Parallel Programming Practice

Java Concurrency: Thread Safety

Susanne Cech Previtali
Thomas Gross

Last update: 2009-10-19, 09:27



Practical view on the memory model

Multiple threads share the same mutable shared variable without
appropriate synchronization

» Program is broken
» Incorrectly synchronized program
How to fix it
» Don’t share the variable
» Make the variable immutable (and initialize properly)

» Use synchronization whenever accessing the variable

2102: Parallel Programming Practice, HS 2009



Categorization of variables

L ocal = stack

Shared = heap

Immutable

Constant values

Mutable

local variables,
arguments = stack

2102: Parallel Programming Practice, HS 2009

final fields,
Strings




Today

Thread safety
» Atomicity
» Locking
Sharing objects

2102: Parallel Programming Practice, HS 2009



Thread safety

About state, but applied to code

Thread safe classes

» Class encapsulate its state

Thread safe programs

» May include not thread-safe classes

2102: Parallel Programming Practice, HS 2009



Definition

conforms to its specification
A class is thread-safe if/

» it behaves correctly when accessed from multiple threads
» regardless of the interleaving of the execution of those threads

» with no additional synchronization on the part of the calling code

Thread-safe classes encapsulate any needed synchronization so that clients
need not provide their own

Goetz et al.: Java Concurrency in Practice, Chapter 2, p. 18.

2102: Parallel Programming Practice, HS 2009 6



Stateless Classes

Stateless classes are always thread-safe
» No fields

» References no fields from other classes

» Only transient state in local variables

@ThreadSafe v
public class StatelessFactorizer implements Servlet {

public void service(ServletRequest req, ServletResponse resp) {
BigInteger 1 = extractFromRequest(req);
BigInteger[] factors = factor(i);
encodeIntoResponse(resp, factors);

2102: Parallel Programming Practice, HS 2009



Consider state addition

public class UnsafeCountingFactorizer implements Servlet {

private long count = 0;

public long getCount() { return count; }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger 1 = extractFromRequest(req);
BigInteger[] factors = factor(i);
count++;
encodeIntoResponse(resp, factors);

No happens-before ordering

2102: Parallel Programming Practice, HS 2009 8




Atomicity

2102: Parallel Programming Practice, HS 2009



Race conditions

When correctness depends on the relative timing or interleaving of threads
» Right answer relies on lucky timing (no happens-before ordering)

Starbucks example

“He’s not here” @ ) ' @ “He’s not here”

Check-then-act

» Stale (“old”) observation is used to decide what to do next

» State change in between

2102: Parallel Programming Practice, HS 2009 10



Kinds of race conditions

Read-modify-write operation
» Increment operation
Check-then-act operations

» Lazy initialization

2102: Parallel Programming Practice, HS 2009

11



Read-modify-write operations

@NotThreadSafe X
public class UnsafeCountingFactorizer implements Servlet {
private long count = 0;
public long getCount() { return count; }
public void service(ServletRequest req, ServletResponse resp) {
BigInteger 1 = extractFromRequest(req);
BigInteger[] factors = factor(i);
count++; // read-modify-write operation
encodeIntoResponse(resp, factors);

T1 and T2 may write
the same value

2102: Parallel Programming Practice, HS 2009 12



Problem: Lost updates

Increment operation not atomic

11 |RCcount):9

\ 4

ADD 9,1 ~ W(count,10)

Y
Y

12 R(count):9

ADD 9,1

W(count,10)

Read-modify-write operations

» Define a a transformation of an object’s state in terms of its previous
state

» counter++;

» Know its previous value and make sure no one else changes/uses
the value while you are updating

2102: Parallel Programming Practice, HS 2009



Check-then-act operations

Lazy initialization
» To defer initialization until the object is needed

» To ensure that it is initialized only once

@NotThreadSafe
public class LazyInitRace {
private ExpensiveObject instance = null;
public ExpensiveObject getInstance() {
1t (instance == null)
instance = new ExpensiveObject();
return instance;

