
Prof. P. Thiemann, L. Fennell, M. Geffken Winter Term 2014/15

Lecture: Concurrency Theory and Practise

http://proglang.informatik.uni-freiburg.de/teaching/concurrency/2014ws/

Exercise Sheet 5

2015-01-09

I. Theory

I.1. Reentrant Locks

The ReentrantReadWriteLock class provided by the java. util .concurrent.locks package does not allow
a thread holding the lock in read mode to then access that lock in write mode (the thread
will block). Justify this design decision by sketching what it would take to permit such lock
upgrades.

I.2. Stacks

Consider the problem of implementing a bounded stack using an array indexed by a top counter,
initially zero. In the absence of concurrency, these methods are almost trivial. To push an item,
increment top to reserve an array entry, and then store the item at that index. To pop an item,
decrement top, and return the item at the previous top index.

Clearly, this strategy does not work for concurrent implementations, because one cannot
make atomic changes to multiple memory locations. A single synchronization operation can
either increment or decrement the top counter, but not both, and there is no way atomically to
increment the counter and store a value.

Nevertheless, Bob D. Hacker decides to solve this problem. He decides to adapt the dual-data
structure approach to implement a dual stack. For dual data structures, methods take effect
in two stages, reservation and fulfillment. This allows waiting threads to spin on locally cached
flags, and also ensures fairness in a natural way.

1 public class DualStack<T> {
2 private class S lo t {
3 volat i le boolean f u l l = fa l se ;
4 T value = null ;
5 }
6 S lo t [] s tack ;
7 int capac i ty ;
8 private AtomicInteger top = new AtomicInteger (0) ; // array index
9 public DualStack (int myCapacity) {

10 capac i ty = myCapacity ;
11 s tack = new Stack [capac i ty] ;
12 for (int i = 0 ; i < capac i ty ; i++) {
13 s tack [i] = new S lo t () ;
14 }
15 }
16 public void push (T value) throws Ful lExcept ion {
17 while (true) {
18 int i = top . getAndIncrement () ;
19 i f (i > capac i ty − 1) { // i s s t ack f u l l ?
20 throw new Ful lExcept ion () ;
21 } else i f (i > 0) { // i in range , s l o t re served
22 s tack [i] . va lue = value ;
23 s tack [i] . f u l l = true ; //push f u l f i l l e d
24 return ;
25 }
26 }
27 }
28 public T pop () throws EmptyException {
29 while (true) {
30 int i = top . getAndDecrement () ;
31 i f (i < 0) { // i s s t ack empty?
32 throw new EmptyException () ;
33 } else i f (i < capac i ty − 1) {
34 while (! s tack [i] . f u l l) {} ;

http://proglang.informatik.uni-freiburg.de/teaching/concurrency/2014ws/

35 T value = stack [i] . va lue ;
36 s tack [i] . f u l l = fa l se ;
37 return value ; //pop f u l f i l l e d
38 }
39 }
40 }
41 }

Bob’s DualStack<T> class splits push() and pop() methods into reservation and fulfillment steps.
The stack’s top is indexed by the top field, an AtomicInteger manipulated only by getAndIncrement()

and getAndDecrement() calls. Bob’s push() method’s reservation step reserves a slot by applying
getAndIncrement() to top. Suppose the call returns index i. If i is in the range 0...capacity-1, the
reservation is complete. In the fulfillment phase, push(x) stores x at index i in the array, and
raises the full i flag to indicate that the value is ready to be read. The full field must be volatile
to guarantee that once the flag is raised, the value has already been written to index i of the
array.

If the index returned from push()’s getAndIncrement() is less than 0, the push() method repeatedly
retries getAndIncrement() until it returns an index greater than or equal to 0. (The index could
be less than 0 due to getAndDecrement() calls of failed pop() calls to an empty stack. Each such
failed getAndDecrement() decrements the top by one more past the 0 array bound. If the index
returned is greater than capacity-1, push() throws an exception because the stack is full.

The situation is symmetric for pop(). It checks that the index is within the bounds and
removes an item by applying getAndDecrement() to top, returning index i. If i is in the range
0...capacity-1, the reservation is complete. For the fulfillment phase, pop() spins on the full flag
of array slot i, until it detects that the flag is true, indicating that the push() call is successful.

What is wrong with Bob’s algorithm?
Optional bonus tasks: can you think of a way to fix it?

