
Prof. P. Thiemann, L. Fennell, M. Geffken Winter Term 2014/15

Lecture: Concurrency Theory and Practise

http://proglang.informatik.uni-freiburg.de/teaching/concurrency/2014ws/

Exercise Sheet 4

2014-12-12

I. Santa Claus and his team

Santa Claus sleeps in his shop up at the North Pole, and can only be wakened by either all nine
reindeer, Dasher and Dancer, Prancer and Vixen, Comet and Cupid, and Rudolf and Blitzen,
being back from their year long vacation on the beaches of some tropical island in the South
Pacific, or by some elves who are having some difficulties making the toys.

One elf’ s problem is never serious enough to wake up Santa (otherwise, he may never get any
sleep), therefore, the elves visit Santa in a group of three. When three elves are having their
problems solved, any other elve’s wishing to visit Santa must wait for those elves to return. If
Santa wakes up to find three elves waiting at his shop’s door, along with the last reindeer having
come back from the tropics, Santa has decided that the elves can wait until after Christmas,
because it is more important to get his sleigh ready as soon as possible. (It is assumed that the
reindeer don’t wan t to leave the tropics, and therefore the y stay there until the last possible
moment. They might not even come back, but since Santa is footing the bill for their year
in paradise This could also explain the quickness in their delivering of presents , since the
reindeer can’t wait to get back to where it is warm.) The penalty for the last reindeer to arrive
is that it must get Santa while the others wait in a warming hut before being harnessed to the
sleigh.

Define an algorithm for Santa and his team using appropriate synchronization and commu-
nication primitives (like barriers, see II.2, or conditions, see III.3). Each participant is modeled
with his own thread, i.e. there is a Santa thread, several elve threads and the reindeer threads.

1. What is the name of the ninth reindeer?

2. Design and implement the algorithm while waiting for your Christmas presents! You
better make sure that Santa is not dead-locked....

Each submitted solution will earn some cookie!

http://proglang.informatik.uni-freiburg.de/teaching/concurrency/2014ws/

II. Theory

II.1. A Bad CLHLock

Explain how the following implementation of CLHLock can go wrong:

1 public class BadCLHLock implements Lock {
2 // most recent l o c k ho lder
3 AtomicReference<Qnode> t a i l ;
4 // thread−l o c a l v a r i a b l e
5 ThreadLocal<Qnode> myNode ;
6

7 public void l o ck () {
8 Qnode qnode = myNode . get () ;
9 qnode . locked = true ; // I am not done

10 // Make me the new t a i l , and f i nd my predecessor
11 Qnode pred = t a i l . getAndSet (qnode) ;
12 // spin wh i l e predecessor ho ld s l o c k
13 while (pred . locked) {}
14 }
15

16 public void unlock () {
17 // reuse my node next time
18 myNode . get () . l ocked = fa l se ;
19 }
20 stat ic class Qnode { // Queue node inner c l a s s
21 public boolean l ocked = fa l se ;
22 }
23 }

II.2. Barriers

Imagine n threads, each of which executes method foo() followed by method bar(). Suppose we
want to make sure that no thread starts bar() until all threads have finished foo(). For this kind
of synchronization, we place a barrier between foo() and bar().

First barrier implementation: We have a counter protected by a test-and-test-and-set lock.
Each thread locks the counter, increments it, releases the lock, and spins, rereading the counter
until it reaches n.

Second barrier implementation: We have an n-element Boolean array b, all false. Thread zero
sets b[0] to true. Every thread i, for 0 < i ≤ n, spins until b[i− 1] is true, sets b[i] to true, and
proceeds. Compare the behavior of these two implementations on a bus-based cache-coherent
architecture.

II.3. Have I got the lock?

Design an isLocked() method that tests whether a thread is holding a lock (but does not acquire
that lock). Give implementations for

• Any testAndSet() spin lock

• The CLH queue lock, and

• The MCS queue lock.

III. Practice

III.1. Executing Tasks: Futures and ExecutorServices

Consider the the page renderer FuturePageRenderer in
https://proglang.informatik.uni-freiburg.de/svn/progrep/teaching/concurrency/2014ws/

exercises/published-solutions/PageRenderer. Under the assumption that rendering text
is much faster than downloading images the resulting performance is not much different from
the sequential version.

Modify the FuturePageRenderer such that it can concurrently process the homogeneous tasks
of downloading the images. You should use Future and ExecutorService again.

https://proglang.informatik.uni-freiburg.de/svn/progrep/teaching/concurrency/2014ws/exercises/published-solutions/PageRenderer
https://proglang.informatik.uni-freiburg.de/svn/progrep/teaching/concurrency/2014ws/exercises/published-solutions/PageRenderer

III.2. Adding functionality to collections

Reusing Java libraries is often preferable to creating new ones. But often the best we can find
is a class that supports almost all the operations we want. In this case we need to add a new
operation to it without undermining its thread-safety.

Implement a thread-safe List with an atomic putIfAbsent() method.

Hint: Synchronising on the List implementations that come with Java’s collection classes nearly
does the job, as they provide contains and add methods which you can reuse to construct the
missing method. You can for example use the ArrayList class for the actual list implementation.

III.3. Sharing bathrooms

In the shared bathroom problem, there are two classes of threads, called MALE and FE-
MALE.There is a single Bathroom resource that must be used in the following way:

1. persons of opposite sex may not occupy the bathroom simultaneously, and

2. everyone who needs to use the bathroom eventually enters.

The protocol is implemented via the following four procedures: enterMale() delays the caller until
it is ok for a male to enter the bathroom, leaveMale() is called when a male leaves the bathroom,
while enterFemale() and leaveFemale() do the same for females.

1. Implement this class using synchronized, wait(), notify (), and notifyAll () constructs.

2. Implement this class using ReentrantLock and Condition variables.

For each implementation, explain why it satisfies mutual exclusion and starvation-freedom.

Hint: A java. util .concurrent.locks .ReentrantLock is the explicit version of synchronized methods
and statements. A java. util .concurrent.locks .Condition replaces the use of the Object monitor
methods (wait, notify and notifyAll) where an explicit lock is used. Familiarize yourself with
these classes by studying the their API documentation.

Submission

• Deadline: 2015-01-08, 23:59

• Submit theory exercises in PDF format via email to concurrency AT informatik.uni-

freiburg.de. Please name your single file with the scheme: ex4-name(s).pdf.

• Submit practical exercises as executable jar-files for each exercise. The file name should
include the name of the exercise and your name (example: philosophers-fennell.jar).
Make sure that you include all source files and libraries you use. Sources should always
be documented!

• Late submissions may not be corrected.

• Do not forget to write your name(s) on the exercise sheet.

• You may submit in groups up to 2 people.

	Santa Claus and his team
	Theory
	A Bad CLHLock
	Barriers
	Have I got the lock?

	Practice
	Executing Tasks: Futures and ExecutorServices
	Adding functionality to collections
	Sharing bathrooms

