HS 2009 31

Intrinsic locks

synchronized (m) {
 ...
}

reference to an object that serves as lock

block of code guarded by lock

Only one thread at a time can execute a block of code guarded by a given
lock

‣ Synchronized blocks execute atomically with respect to one another

‣ No thread executing a synchronized block can observe another thread
to be in the middle of a synchronized block guarded by the same lock

2102: Parallel Programming Practice, HS 2009

Synchronized: poor performance

32

@ThreadSafe
public class SynchronizedFactorizer implements Servlet {
 @GuardedBy(“this”) private BigInteger lastNumber;
 @GuardedBy(“this”) private BigInteger[] lastFactors;
 public void synchronized service
 (ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 if (i.equals(lastNumber.get())
 encodeIntoResponse(resp, lastFactors.get());
 else {
 BigInteger[] factors = factor(i);
 lastNumber = i;
 lastFactors = factors;
 encodeIntoResponse(resp, factors);
 }
 }}

2102: Parallel Programming Practice, HS 2009

Locks and super-calls

⇒ deadlock

33

public class Widget {
 public synchronized doSmth() {

 }
}

public class LoggingWidget extends Widget {
 public synchronized doSmth() {
 System.out.println(“Logging: “ + toString());
 super.doSmth();
 }
}

What would happen if Java
had not taken care about it?
⇒ deadlock

2102: Parallel Programming Practice, HS 2009

Java solution: Reentrant locks

A thread that tries to acquire a lock that it already holds succeeds

Intrinsic locks are reentrant

‣ Locks are acquired on a per-thread-basis

‣ (rather than on a per-invocation-basis)

Acquisition count for each lock

34

owner: null
count: 0

owner: A
count: 2

lock not owned lock owned by A, acquired twice

2102: Parallel Programming Practice, HS 2009

Remarks

Acquiring a lock associated with an object

‣ Does not prevent other threads from accessing that object

‣ Prevents other threads from acquiring that same lock

It is up to you to create synchronization policies

35

2102: Parallel Programming Practice, HS 2009

Conventions: Synchronize everything

Synchronize any code path with object’s intrinsic lock

‣ Encapsulate mutable state within an object

Example

‣ java.util.Vector
Discussion

‣ Add a new method and forget to synchronize it

‣ Too little synchronization

‣ Too much synchronization ⇒ poor concurrency

36

if (!vector.contains(element))
 vector.add(element);

2102: Parallel Programming Practice, HS 2009

Poor concurrency

37

T1
L Ufactor(n)

T2

T3

L Ufactor(n)

L Ufactor(n)

Solution SynchronizedFactorizer (see Slide 21)

2102: Parallel Programming Practice, HS 2009

Conventions: Specific locks

Guard variables individually with specific locks

Class invariants that involve more than one variables

‣ All such variables must be guarded by the same lock

‣ Example

‣ SynchronizedFactorizer (see Slide 32)

38

Visibility!

2102: Parallel Programming Practice, HS 2009 39

@ThreadSafe
public class CachedFactorizer implements Servlet {
 @GuardedBy(“this”) private BigInteger lastNumber;
 @GuardedBy(“this”) private BigInteger[] lastFactors;
 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = null;
 synchronized (this) {
 if (i.equals(lastNumber)) factors = lastFactors.clone();
 }
 if (factors == null) {
 factors = factor(i);
 synchronized (this) {
 lastNumber = i;
 lastFactors = factors.clone();
 }
 }
 encodeIntoResponse(resp, factors);
 }
}

✓

2102: Parallel Programming Practice, HS 2009

Today

Thread safety

‣ Atomicity

‣ Locking

Sharing objects

40

2102: Parallel Programming Practice, HS 2009

It is all about visibility

Volatile variables

Locking

Publication: objects are made visible

‣ Thread confinement --- do not publish

‣ Immutability --- do not synchronize

‣ Safe publication

41

2102: Parallel Programming Practice, HS 2009 42

Publication vs Escape

An object is published when

‣ it has been made available outside of its current scope

‣ How?

‣ Store a reference where other code can access it

‣ Return a reference from a non-private method

‣ Pass a reference to a method in another class

‣ May break encapsulation

An object is escaped when

‣ It is published and should not have been published

‣ May break thread safety

2102: Parallel Programming Practice, HS 2009

Escaped objects

43

2102: Parallel Programming Practice, HS 2009

Problems with escaped objects

Consequences

‣ Any caller can modify object

Properties

‣ Publishing one object also publishes all its reachable objects

‣ Follow chain of references

‣ “Alien” method calls of a class C with object as argument

‣ Methods in other classes

‣ Overridable methods of C

44

2102: Parallel Programming Practice, HS 2009

How to escape

Store a reference in a public static field

Return a reference from a non-private method

Publish an inner class instance ⇒ publish this

45

2102: Parallel Programming Practice, HS 2009

Example escaped objects

46

public static Set<Secret> knownSecrets;

public void initialize() {
 knownSecrets = new HashSet<Secret>;
}

✕

class UnsafeStates {
 private String[] states = new String[] { “A”, “B”, ... };

 public String getStates() { return states; }
}

✕

2102: Parallel Programming Practice, HS 2009

Proper construction

Object is not properly constructed if this escapes during construction

‣ Consistent state only after constructor returns

Do not

‣ Start a thread in the constructor

‣ Call a overridable method in the constructor

47

2102: Parallel Programming Practice, HS 2009

Escaped This reference to Inner classes

Implicitly publishes ThisEscape instance

‣ Generated inner classes contains a reference to the outer class
48

public class ThisEscape {
 public ThisEscape(EventSource source) {
 source.registerListener(new EventListener() {
 public void onEvent(Event e) {
 doSomething(e);
 }
 });
 }

 void doSomething(Event e) {
 }
}

✕

2102: Parallel Programming Practice, HS 2009

Fixed example using factory method

This should not escape from that thread during construction

‣ Object not properly initialized

‣ Consistent state only after the constructor returns

Do not

‣ Start another thread from the constructor and

‣ explicitly pass this in thread’s constructor

‣ implicitly pass this via an inner class

‣ Call an overrideable method from the constructor

49

public class SafeListener {
 private final EventListener listener;
 private SafeListener() {
 listener = new EventListener() {
 public void onEvent(Event e) {
 doSomething(e);
 }
 };
 }
 public static SafeListener newInstance(EventSource source) {
 SafeListener safe = new SafeListener();
 source.registerListener(safe.listener);
 return safe;
 }
 void doSomething(Event e) { }
}

✓

