
Prof. P. Thiemann, L. Fennell, M. Geffken Winter Term 2014/15

Lecture: Concurrency Theory and Practise

http://proglang.informatik.uni-freiburg.de/teaching/concurrency/2014ws/

Exercise Sheet 2

November 28, 2014

I. Theory

I.1. Consistency

An informal definition of quiescent consistency can be found in the AMP book, Section 3.3.
Additionally, we give a more formal definition below, which is presented in the sytle of the
definition for linearizability and sequential consistency from the slides, such that quiescent
consistency can be related to the aforementioned alternative concepts. First, we need two
auxiliary definitions.

Definition 1. Two histories H and G are up-to-order-equivalent if all threads see the same ex-
ecutions up to the order of executions. More formally, for every thread A, the thread projections
H|A and G|A are equal up to the order of executions.

Definition 2. Given a history H and method executions mo and m1 in H, we say mo →H m1

if mo precedes m1 and the method calls are separated by a period of quiescence (i.e., at some
point after the end of m0 and before the start of m1 there is no pending method call).

Now we are ready to define quiescent consistency.

Definition 3. History H is quiescently consistent if it can be extended to G by

• Appending zero or more responses to pending invocations

• Discarding other pending invocations

so that G is up-to-order-equivalent to a legal sequential history S where →G ⊆ →S.

Informally, the definition says that any time an object becomes quiescent, then the execution
so far is equivalent to some sequential execution of the completed calls.

Exercise Give an example of an execution that is quiescently consistent but not sequentially
consistent, and another that is sequentially consistent but not quiescently consistent.

I.2. Classifying histories

For each of the histories shown, are they quiescently consistent? Sequentially consistent? Lin-
earizable? Justify your answer. History 1:

A

B

C

r.read(1)

r.write(1) r.read(2)

r.write(2)

History 2:

A

B

C

r.read(1)

r.write(1) r.read(1)

r.write(2)

http://proglang.informatik.uni-freiburg.de/teaching/concurrency/2014ws/

I.3. Atomic Integers

The AtomicInteger class (in the java. util .concurrent.atomic package) is a container for an integer
value. One of its methods is boolean compareAndSet(int expect, int update). This method compares
the object’s current value to expect. If the values are equal, then it atomically replaces the
object’s value with update and returns true. Otherwise, it leaves the object’s value unchanged,
and returns false. This class also provides int get() which returns the object’s actual value.

Consider the FIFO queue implementation:

1 class IQueue<T> {
2 AtomicInteger head = new AtomicInteger (0) ;
3 AtomicInteger t a i l = new AtomicInteger (0) ;
4 T [] i tems = (T []) new Object [I n t eg e r .MAX VALUE] ;
5 public void enq (T x) {
6 int s l o t ;
7 do {
8 s l o t = t a i l . get () ;
9 } while (! t a i l . compareAndSet (s l o t , s l o t +1)) ;

10 i tems [s l o t] = x ;
11 }
12 public T deq () throws EmptyException {
13 T value ;
14 int s l o t ;
15 do {
16 s l o t = head . get () ;
17 value = items [s l o t] ;
18 i f (va lue == null)
19 throw new EmptyException () ;
20 } while (! head . compareAndSet (s l o t , s l o t +1)) ;
21 return value ;
22 }
23 }

It stores its items in an array items, which, for simplicity, we will assume has unbounded size.
It has two AtomicInteger fields: tail is the index of the next slot from which to remove an item,
and head is the index of the next slot in which to place an item. Give an example showing that
this implementation is not linearizable.

I.4. Strange methods . . .

Definition 4. A method is bounded wait-free if there is a bound on the number of steps a
method call can take (from the AMP book, p. 57).

Consider the following rather unusual implementation of a method m. In every history, the
ith time a thread calls m, the call returns after 2i steps. Is this method m wait-free, bounded
wait-free, or neither?

II. Practice

II.1. Timestamp interface

Give Java code to implement the Timestamp interface of Fig. 2.10 in the AMP book using
unbounded labels. For convenience, we repeat the interface definitions here.

1 public interface Timestamp {
2 /∗∗
3 ∗ @return true i f ” t h i s ” i s g r ea t e r than ”other ”.
4 ∗/
5 boolean compare (Timestamp other) ;
6 }
7

8 /∗∗
9 ∗ A TimestampSystem manages an array o f Timestamps .

10 ∗/
11 public interface TimestampSystem {
12

13 /∗∗
14 ∗ @return the current array o f timestamps
15 ∗/
16 public Timestamp [] scan () ;
17

18 /∗∗
19 ∗ Update a timestamp .
20 ∗ @param timestamp The new timestamp .
21 ∗ @param i The index in to the Timestamp array to be updated .
22 ∗/
23 public void label (Timestamp timestamp , int i) ;
24 }

Then, show how to replace the pseudocode of the Bakery lock of Fig. 2.9 in the AMP book (or
on the slides) using your Timestamp Java code.

Submission

• Deadline: 27.11.2014, 23:59

• Submit theory exercises in PDF format via email to concurrency AT informatik.uni-

freiburg.de. Please name your single file with the scheme: ex2-name(s).pdf.

• Submit practical exercises as executable jar-files for each exercise. The file name should
include the name of the exercise and your name (example: philosophers-fennell.jar).
Make sure that you include all source files and libraries you use. Sources should always
be documented!

• Late submissions may not be corrected.

• Do not forget to write your name(s) on the exercise sheet.

• You may submit in groups up to 2 people.

	Theory
	Consistency
	Classifying histories
	Atomic Integers
	Strange methods....

	Practice
	Timestamp interface

