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Basic Spin-Lock

CS

Resets lock 
upon exit

spin 
lock

critical 
section

...

…lock suffers from 
contention
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MIMD Architectures

• Memory Contention
• Communication 
Contention 
• Communication Latency

Shared Bus

memory

Distributed
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Test-and-set Lock

class TASlock {
 AtomicBoolean state =
  new AtomicBoolean(false);

 void lock() {
  while (state.getAndSet(true)) {}
 }
 
 void unlock() {
  state.set(false);
 }} 
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Mystery #2

TAS lock

TTAS lock

Idealti
m

e

threads
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Bus-Based Architectures

Bus

cache

memory

cachecache
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Solution: Introduce Delay

spin locktime
dr1dr2d

• If the lock looks free
• But I fail to get it

• There must be lots of contention
• Better to back off than to collide again
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released

Anderson Queue Lock

flags

next

T T F F F F F F

acquired
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Anderson Queue Lock

• Good
– First truly scalable lock
– Simple, easy to implement

• Bad
– Space hog
– One bit per thread

• Unknown number of threads?
• Small number of actual contenders?
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CLH Lock

• FIFO order
• Small, constant-size overhead per 

thread
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Initially

false

tail

idle
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Initially

false

tail

idle

Queue tail
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Initially

false

tail

idle

Lock is free
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Initially

false

tail

idle
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Purple Wants the Lock

false

tail

acquiring
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Purple Wants the Lock

false

tail

acquiring

true
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Purple Wants the Lock

false

tail

acquiring

true

Swap
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Purple Has the Lock

false

tail

acquired

true
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Red Wants the Lock

false

tail

acquired acquiring

true true
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Red Wants the Lock

false

tail

acquired acquiring

true

Swap

true
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Red Wants the Lock

false

tail

acquired acquiring

true true
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Red Wants the Lock

false

tail

acquired acquiring

true true
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Red Wants the Lock

false

tail

acquired acquiring

true true

Implicitely 
Linked list
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Red Wants the Lock

false

tail

acquired acquiring

true true
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Red Wants the Lock

false

tail

acquired acquiring

true true

true
Actually, it 
spins on 
cached copy 
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Purple Releases

false

tail

release acquiring

false true

false
Bingo

!
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Purple Releases

tail

released acquired

true
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Space Usage

• Let
– L = number of locks
– N = number of threads

• ALock
– O(LN)

• CLH lock
– O(L+N)
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CLH Queue Lock

class Qnode {
 AtomicBoolean locked =
   new AtomicBoolean(false);
}
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CLH Queue Lock
class CLHLock implements Lock {

 AtomicReference<Qnode> tail = 

    new AtomicReference<>(new Qnode()); 

 ThreadLocal<Qnode> myNode = new Qnode();

 public void lock() {

  Qnode me = myNode.get();

  me.set(true);

  Qnode pred = tail.getAndSet(me);

  while (pred.locked.get()) {}

 }}

(3)

Pseudocode
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CLH Queue Lock
Class CLHLock implements Lock {
 …
 public void unlock() {
  myNode.get().locked.set(false);
  myNode.remove();
 }
}

(3)

Special reset method
 for ThreadLocals.

It does NOT 
reset the content of myNode 
in other Threads
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CLH Lock

• Good
– Lock release affects predecessor only
– Small, constant-sized space

• Bad
– Doesn’t work for uncached NUMA 

architectures
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NUMA Architecturs

• Acronym:
– Non-Uniform Memory Architecture

• Illusion:
– Flat shared memory

• Truth:
– No caches (sometimes)
– Some memory regions faster than 

others
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NUMA Machines

Spinning on local 
memory is fast



Art of Multiprocessor Programming 35

NUMA Machines

Spinning on remote 
memory is slow
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CLH Lock

• Each thread spin’s on 
predecessor’s memory

• Could be far away …
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MCS Lock

• FIFO order
• Spin on local memory only
• Small, Constant-size overhead
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Acquiring

queue

false

acquiring

(allocate Qnode)
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Acquiring

tail  

false

acquired

swap
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Acquired

tail  

false

acquired
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Acquiring

tail  

false

acquired
acquiring

falseswap
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Acquiring

tail  

acquired
acquiring

true

false
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Acquiring

tail  

acquired
acquiring

true

false
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Acquiring

tail

acquired
acquiring

true

false
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Acquiring

tail

acquired
acquiring

true

false

false
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Acquiring

tail

acquired
acquiring

true

false
Yes!

false
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MCS Queue Lock

class Qnode {
 volatile boolean locked = false;
 volatile qnode   next   = null;
}
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MCS Queue Lock
class MCSLock implements Lock {
 AtomicReference tail;
 public void lock() {
  Qnode qnode = new Qnode();
  Qnode pred = tail.getAndSet(qnode);
  if (pred != null) {
   qnode.locked = true;
   pred.next = qnode;
   while (qnode.locked) {}
  }}}

(3)

