
Sharing Objects

Parallel Programming Practice

Susanne Cech Previtali
Thomas Gross

Last update: 2009-10-22, 13:02

2102: Parallel Programming Practice, HS 2009 2

Publication

An object is published when

‣ It has been made available outside of its current scope

How?

‣ Store a reference where other code can access it

‣ Return a reference from a non-private method

‣ Pass a reference to a method in another class

2102: Parallel Programming Practice, HS 2009

Properties

Publishing one object also publishes all its reachable objects

‣ Follow chain of references

‣ “Alien” method calls of a class C with object as argument

‣ Methods in other classes

‣ Overridable methods of C

Any method which is not private, static, or final can be overridden.

3

@ThreadSafe
public class CachedFactorizer implements Servlet {
 @GuardedBy(“this”) private BigInteger lastNumber;
 @GuardedBy(“this”) private BigInteger[] lastFactors;
 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = null;
 synchronized (this) {
 if (i.equals(lastNumber)) factors = lastFactors.clone();
 }
 if (factors == null) {
 factors = factor(i);
 synchronized (this) {
 lastNumber = i;
 lastFactors = factors.clone();
 }
 }
 encodeIntoResponse(resp, factors);
 }
}

✓

http://java.sun.com/javaee/5/docs/api/javax/servlet/Servlet.html

2102: Parallel Programming Practice, HS 2009

Object graph of CachedFactorizer

4

BigInteger BigInteger BigInteger

lastNumber
lastFactors

CachedFactorizer
BigInteger

returned reference
BigInteger

this

BigInteger
is immutable

2102: Parallel Programming Practice, HS 2009

Problems with escaped objects

An object is escaped when

‣ It is published and should not have been published

Consequences

‣ Any caller can modify object

5

2102: Parallel Programming Practice, HS 2009

Proper construction

Object is not properly constructed if this escapes during construction

‣ Consistent state only after constructor returns

Do not

‣ Start a thread in the constructor

‣ Call a overridable method in the constructor

6

2102: Parallel Programming Practice, HS 2009

How to prevent escape

Thread confinement

Immutability

Safe publication

7

2102: Parallel Programming Practice, HS 2009

Thread confinement

8

2102: Parallel Programming Practice, HS 2009

Thread confinement

Avoid escaping of objects by not sharing

Thread confinement

‣ A single thread accesses data ⇒ thread safe

Kinds

‣ Ad-hoc thread confinement

‣ Stack confinement

‣ ThreadLocal

9

2102: Parallel Programming Practice, HS 2009

1 Ad-hoc thread confinement

Implementation is responsible

‣ Fragile

Special case: volatile variables

‣ Ensure that only one thread writes the volatile variable

‣ Remember visibility guarantees of volatile writes

10

2102: Parallel Programming Practice, HS 2009

2 Stack confinement

Object is reachable only through local variables

‣ Local variables exist only on stack

‣ Stack accessible only to current thread

Enforcement

‣ Obvious for primitive types (no reference)

‣ References: Programmer must take care and not publish reference

11

2102: Parallel Programming Practice, HS 2009 12

public int loadTheArk(Collection<Animal> candidates) {
 SortedSet<Animal> animals =
 new TreeSet<Animal>(new SpeciesGenderComparator());
 animals.addAll(candidates);
 int numPairs = 0;
 Animal candidate = null;
 for (Animal a : animals) {
 if (candidate == null || !candidate.isPotentialMate(a))
 candidate = a;
 else {
 ark.load(new AnimalPair(candidate, a));
 numPairs++;
 candidate = null;
 }
 }
 return numPairs;
}

2102: Parallel Programming Practice, HS 2009 13

candidate

a

animals

ark loadedAnimals
ArkAnimals

sp: ELEPHANT

g: MALE

sp: FROG

g: MALE

sp: FROG

g: FEMALE

candidates

Animal

species

gender

HashSet
final

not final

Animals.loadTheArk(Collection<Animal> candidates)

this

numPairs 0

one

two

AnimalPair

1

:1

TreeSet

2102: Parallel Programming Practice, HS 2009

3 ThreadLocal

Associate a per-thread value with an object

‣ Separate copy of a value for each thread

‣ Conceptual: Map<Thread, T>
Examples

‣ Mutable singletons, global variables

14

2102: Parallel Programming Practice, HS 2009

ThreadLocal API

java.lang.ThreadLocal<T>

15

T get() Value of the current thread’s copy.
if value == null: return initialValue()

T initialValue() Typically overridden (default: return null;)

void remove() Remove value of copy of current thread.

void set(T value) Set copy of current thread to value.