} T1 and T2 may
receive two
2102: Parallel Programming Practice, HS 2009 different ObjeCtS

14




Atomic operations

Operations A and B are atomic with respect to each other if
» from the perspective of Ta when Tg executes B
» either all of B has executed or none of it has

An atomic operation is one that

» Is atomic with respect to all operations, including itself, that operate on
the same state

2102: Parallel Programming Practice, HS 2009 15



Compound actions

Compound actions

» Sequences of operations that must be executed atomically to remain
thread-safe

Examples
» Read-modify-write operations

» Check-then-act operations

2102: Parallel Programming Practice, HS 2009

16



Atomicity for compound actions

Mechanisms
» Atomic variable classes (> Java 1.5)
» Locking

» Synchronized

2102: Parallel Programming Practice, HS 2009

17



Example fixed

@ThreadSafe v
public class CountingFactorizer implements Servlet {
private AtomicLong count = new AtomiclLong(@);
public long getCount() { return count.get(); }
public void service(ServletRequest req, ServletResponse resp) {
BigInteger 1 = extractFromRequest(req);
BigInteger[] factors = factor(i);
count.incrementAndGet(); // incr. and return current value
encodeIntoResponse(resp, factors);

2102: Parallel Programming Practice, HS 2009 18



Atomic variable classes

2102: Parallel Programming Practice, HS 2009

19



Atomic variable classes

Package java.util.concurrent.atomic
» Lock-free and thread-safe
» Extension of volatile values, fields, and array elements

» Conditional update operation

boolean compareAndSet(expectedValue, updatedValue) {
1t (this.value == expectedValue) {
this.value = updatedValue;

[Pseudo code!j

return true;

}

return false;

atomic operation

2102: Parallel Programming Practice, HS 2009 20



Categorization of classes

Single value classes
» AtomicBoolean, AtomicInteger, AtomicLong, AtomicReference
Field updater classes

» AtomicIntegerFieldUpdater, AtomiclLongFieldUpdater,
AtomicReferenceFieldUpdater

Array classes
» AtomicIntegerArray, AtomiclLongArray, AtomicReferenceArray
Markable classes

» AtomicMarkableReference, AtomicStampedReference

2102: Parallel Programming Practice, HS 2009 21



1 Single value classes

Reads and writes to a single variable

X get()
set(newValue)
compareAndSet(expect, update)

weakCompareAndSet(expect, update)

v

Similar to compareAndSet()

More efficient in the normal case

v

v

May fail for no apparent reason

v

Repeated invocation will eventually succeed

Utility methods

» For AtomiclLong and AtomicInteger

2102: Parallel Programming Practice, HS 2009

22



Memory effects of single value classes

Method Has memory effect of

get() volatile read

set() volatile write
veakCompareanaset(y | ©dered with other ops on variabe,
read-and-update operations volatile read and volatile write

—— All single value classes

compareAndSet()

——AtomiclLong, Atomiclnteger

addAndGet(), getAndAdd()
decrementAndGet(), getAndDecrement()
incrementAndGet(), getAndIncrement()

2102: Parallel Programming Practice, HS 2009



2 Field updater classes

“Wrappers” around volatile field
» Reflection-based
» Compare-and-set operations for specific class-field pair

» Several fields of the same node are independently subject of atomic
updates

» Used inside Java library
Usage

» Occasionally need atomic get/set operations

2102: Parallel Programming Practice, HS 2009

24



Java library example

type holding the updatable tield

java.io.BufferedInputStream field type

protected volatile byte[] buf; ‘ l

static AtomicReferenceFieldUpdater<BufferedInputStream, byte[]>
bufUpdater = AtomicReferenceFieldUpdater.newUpdater
(BuffeﬁedlnputStream.class, Ryte[].class, “buf”);

class holding the field ‘C/ass of the field |field name

1t (bufUpdater.compareAndSet(this, buffer, null)) { ... }

‘ object ‘ expect ‘ update

2102: Parallel Programming Practice, HS 2009 25



3 Atomic array classes

Array elements can be updated atomically

» AtomicIntegerArray E..base class of elements

» AtomiclongArray int for AtomiclntegerArray
» AtomicReferenceArray<E> Llong for AtomiclongArray

