
Spin Locks and
Contention

Companion slides for
The Art of Multiprocessor

Programming
by Maurice Herlihy & Nir Shavit

(Part 2)

Art of Multiprocessor Programming 2

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...

…lock suffers from
contention

Art of Multiprocessor Programming 3

MIMD Architectures

• Memory Contention
• Communication
Contention
• Communication Latency

Shared Bus

memory

Distributed

Art of Multiprocessor Programming 4

Test-and-set Lock

class TASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (state.getAndSet(true)) {}
 }

 void unlock() {
 state.set(false);
 }}

Art of Multiprocessor Programming 5

Mystery #2

TAS lock

TTAS lock

Idealti
m

e

threads

Art of Multiprocessor Programming 6

Bus-Based Architectures

Bus

cache

memory

cachecache

Art of Multiprocessor Programming 7

Solution: Introduce Delay

spin locktime
dr1dr2d

• If the lock looks free
• But I fail to get it

• There must be lots of contention
• Better to back off than to collide again

Art of Multiprocessor Programming 8

released

Anderson Queue Lock

flags

next

T T F F F F F F

acquired

Art of Multiprocessor Programming 9

Anderson Queue Lock

• Good
– First truly scalable lock
– Simple, easy to implement

• Bad
– Space hog
– One bit per thread

• Unknown number of threads?
• Small number of actual contenders?

Art of Multiprocessor Programming 10

CLH Lock

• FIFO order
• Small, constant-size overhead per

thread

Art of Multiprocessor Programming 11

Initially

false

tail

idle

Art of Multiprocessor Programming 12

Initially

false

tail

idle

Queue tail

Art of Multiprocessor Programming 13

Initially

false

tail

idle

Lock is free

Art of Multiprocessor Programming 14

Initially

false

tail

idle

Art of Multiprocessor Programming 15

Purple Wants the Lock

false

tail

acquiring

Art of Multiprocessor Programming 16

Purple Wants the Lock

false

tail

acquiring

true

Art of Multiprocessor Programming 17

Purple Wants the Lock

false

tail

acquiring

true

Swap

Art of Multiprocessor Programming 18

Purple Has the Lock

false

tail

acquired

true

Art of Multiprocessor Programming 19

Red Wants the Lock

false

tail

acquired acquiring

true true

Art of Multiprocessor Programming 20

Red Wants the Lock

false

tail

acquired acquiring

true

Swap

true

Art of Multiprocessor Programming 21

Red Wants the Lock

false

tail

acquired acquiring

true true

Art of Multiprocessor Programming 22

Red Wants the Lock

false

tail

acquired acquiring

true true

Art of Multiprocessor Programming 23

Red Wants the Lock

false

tail

acquired acquiring

true true

Implicitely
Linked list

Art of Multiprocessor Programming 24

Red Wants the Lock

false

tail

acquired acquiring

true true

Art of Multiprocessor Programming 25

Red Wants the Lock

false

tail

acquired acquiring

true true

true
Actually, it
spins on
cached copy

Art of Multiprocessor Programming 26

Purple Releases

false

tail

release acquiring

false true

false
Bingo

!

Art of Multiprocessor Programming 27

Purple Releases

tail

released acquired

true

Art of Multiprocessor Programming 28

Space Usage

• Let
– L = number of locks
– N = number of threads

• ALock
– O(LN)

• CLH lock
– O(L+N)

Art of Multiprocessor Programming 29

CLH Queue Lock

class Qnode {
 AtomicBoolean locked =
 new AtomicBoolean(false);
}

Art of Multiprocessor Programming 30

CLH Queue Lock
class CLHLock implements Lock {

 AtomicReference<Qnode> tail =

 new AtomicReference<>(new Qnode());

 ThreadLocal<Qnode> myNode = new Qnode();

 public void lock() {

 Qnode me = myNode.get();

 me.set(true);

 Qnode pred = tail.getAndSet(me);

 while (pred.locked.get()) {}

 }}

(3)

Pseudocode

Art of Multiprocessor Programming 31

CLH Queue Lock
Class CLHLock implements Lock {
 …
 public void unlock() {
 myNode.get().locked.set(false);
 myNode.remove();
 }
}

(3)

Special reset method
 for ThreadLocals.