Initially null
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MCS Queue Unlock
class MCSLock implements Lock {
 AtomicReference tail;
 public void unlock() {
  if (qnode.next == null) {
   if (tail.CAS(qnode, null)
    return;
   while (qnode.next == null) {}
  }
 qnode.next.locked = false;
}}

(3)
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Purple Release

false

releasing swap

false

(2)
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Purple Release

false

releasing swap

false

By looking at the 
queue, I see another 

thread is active

(2)
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Purple Release

false

releasing swap

false

By looking at the 
queue, I see another 

thread is active

I have to wait for that 
thread to finish

(2)
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Purple Release

false

releasing prepare to spin

true
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Purple Release

false

releasing spinning

true
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Purple Release

false

releasing spinning

truefalse
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Purple Release

false

releasing

true

Acquired lock

false



Properties

+ Space: O(L+N)
+ Local spinning (in the NUMA sense)
- Spinning on unlock
- needs more atomic operations 
  (including CAS)



Art of Multiprocessor Programming 58

Abortable Locks

• What if you want to give up waiting 
for a lock?

• For example
– Timeout
– Database transaction aborted by user
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Back-off Lock

• Aborting is trivial
– Just return from lock() call

• Extra benefit:
– No cleaning up
– Wait-free
– Immediate return
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Queue Locks

• Can’t just quit
– Thread in line behind will starve

• Need a graceful way out



Art of Multiprocessor Programming 61

Queue Locks

spinning

true

spinning

truetrue

spinning
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Queue Locks

spinning

true

spinning

truefalse

locked
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Queue Locks

spinning

true

locked

false
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Queue Locks

locked

false
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Queue Locks

spinning

true

spinning

truetrue

spinning
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Queue Locks

spinning

truetruetrue

spinning
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Queue Locks

spinning

truetruefalse

locked
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Queue Locks

spinning

truefalse
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Queue Locks

pwned

truefalse
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Abortable CLH Lock

• When a thread gives up
– Removing node in a wait-free way is 

hard

• Idea:
– let successor deal with it.
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Initially

tail

idle
Pointer to 

predecessor 
(or null)

A
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Initially

tail

idle Distinguished 
available 

node means 
lock is free

A
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Acquiring

tail

acquiring

A
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Acquiring
acquiring

A

Null predecessor 
means lock not 

released or 
aborted
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Acquiring
acquiring

A

Swap
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Acquiring
acquiring

A
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Acquired
locked

A

Pointer to 
AVAILABLE 

means lock is 
free.



spinningspinninglocked
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Normal Case

Null means lock 
is not free & 
request not 

aborted
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One Thread Aborts

spinningTimed outlocked



Art of Multiprocessor Programming 80

Successor Notices

spinningTimed outlocked

Non-Null means 
predecessor 

aborted
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Recycle Predecessor’s 
Node

spinninglocked
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Spin on Earlier Node

spinninglocked
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Spin on Earlier Node

spinningreleased

A

The lock is 
now mine
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Time-out Lock
public class TOLock implements Lock {
  static Qnode AVAILABLE
    = new Qnode();
  AtomicReference<Qnode> tail;
  ThreadLocal<Qnode> myNode;
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Time-out Lock
public boolean lock(long timeout) {
  Qnode qnode = new Qnode();
  myNode.set(qnode); 
  qnode.prev = null;
  Qnode myPred = tail.getAndSet(qnode);
  if (myPred== null
      || myPred.prev == AVAILABLE) {
      return true; 
   }
…
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Time-out Lock
…
  long start = now();
  while (now()- start < timeout) {
    Qnode predPred = myPred.prev;
    if (predPred == AVAILABLE) {
      return true;
    } else if (predPred != null) {
      myPred = predPred;
    }
  }
  …

spinningspinninglocked
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Time-out Lock
…
if (!tail.compareAndSet(qnode, myPred))
    qnode.prev = myPred;
return false;
}}

What do I do when I time 
out?
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Time-Out Unlock
public void unlock() {
  Qnode qnode = myNode.get();
  if (!tail.compareAndSet(qnode, null))
    qnode.prev = AVAILABLE;
  myNode.remove();
}
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One Lock To Rule Them 
All?

• TTAS+Backoff, CLH, MCS, ToLock…
• Each better than others in some way
• There is no one solution
• Lock we pick really depends on:

–  the application
–  the hardware
–  which properties are important
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This work is licensed under a 
Creative Commons Attribution-ShareAlike 2.5 License. 

• You are free:
– to Share — to copy, distribute and transmit the work 
– to Remix — to adapt the work 

• Under the following conditions:
– Attribution. You must attribute the work to “The Art of 

Multiprocessor Programming” (but not in any way that suggests 
that the authors endorse you or your use of the work). 

– Share Alike. If you alter, transform, or build upon this work, you 
may distribute the resulting work only under the same, similar or a 
compatible license. 

• For any reuse or distribution, you must make clear to others the 
license terms of this work. The best way to do this is with a link to
– http://creativecommons.org/licenses/by-sa/3.0/. 

• Any of the above conditions can be waived if you get permission from 
the copyright holder. 

• Nothing in this license impairs or restricts the author's moral rights. 

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
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