Some methods

E get(int 1)

boolean set(int 1, E newVal)

E getAndSet(int 1, E newVal)

boolean compareAndSet(int 1, E expected, E update)
boolean weakCompareAndSet(int 1, E expected, E update)

2102: Parallel Programming Practice, HS 2009 26




4 Markable classes

AtomicMarkableReference<V>
» Objects internally "boxed" [reference, boolean] pairs
» Pairs can be updated atomically
AtomicStampedReference<V>
» Objects internally "boxed" [reference, integer] pairs

» Pairs can be updated atomically

2102: Parallel Programming Practice, HS 2009

27



When atomic classes are not enough

@NotThreadSafe X
public class UnsafeCachingFactorizer implements Servlet {
private AtomicReference<BiglInteger> lastNumber = new ...
private AtomicReference<BiglInteger[]> lastFactors = new ...
public void service(ServletRequest req, ServletResponse resp) {
BigInteger 1 = extractFromRequest(req);
1f (1.equals(lastNumber.get())
encodeIntoResponse(resp, lastFactors.get());

else {
BigInteger[] factors = factor(i);
lastNumber.set(1); // must be updated
lastFactors.set(factors); // atomically

encodeIntoResponse(resp, factors);

¥
I3,

2102: Parallel Programming Practice, HS 2009 28




Locking

2102: Parallel Programming Practice, HS 2009

29



Guarding state with locks

Make compound action atomic by
» Holding a lock for the entire duration of the compound action
» All'accesses of the variable with the same lock
» reads and writes

A variable guarded by a lock

2102: Parallel Programming Practice, HS 2009

30



Intrinsic locks

Only one thread at a time can execute a block of code guarded by a given
lock

» Synchronized blocks execute atomically with respect to one another

» No thread executing a synchronized block can observe another thread
to be in the middle of a synchronized block guarded by the same lock

reference to an object that serves as lock

synchronized (%) {

P Am——

block of code guarded by lock

}

2102: Parallel Programming Practice, HS 2009 31



Synchronized: poor performance

@ThreadSafe
public class SynchronizedFactorizer implements Servlet {
@GuardedBy(“this”) private BigInteger lastNumber;
@GuardedBy(“this”) private BigInteger[] lastFactors;
public void synchronized service
(ServletRequest req, ServletResponse resp) {
BigInteger 1 = extractFromRequest(req);
1f (1.equals(lastNumber.get())
encodeIntoResponse(resp, lastFactors.get());
else {
BigInteger[] factors = factor(i);
lastNumber = 1;
lastFactors = factors;
encodeIntoResponse(resp, factors);

I3

2102: Parallel Programming Practice, HS 2009

32




Locks and super-calls

public class Widget { What would happen if Java
public synchronized doSmth() { had not taken care about it?
= deadlock
ks
hy

public class LoggingWidget extends Widget {
public synchronized doSmth() {
System.out.println(“Logging: “ + toString());
super.doSmth();

2102: Parallel Programming Practice, HS 2009

33



Java solution: Reentrant locks

A thread that tries to acquire a lock that it already holds succeeds
Intrinsic locks are reentrant

» Locks are acquired on a per-thread-basis
» (rather than on a per-invocation-basis)

Acquisition count for each lock

owner: null owner: A
count: 0 count: 2

lock not owned

lock owned by A, acquired twice

2102: Parallel Programming Practice, HS 2009

34



Remarks

Acquiring a lock associated with an object
» Does not prevent other threads from accessing that object
» Prevents other threads from acquiring that same lock

It is up to you to create synchronization policies

2102: Parallel Programming Practice, HS 2009

35



Conventions: Synchronize everything

Synchronize any code path with object’s intrinsic lock
» Encapsulate mutable state within an object
Example
» java.util.Vector
Discussion
» Add a new method and forget to synchronize it