It does NOT
reset the content of myNode
in other Threads

Art of Multiprocessor Programming 32

CLH Lock

• Good
– Lock release affects predecessor only
– Small, constant-sized space

• Bad
– Doesn’t work for uncached NUMA

architectures

Art of Multiprocessor Programming 33

NUMA Architecturs

• Acronym:
– Non-Uniform Memory Architecture

• Illusion:
– Flat shared memory

• Truth:
– No caches (sometimes)
– Some memory regions faster than

others

Art of Multiprocessor Programming 34

NUMA Machines

Spinning on local
memory is fast

Art of Multiprocessor Programming 35

NUMA Machines

Spinning on remote
memory is slow

Art of Multiprocessor Programming 36

CLH Lock

• Each thread spin’s on
predecessor’s memory

• Could be far away …

Art of Multiprocessor Programming 37

MCS Lock

• FIFO order
• Spin on local memory only
• Small, Constant-size overhead

Art of Multiprocessor Programming 38

Acquiring

queue

false

acquiring

(allocate Qnode)

Art of Multiprocessor Programming 39

Acquiring

tail

false

acquired

swap

Art of Multiprocessor Programming 40

Acquired

tail

false

acquired

Art of Multiprocessor Programming 41

Acquiring

tail

false

acquired
acquiring

falseswap

Art of Multiprocessor Programming 42

Acquiring

tail

acquired
acquiring

true

false

Art of Multiprocessor Programming 43

Acquiring

tail

acquired
acquiring

true

false

Art of Multiprocessor Programming 44

Acquiring

tail

acquired
acquiring

true

false

Art of Multiprocessor Programming 45

Acquiring

tail

acquired
acquiring

true

false

false

Art of Multiprocessor Programming 46

Acquiring

tail

acquired
acquiring

true

false
Yes!

false

Art of Multiprocessor Programming 47

MCS Queue Lock

class Qnode {
 volatile boolean locked = false;
 volatile qnode next = null;
}

Art of Multiprocessor Programming 48

MCS Queue Lock
class MCSLock implements Lock {
 AtomicReference tail;
 public void lock() {
 Qnode qnode = new Qnode();
 Qnode pred = tail.getAndSet(qnode);
 if (pred != null) {
 qnode.locked = true;
 pred.next = qnode;
 while (qnode.locked) {}
 }}}

(3)

Initially null

Art of Multiprocessor Programming 49

MCS Queue Unlock
class MCSLock implements Lock {
 AtomicReference tail;
 public void unlock() {
 if (qnode.next == null) {
 if (tail.CAS(qnode, null)
 return;
 while (qnode.next == null) {}
 }
 qnode.next.locked = false;
}}

(3)

Art of Multiprocessor Programming 50

Purple Release

false

releasing swap

false

(2)

Art of Multiprocessor Programming 51

Purple Release

false

releasing swap

false

By looking at the
queue, I see another

thread is active

(2)

Art of Multiprocessor Programming 52

Purple Release

false

releasing swap

false

By looking at the
queue, I see another

thread is active

I have to wait for that
thread to finish

(2)

Art of Multiprocessor Programming 53

Purple Release

false

releasing prepare to spin

true

Art of Multiprocessor Programming 54

Purple Release

false

releasing spinning

true

Art of Multiprocessor Programming 55

Purple Release

false

releasing spinning

truefalse

Art of Multiprocessor Programming 56

Purple Release

false

releasing

true

Acquired lock

false

Properties

+ Space: O(L+N)
+ Local spinning (in the NUMA sense)
- Spinning on unlock
- needs more atomic operations
 (including CAS)

Art of Multiprocessor Programming 58

Abortable Locks

• What if you want to give up waiting
for a lock?

• For example
– Timeout
– Database transaction aborted by user

Art of Multiprocessor Programming 59

Back-off Lock

• Aborting is trivial
– Just return from lock() call

• Extra benefit:
– No cleaning up
– Wait-free
– Immediate return

Art of Multiprocessor Programming 60

Queue Locks

• Can’t just quit
– Thread in line behind will starve

• Need a graceful way out

Art of Multiprocessor Programming 61

Queue Locks

spinning

true

spinning

truetrue

spinning

Art of Multiprocessor Programming 62

Queue Locks

spinning

true

spinning

truefalse

locked

Art of Multiprocessor Programming 63

Queue Locks

spinning

true

locked

false

Art of Multiprocessor Programming 64

Queue Locks

locked

false

Art of Multiprocessor Programming 65

Queue Locks

spinning

true

spinning

truetrue

spinning

Art of Multiprocessor Programming 66

Queue Locks

spinning

truetruetrue

spinning

Art of Multiprocessor Programming 67

Queue Locks

spinning

truetruefalse

locked

Art of Multiprocessor Programming 68

Queue Locks

spinning

truefalse

Art of Multiprocessor Programming 69

Queue Locks

pwned

truefalse

Art of Multiprocessor Programming 70

Abortable CLH Lock

• When a thread gives up
– Removing node in a wait-free way is

hard

• Idea:
– let successor deal with it.