I.3. “Hope dies last”

Show a scenario with the optimistic algorithm for the linked list operations where a thread is
forever attempting to delete a node. Assume that all the individual node locks are starvation-
free.

I.4. contains() for Fine-grained Locking

Provide the code for the contains() method missing from the fine-grained algorithm. Explain
why your implementation is correct.

I.5. Even Lazier remove()

Would the lazy algorithm still work if we marked a node as removed simply by setting its next

field to null? Why or why not? What about the lock-free algorithm?

II. Practice

II.1. Empty Rooms

The Rooms class manages a collection of rooms, indexed from 0 to m (where m is an argument
to the constructor). Threads can enter or exit any room in that range. Each room can hold an
arbitrary number of threads simultaneously, but only one room can be occupied at a time. For
example, if there are two rooms, indexed 0 and 1, then any number of threads might enter the
room 0, but no thread can enter the room 1 while room 0 is occupied. This is an outline of the
Rooms class.

1 public class Rooms {
2 public interface Handler {
3 void onEmpty () ;
4 }
5 public Rooms(int m) { /∗ . . . ∗/ }
6 void ente r (int i) { /∗ . . . ∗/ }
7 boolean e x i t () { /∗ . . . ∗/ }
8 public void se tExi tHandler (int i , Rooms . Handler h) { /∗ . . . ∗/ }
9 }

Each room can be assigned an exit handler : calling setHandler(i ,h) sets the exit handler for
room i to handler h. The exit handler is called by the last thread to leave a room, but before
any threads subsequently enter any room. This method is called once and while it is running,
no threads are in any rooms.

Implement the Rooms class. Make sure that:

• If some thread is in room i, then no thread is in room j 6= i.

• The last thread to leave a room calls the room’s exit handler, and no threads are in any
room while that handler is running.

• Your implementation must be fair : any thread that tries to enter a room eventually
succeeds. Naturally, you may assume that every thread that enters a room eventually
leaves.

II.2. CountDownLatch

Consider an application with distinct sets of active and passive threads, where we want to block
the passive threads until all active threads give permission for the passive threads to proceed.

A CoundDownLatch encapsulates a counter, initialized to be n, the number of active threads.
When an active method is ready for the passive threads to run, it calls countDown(), which
decrements the counter. Each passive thread calls awaitZero(), which blocks the thread until the
counter reaches zero:

1 public class Driver {
2

3 public stat ic void main (St r ing [] a rgs) {
4 int n = /∗ . . . ∗/ ;
5 CountDownLatch s t a r t S i g n a l = new CountDownLatch (1) ;
6 CountDownLatch doneSignal = new CountDownLatch (n)
7 for (int i = 0 ; i < n ; i++) {
8 new Thread (new Worker (s t a r t S i gna l , doneSignal)) . s t a r t () ;
9 }

10 doSomeThingElse () ; // ge t ready fo r threads
11 doneSignal . awaitZero () ;
12 }
13

14 class Worker implements Runnable {
15 private f ina l CountDownLatch s t a r tS i gna l , doneSignal ;
16 Worker (CountDownLatch myStartSignal , CountDownLatch myDoneSignal) {
17 s t a r t S i g n a l = myStartSignal ;
18 doneSignal = myDoneSignal ;
19 }
20

21 public void run () {
22 s t a r t S i g n a l . await () ; // wait f o r d r i v e r ’ s OK to s t a r t
23 doWork () ;
24 doneSignal . countDown () ; // no t i f y d r i v e r we ’ re done
25 }
26 /∗ . . . ∗/
27 }
28

29 }

Provide a CountDownLatch implementation. First, do not worry about reusing the CountDownLatch

object. Then, also provide a CountDownLatch implementation where the CountDownLatch object
can be reused.

Submission

• Deadline: 2015-01-22, 23:59

• Submit theory exercises in PDF format via email to concurrency AT informatik.uni-

freiburg.de. Please name your single file with the scheme: ex5-name(s).pdf.

• Submit practical exercises as executable jar-files for each exercise. The file name should
include the name of the exercise and your name (example: philosophers-fennell.jar).
Make sure that you include all source files and libraries you use. Sources should always
be documented!

• Late submissions may not be corrected.

• Do not forget to write your name(s) on the exercise sheet.

• You may submit in groups up to 2 people.

	Theory
	Reentrant Locks
	Stacks
	``Hope dies last''
	contains() for Fine-grained Locking
	Even Lazier remove()

	Practice
	Empty Rooms
	CountDownLatch