2102: Parallel Programming Practice, HS 2009

Corrected ThreadLocal example

16

public class UniqueThreadIdGenerator {
 private static final AtomicInteger uniqueId =
 new AtomicInteger(0);
 private static final ThreadLocal<Integer> uniqueNum =
 new ThreadLocal<Integer>() {
 protected Integer initialValue() {
 return uniqueId.getAndIncrement();
 }
 };
 public static int getCurrentThreadId() {
 return uniqueNum.get();
 }
}

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6475885See also:

2102: Parallel Programming Practice, HS 2009

Immutability

17

2102: Parallel Programming Practice, HS 2009

Immutability

An object is immutable if

‣ Its state cannot be modified after construction and

‣ All its fields are final and

‣ It is properly constructed

‣ (this reference does not escape during construction)

Immutable objects are always thread-safe

‣ No synchronization needed

18

2102: Parallel Programming Practice, HS 2009

Attention 1

19

class A {
 final B b;
}

class B {
 C c;
}

class C {
 int x;
}

b c x: 2 3

x: 4
final
not final

Immutability ≠ declare all fields final
‣ Final fields can hold references to mutable objects

‣ An object with final fields can still be mutable

2102: Parallel Programming Practice, HS 2009

Reference is immutable ≠ object is immutable

Attention 2

20

class B {
 C c;
}

class C {
 final int x;
}

c x: 2

x: 4
final
not final

2102: Parallel Programming Practice, HS 2009

Immutable example

21

@Immutable
public final class ThreeFriends {
 private final Set<String> friends = new HashSet<String>();

 public ThreeFriends() {
 friends.add("Moe");
 friends.add("Larry");
 friends.add("Curly");
 }

 public boolean isFriend(String name) {
 return friends.contains(name);
 }
}

Update state with
replacing old object
with a new one

Set is mutable
but ThreeFriends
is designed not to
be mutable

2102: Parallel Programming Practice, HS 2009

Definition of immutability revisited

An object is immutable if

‣ all public fields are final,

‣ all public final reference fields refer to other immutable objects, and

‣ constructors and methods do not publish references to any internal
state which is potentially mutable by the implementation.

22

2102: Parallel Programming Practice, HS 2009

Weak atomicity for immutable objects

23

@ThreadSafe
public class VolatileCachedFactorizer implements Servlet {
 private volatile OneValueCache cache =
 new OneValueCache(null, null);
 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = cache.getFactors(i);
 if (factors == null) {
 factors = factor(i);
 cache = new OneValueCache(i, factors);
 }
 encodeIntoResponse(resp, factors);
 }
}

2102: Parallel Programming Practice, HS 2009

Immutable holder class for atomic data

24

@Immutable
public class OneValueCache {
 private final BigInteger lastNumber;
 private final BigInteger[] lastFactors;
 public OneValueCache(BigInteger i, BigInteger[] factors) {
 lastNumber = i;
 lastFactors = Arrays.copyOf(factors, factors.length);
 }
 public BigInteger[] getFactors(BigInteger i) {
 if (lastNumber == null || !lastNumber.equals(i))
 return null;
 else
 return Arrays.copyOf(lastFactors, lastFactors.length);
 }
}

2102: Parallel Programming Practice, HS 2009

Publishing immutable objects

Immutable objects can be used without synchronization

But

‣ When final fields refer to mutable objects, synchronization must be
used to access those objects

25

2102: Parallel Programming Practice, HS 2009

JMM: Initialization safety

Properly constructed immutable objects can be shared across threads
without synchronization

All threads will see correct values set in the constructor of

‣ Final fields and any variables reachable through a final field

‣ If the object was properly constructed object

For objects with final fields, no reordering of

‣ Writes in the constructor to final fields

‣ Writes to variables reachable through these final fields

‣ With initial load of a reference of a reference to that object

⇒ Values become “frozen” when constructor completes

26

2102: Parallel Programming Practice, HS 2009

Initialization safety for immutable objects

27

@ThreadSafe
public class SafeStates {
 private final Map<String, String> states;

 public SafeStates() {
 states = new HashMap<String, String>();
 states.put("alaska", "AK");
 states.put("alabama", "AL");
 /*...*/
 states.put("wyoming", "WY");
 }
 public String getAbbreviation(String s) {
 return states.get(s);
 }
}

