Concurrency WS 2010/2011
The Java Memory Model
Peter Thiemann

November 2, 2010

0 Java Memory Model

Java Memory Model

@ Java does not guarantee linearizability or sequential
consistency

Java Memory Model

@ Java does not guarantee linearizability or sequential
consistency

@ Sequential consistency inhibits widely used compiler
optimizations that reorder memory reads and writes

o register allocation
e common subexpression elimination
e redundant read elimination

Relaxed Memory Model

Fundamental Property If a program’s sequentially consistent
executions follow certain rules, then every
execution of that program in the relaxed model will
still be sequentially consistent.

Reading and Writing

@ Objects reside in shared memory

@ Each thread has a local cached copy of fields it has read or
written

@ A write to a field may not propagate to shared memory

@ A read of a field may see a cached value instead of the
one in shared memory

@ Own, local reads and writes happen in order

Anti-Pattern: Double-Checked Locking

private Singleton instance = null;
public static Singleton getInstance ()

if (instance == null) {
synchronized (Singleton.class) {
if (instance == null)
instance = new Singleton ();

}

return instance;

{

Double-Checked Locking is Incorrect!

@ The assignment to instance in line 6 may be written to
memory before the constructor is finished initializing the
object.

@ Another thread’s invocation of get Instance would find that

instance != null in line 3 and return the reference to the
unfinished object.

Synchronization Events

@ Certain statements are synchronization events
@ Not necessarily atomicity or mutual exclusion

@ Reconciliation of local cache with shared memory
o flushing local writes
e invalidating cached reads
@ Synchronization events are linearizable: totally ordered
and all threads agree

Locks and Synchronized Blocks

@ Mutual exclusion by
e entering a synchronized block or method
@ acquiring an explicit lock
@ If all accesses to a field protected by the same lock, then
reads-writes to that field are linearizable:
@ unlock () writes back changed fields to shared memory
@ lock () invalidates the cache, forcing a reread from shared
memory

Volatile Fields

@ Fields declared volatile are linearizable

@ Reading from volatile is like acquiring a lock
invalidates the cache, read from shared memory

@ Writing to volatile is like releasing a lock
writes through to shared memory

Volatile Fields

@ Fields declared volatile are linearizable

@ Reading from volatile is like acquiring a lock
invalidates the cache, read from shared memory

@ Writing to volatile is like releasing a lock
writes through to shared memory

Attention

@ Multiple read-writes are not atomic
@ Typical usage pattern: single writer / multiple readers

Volatile Fields

@ Fields declared volatile are linearizable

@ Reading from volatile is like acquiring a lock
invalidates the cache, read from shared memory

@ Writing to volatile is like releasing a lock
writes through to shared memory

Attention

@ Multiple read-writes are not atomic
@ Typical usage pattern: single writer / multiple readers

Linearizable Memory

@ AtomicReference<T>, AtomicInteger
@ Methods compareandset (), set () like writes
@ Method get () like read

Final Fields

@ A finai field cannot be modified once it has been
initialized.
@ Initialized in the constructor

@ Under simple rules, the correct value of a final field will be
visible to other threads without synchronization.

Example: Constructor with Final Field

1 class FinalFieldExample {

2 final int x; int y;

3 static FinalFieldExample f;
4 public FinalFieldExample () {

5 x = 3;

6 y = 4;

7 }

8 static void writer () {

9 f = new FinalFieldExample ();

10 }
11 static void readers () {

12 if (£ != null) {
13 int i = f.x; int j = f.y;
14 // 1 == 3 1is guaranteed

15 // no guarantee about y’s value

Incorrect EventListener Class

public class EventListener ({

final int x;

public EventListener (EventSource eventSource) {
eventSource.registerListener (this);

}

public onEvent (Event e) {
// handle the event

}

W W U s W N e

@ onEvent May be invoked
o after the listener is registered
e but before the constructor is completed, i.e., before the
value of x is flushed to shared memory

e Example Programs

Example Programs

@ Example programs taken from “Java Concurrency in
Practice” by Brian Goetz and others

@ source available from
http://www. javaconcurrencyinpractice.com/

http://www.javaconcurrencyinpractice.com/

Thread Safety

Stateless objects are always thread-safe

15 @ThreadSafe
16 public class StatelessFactorizer extends GenericServlet implem

17

18 public void service (ServletRequest req, ServletResponse re
19 BigInteger i = extractFromRequest (req);
20 BigInteger[] factors = factor(i);

21 encodeIntoResponse (resp, factors);
22 }

Atomicity

Don’t do this

16 public class UnsafeCountingFactorizer extends GenericServlet i

17 private long count = 0;

18

19 public long getCount () {

20 return count;

21 }

22

23 public void service (ServletRequest req, ServletResponse re
24 BigInteger i = extractFromRequest (req);

25 BigInteger[] factors = factor(i);

26 ++count;

27 encodeIntoResponse (resp, factors);
28 }

Lazy Initialization

Don’t do this

14 public class LazyInitRace {

15 private ExpensiveObject instance = null;
16

17 public ExpensiveObject getInstance() {

18 if (instance == null)

19 instance = new ExpensiveObject ();
20 return instance;

21 }

22}

23

24 class ExpensiveObject { }

Safe Lazy Initialization

13 public class SafelazyInitialization ({

14 private static Resource resource;

15

16 public synchronized static Resource getlInstance() {
17 if (resource == null)

18 resource = new Resource();