Art of Multiprocessor Programming 71

Initially

tail

idle
Pointer to

predecessor
(or null)

A

Art of Multiprocessor Programming 72

Initially

tail

idle Distinguished
available

node means
lock is free

A

Art of Multiprocessor Programming 73

Acquiring

tail

acquiring

A

Art of Multiprocessor Programming 74

Acquiring
acquiring

A

Null predecessor
means lock not

released or
aborted

Art of Multiprocessor Programming 75

Acquiring
acquiring

A

Swap

Art of Multiprocessor Programming 76

Acquiring
acquiring

A

Art of Multiprocessor Programming 77

Acquired
locked

A

Pointer to
AVAILABLE

means lock is
free.

spinningspinninglocked

Art of Multiprocessor Programming 78

Normal Case

Null means lock
is not free &
request not

aborted

Art of Multiprocessor Programming 79

One Thread Aborts

spinningTimed outlocked

Art of Multiprocessor Programming 80

Successor Notices

spinningTimed outlocked

Non-Null means
predecessor

aborted

Art of Multiprocessor Programming 81

Recycle Predecessor’s
Node

spinninglocked

Art of Multiprocessor Programming 82

Spin on Earlier Node

spinninglocked

Art of Multiprocessor Programming 83

Spin on Earlier Node

spinningreleased

A

The lock is
now mine

Art of Multiprocessor Programming 84

Time-out Lock
public class TOLock implements Lock {
 static Qnode AVAILABLE
 = new Qnode();
 AtomicReference<Qnode> tail;
 ThreadLocal<Qnode> myNode;

Art of Multiprocessor Programming 85

Time-out Lock
public boolean lock(long timeout) {
 Qnode qnode = new Qnode();
 myNode.set(qnode);
 qnode.prev = null;
 Qnode myPred = tail.getAndSet(qnode);
 if (myPred== null
 || myPred.prev == AVAILABLE) {
 return true;
 }
…

Art of Multiprocessor Programming 86

Time-out Lock
…
 long start = now();
 while (now()- start < timeout) {
 Qnode predPred = myPred.prev;
 if (predPred == AVAILABLE) {
 return true;
 } else if (predPred != null) {
 myPred = predPred;
 }
 }
 …

spinningspinninglocked

Art of Multiprocessor Programming 87

Time-out Lock
…
if (!tail.compareAndSet(qnode, myPred))
 qnode.prev = myPred;
return false;
}}

What do I do when I time
out?

Art of Multiprocessor Programming 88

Time-Out Unlock
public void unlock() {
 Qnode qnode = myNode.get();
 if (!tail.compareAndSet(qnode, null))
 qnode.prev = AVAILABLE;
 myNode.remove();
}

Art of Multiprocessor Programming 89

One Lock To Rule Them
All?

• TTAS+Backoff, CLH, MCS, ToLock…
• Each better than others in some way
• There is no one solution
• Lock we pick really depends on:

– the application
– the hardware
– which properties are important

Art of Multiprocessor Programming 90

This work is licensed under a
Creative Commons Attribution-ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “The Art of

Multiprocessor Programming” (but not in any way that suggests
that the authors endorse you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

• For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link to
– http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get permission from
the copyright holder.

• Nothing in this license impairs or restricts the author's moral rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

	Spin Locks and Contention
	Slide 2
	MIMD Architectures
	Test-and-set Lock
	Mystery #2
	Bus-Based Architectures
	Solution: Introduce Delay
	Slide 8
	Slide 9
	CLH Lock
	Slide 23
	Space Usage
	CLH Queue Lock
	Slide 30
	Slide 31
	Slide 32
	NUMA Architecturs
	NUMA Machines
	Slide 35
	Slide 36
	MCS Lock
	Acquiring
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	MCS Queue Lock
	Slide 48
	MCS Queue Unlock
	Purple Release
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Abortable Locks
	Back-off Lock
	Queue Locks
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Abortable CLH Lock
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Normal Case
	One Thread Aborts
	Successor Notices
	Recycle Predecessor’s Node
	Spin on Earlier Node
	Slide 83
	Time-out Lock
	Slide 85
	Slide 86
	Slide 87
	Time-Out Unlock
	One Lock To Rule Them All?
	Slide 90