» Too little synchronization

1t (!vector.contains(element))
vector.add(element);

» Too much synchronization = poor concurrency

2102: Parallel Programming Practice, HS 2009

36



Poor concurrency

Solution SynchronizedFactorizer (see Slide 21)

L factor(n) U

T o o —— -
L factor(n) U
T2 s
L factor(n) U
T3 _—

2102: Parallel Programming Practice, HS 2009

37



Conventions: Specific locks

Guard variables individually with specific locks
Class invariants that involve more than one variables
» All such variables must be guarded by the same lock
» Example

» SynchronizedFactorizer (see Slide 32)

Visibility!

2102: Parallel Programming Practice, HS 2009

38



@ThreadSafe
public class CachedFactorizer implements Servlet {
@GuardedBy(“this”) private BigInteger lastNumber;
@GuardedBy(“this”) private BiglInteger[] lastFactors;
public void service(ServletRequest req, ServletResponse resp) {
BigInteger 1 = extractFromRequest(req);
BigInteger[] factors = null;
synchronized (this) {
1t (1.equals(lastNumber)) factors = lastFactors.clone();

ks
if (factors == null) {
factors = factor(i);
synchronized (this) {
lastNumber = 1;
lastFactors = factors.clone();

}

encodeIntoResponse(resp, factors);




Today

Thread safety
» Atomicity
» Locking
Sharing objects

2102: Parallel Programming Practice, HS 2009

40



It is all about visibility

Volatile variables

Locking

Publication: objects are made visible
» Thread confinement --- do not publish
» Immutability --- do not synchronize

» Safe publication

2102: Parallel Programming Practice, HS 2009

41



Publication vs Escape

An object is published when
» it has been made available outside of its current scope
» How?
» Store a reference where other code can access it
» Return a reference from a non-private method
» Pass a reference to a method in another class
» May break encapsulation
An object is escaped when
» It is published and should not have been published
» May break thread safety

2102: Parallel Programming Practice, HS 2009

42



Escaped objects

2102: Parallel Programming Practice, HS 2009

43



Problems with escaped objects

Consequences
» Any caller can modify object
Properties
» Publishing one object also publishes all its reachable objects
» Follow chain of references
» “Alien” method calls of a class C with object as argument
» Methods in other classes
» Overridable methods of C

2102: Parallel Programming Practice, HS 2009

44



How to escape

Store a reference in a public static field
Return a reference from a non-private method

Publish an inner class instance = publish this

2102: Parallel Programming Practice, HS 2009

45



Example escaped objects

private String[] states = new String[] { “A”, “B”

public String getStates() { return states; }

.

public static Set<Secret> knownSecrets; X
public void initialize() {
knownSecrets = new HashSet<Secret>;
by
class UnsafeStates { X

2102: Parallel Programming Practice, HS 2009

46




Proper construction

Object is not properly constructed if this escapes during construction

» Consistent state only after constructor returns
Do not

» Start a thread in the constructor

» Call a overridable method in the constructor

2102: Parallel Programming Practice, HS 2009

47



Escaped This reference to Inner classes

public class ThisEscape { X
public ThisEscape(EventSource source) {
source.registerListener(new EventListener() {
public void onEvent(Event e) {

ﬁ> doSomething(e);

}
s

vold doSomething(Event e) {

h
¥

Implicitly publishes ThisEscape instance

» Generated inner classes contains a reference to the outer class

2102: Parallel Programming Practice, HS 2009 48




Fixed example using factory method

public class Safelistener {
private final EventlListener listener;
private SafelListener() {
listener = new EventListener() {
public void onEvent(Event e) {
doSomething(e);

s

ks

public static Safelistener newInstance(EventSource source) {
SafelListener safe = new Safelistener();
source.registerlListener(safe.listener);
return safe;

}
void doSomething(Event e) { }

}

2102: Parallel Programming Practice, HS 2009

49