19 return resource;

20 }

21

22 static class Resource {
23 }

24}

Eager Initialization

13 public class EagerInitialization {

14 private static Resource resource = new Resource();
15

16 public static Resource getResource () {

17 return resource;

18 }

19

20 static class Resource {
21 }

22}

More Lazy Initialization

13 public class ResourceFactory {

14 private static class ResourceHolder {

15 public static Resource resource = new Resource();
16 }

17

18 public static Resource getResource() {

19 return ResourceFactory.ResourceHolder.resource;

20 }

21

22 static class Resource {
23 }

24}

One state variable

17 public class CountingFactorizer extends GenericServlet impleme

18
19
20
21
22
23
24
25
26

27

private final AtomicLong count = new AtomicLong(O0);
public long getCount () { return count.get(); }

public void service (ServletRequest req, ServletResponse re

BigInteger i = extractFromRequest (req);
BigInteger[] factors = factor(i);
count.incrementAndGet () ;
encodeIntoResponse (resp, factors);

Locking: More than one state variable

Don’t do this

18 public class UnsafeCachingFactorizer extends GenericServlet im

19 private final AtomicReference<BigInteger> lastNumber

20 = new AtomicReference<BigInteger>();

21 private final AtomicReference<BigInteger[]> lastFactors
22 = new AtomicReference<BigInteger[]>();

23

24 public void service (ServletRequest req, ServletResponse re
25 BigInteger i = extractFromRequest (req);

26 if (i.equals(lastNumber.get ()))

27 encodeIntoResponse (resp, lastFactors.get());

28 else {

29 BigInteger[] factors = factor(i);

30 lastNumber.set (i) ;

31 lastFactors.set (factors);

32 encodeIntoResponse (resp, factors);
33 }
34 }

Correct but inefficient locking

Don’t do this

17 public class SynchronizedFactorizer extends GenericServlet imp

18 @GuardedBy ("this") private BigInteger lastNumber;

19 @GuardedBy ("this") private BigInteger[] lastFactors;
20

21 public synchronized void service (ServletRequest req,
22 ServletResponse resp) {
23 BigInteger i = extractFromRequest (req);

24 if (i.equals(lastNumber))

25 encodeIntoResponse (resp, lastFactors);

26 else {

27 BigInteger[] factors = factor(i);

28 lastNumber = 1i;

29 lastFactors = factors;

30 encodeIntoResponse (resp, factors);
31 }
32 }

1 public class Widget [
public synchronzied wvoid doSomething() {

7 public class LoggingWidget extends Widget {

3 public synchronzied wvoid doSomething() {

9 System.out.println(toString() + ": calling doSomething");
10 super.doSomething () ;

11 }

12}

Locking: More than one state variable

Working example

16 public class CachedFactorizer extends GenericServlet implements Servlet {
17 @GuardedBy ("this") private BigInteger lastNumber;

18 @GuardedBy ("this") private BigInteger[] lastFactors;

19 @GuardedBy ("this") private long hits;
()

20 @GuardedBy ("this") private long cacheHits;

21

22 public synchronized long getHits() {

23 return hits;

24 }

25

26 public synchronized double getCacheHitRatio() {
27 return (double) cacheHits / (double) hits;
28 }

29

30 public void service (ServletRequest req, ServletResponse resp) {
31 BigInteger i = extractFromRequest (req);

32 BigInteger[] factors = null;

33 synchronized (this) {

34 ++hits;

35 if (i.equals(lastNumber)) {

36 ++cacheHits;

37 factors = lastFactors.clone();

38 }

39 }

40 if (factors == null) {

41 factors = factor(i);

42 synchronized (this) {

43 lastNumber = i;

44 lastFactors = factors.clone();

45 }

46 }

47 encodeIntoResponse (resp, factors);

Visibility

Don’t do this

11 public class NoVisibility {

12 private static boolean ready;

13 private static int number;

14

15 private static class ReaderThread extends Thread {
16 public void run () {

17 while (!ready)

18 Thread.yield();

19 System.out.println (number) ;

20 }

21 }

22

23 public static void main(String[] args) {
24 new ReaderThread () .start ();

25 number = 42;

26 ready = true;
27 }
28}

Unsafe publication

Don’t do this

10 class UnsafeStates {

11 private String[] states = new String[]{
12 "AK", "AL" /#...x/

13 bi

14

15 public String[] getStates () {

16 return states;
17 }
18 }

Unsafe publication Il

Don’t do this

10 public class ThisEscape {

11 public ThisEscape (EventSource source) {

12 source.registerlListener (new EventListener () {
13 public void onEvent (Event e) {

14 doSomething(e) ;

15 }

16 1)

17 }

18

19 void doSomething (Event e) {

20 }

21

22 interface EventSource ({

23 void registerListener (EventListener e);
24 }

25

26 interface EventListener ({

27 void onEvent (Event e);

28 }

29

30 interface Event {
31 }

32}

Safe publication

10 public class Safelistener {

private final EventListener listener;

private safelistener() {
listener = new EventListener () {
public void onEvent (Event e) {
doSomething (e) ;
}
bi

public static Safelistener newlInstance (EventSource source) {
Safelistener safe = new Safelistener();
source.registerListener (safe.listener);
return safe;

void doSomething (Event e) {
}
interface EventSource {

void registerListener (EventListener e);

interface EventListener ({
void onEvent (Event e);

interface Event {

}

	Java Memory Model
	Example Programs