String is immutable

values that are reachable
through final fields at the
time the constructor
finishes

2102: Parallel Programming Practice, HS 2009

Safe publication

28

2102: Parallel Programming Practice, HS 2009

Unsafe publication

Other threads might see

‣ Stale value for holder (null or older value)

‣ Up-to-date value for holder, but stale values for the state of holder

29

@NotThreadSafe
public class UnsafeLazyInitialization {
 private static Resource resource;

 public static Resource getInstance() {
 if (resource == null)
 resource = new Resource(); // unsafe publication
 return resource;
 }
}

✕No happens-
before ordering

2102: Parallel Programming Practice, HS 2009

Safe publication

Objects that are not immutable must be safely published

‣ Synchronization of both the publishing and consuming thread

Establish a happens-before ordering between publishing and consuming
thread

‣ To ensure visibility

Synchronization is required if the object can be modified after publication

30

2102: Parallel Programming Practice, HS 2009

Safe publication patterns

Reference and state of the object must be made visible at the same time

Consider a properly constructed object

‣ Initialize the reference with a static initializer

‣ Store the reference into a volatile field or AtomicReference
‣ Store the reference into a final field of a properly constructed object

‣ Store the reference into a field that is properly guarded by a lock

31

2102: Parallel Programming Practice, HS 2009

Eager safe initialization

Static initializers

‣ Run after class loading but before class is used by any threads

‣ Writes are visible to all threads automatically

Consider also factory implementation

32

@ThreadSafe
public class SafeEagerInitialization {
 private static Resource resource = new Resource();

 public static Resource getInstance() {
 return resource;
 }
}

2102: Parallel Programming Practice, HS 2009

Safe lazy initialization

33

@ThreadSafe
public class SafeLazyInitialization {
 private static Resource resource;

 public synchronized static Resource getInstance() {
 if (resource == null)
 resource = new Resource();
 return resource;
 }
}

2102: Parallel Programming Practice, HS 2009

Double-checked locking

34

public class DoubleCheckedLocking {
 private static Resource resource;

 public static Resource getInstance() {
 if (resource == null) {
 synchronized (DoubleCheckedLocking.class) {
 if (resource == null)
 resource = new Resource();
 }
 }
 return resource;
 }
}

@NotThreadSafe ✕

2102: Parallel Programming Practice, HS 2009

Corrected double-checked locking

35

public class DoubleCheckedLocking {
 private volatile static Resource resource;

 public static Resource getInstance() {
 if (resource == null) {
 synchronized (DoubleCheckedLocking.class) {
 if (resource == null)
 resource = new Resource();
 }
 }
 return resource;
 }
}

@ThreadSafe

Better: SafeLazyInitialization with factory (see Slide 33)

2102: Parallel Programming Practice, HS 2009

Publishing and sharing

Immutable objects

‣ Can be published through any mechanism

‣ Shared without synchronization

Effectively immutable objects

‣ == mutable objects that are not modified (e.g. Date)

‣ Must be safely published

‣ Shared without synchronization

Mutable objects

‣ Must be safely published and

‣ Must be either thread-safe or guarded by a lock

36

2102: Parallel Programming Practice, HS 2009

Document accessibility of objects

Thread-confined

‣ Owed by and confined to thread

‣ Can be modified only by owning thread

Shared read-only

‣ Cannot be modified

‣ Access without synchronization

Shared thread-safe

‣ Internal synchronization

‣ Threads can use without synchronization using public interface

Guarded

‣ Accessed only with specific lock

37

2102: Parallel Programming Practice, HS 2009

Package net.jcip.annotations

38

Annotation Target Description

@ThreadSafe Class
No synchronization needed by
client. No interleaving of accesses
puts object in invalid state.

@NotThreadSafe Class

@Immutable Class
State cannot be seen to change by
callers. Implies @ThreadSafe.

@GuardedBy(“lock”) Field,
method

lock must be used to access field/
method.

http://www.javaconcurrencyinpractice.com/annotations/doc/index.html

2102: Parallel Programming Practice, HS 2009

Study Goals

39

