
Concurrency WS 2014/15
Message Passing Concurrency

Peter Thiemann

February 3, 2015

Outline

1 Message Passing

2 Go

3 Concurrent ML

4 Pi-Calculus

Concurrency Flavors

Shared Memory Concurrency
processes interact by reading and writing shared variables
locking etc. needed to demarcate critical regions

Message Passing Concurrency
processes interact by sending and receiving messages on
shared communication channels

Concurrency Flavors

Shared Memory Concurrency
processes interact by reading and writing shared variables
locking etc. needed to demarcate critical regions

Message Passing Concurrency
processes interact by sending and receiving messages on
shared communication channels

Expressiveness

message passing may be implemented using shared
variables (viz. consumer/producer message queue
implementations)
shared variables may be implemented using message
passing

model a reference by a thread and channels for reading
and writing
reading on the “read” channel returns the current value
writing on the “write” channel spawns a new thread with the
new value that manages the two channels from then on

Synchronous vs. Asynchronous

Receive operation blocks either way
Given a channel with synchronous operations,

send asynchronously by sending in a spawned thread
Given a channel with asynchronous operations.

establish a protocol to acknowledge receipts
pair each send operation with a receive for the
acknowledgment

First Incarnation

Hoare’s Communicating Sequential Processes (CSP)
Prefix (x : B)→ P(x)

await synchronizaton on event x (an element of B)
and then execute P(x)

Choice (a→ P | b → Q)
await synchronizaton on a or b and continue with
P or Q, respectively

Recursion µX • P(X)
process that recursively behaves like P

Concurrency P‖Q
P runs in parallel with Q

Sequential (process local) variables, assignment, conditional,
while

CSP II

Communication in CSP
Special events

c!v output v on channel c
c?x read from channel c and bind to variable x

Example: copy from channel in to channel out

COPY = µX • (in?x → (out!x)→ X)

Example: generate sequence of ones

ONES = µX • (in!1→ X)

Event in!1 synchronizes with in?x and transmits the value
to the other process
Example: last process behaves like /dev/null

ONES‖COPY‖µX • (out?y → X)

CSP III

CSP has influenced the design of numerous programming
languages

Occam — programming “transputers”, processors with
specific serial communication links
Golang — a programming language with cheap threads
and channel based communication (Google 2011,
https://golang.org)
CML — concurrent ML (John Reppy, 1999,
http://cml.cs.uchicago.edu/)

Golang and CML feature typed bidirectional channels
Golang’s channels are synchronous

https://golang.org
http://cml.cs.uchicago.edu/

Outline

1 Message Passing

2 Go

3 Concurrent ML

4 Pi-Calculus

Go the Language
Example: Compute Pi

// pi launches n goroutines to compute an
// approximation of pi.
func pi(n int) float64 {

ch := make(chan float64)
for k := 0; k <= n; k++ {

go term(ch, float64(k))
}
f := 0.0
for k := 0; k <= n; k++ {

f += <-ch
}
return f

}

func term(ch chan float64, k float64) {
ch <- 4 * math.Pow(-1, k) / (2*k + 1)

}

Go II
Example: Prime numbers

// Send the sequence 2, 3, 4, ... to channel ’ch’.
func Generate(ch chan<- int) {

for i := 2; ; i++ {
ch <- i // Send ’i’ to channel ’ch’.

}
}

// Copy from channel ’in’ to channel ’out’,
// removing values divisible by ’p’.
func Filter(in <-chan int, out chan<- int, p int) {

for {
i := <-in // Receive value from ’in’.
if i%p != 0 {

out <- i // Send ’i’ to ’out’.
}

}
}

Go IIa
Example ’Prime numbers’ continued

// The prime sieve: Daisy-chain Filter processes.
func main() {
ch := make(chan int) // Create a new channel.
go Generate(ch) // Launch generator.
for i := 0; i < 10; i++ {
prime := <-ch
fmt.Println(prime)
ch1 := make(chan int)
go Filter(ch, ch1, prime)
ch = ch1

}
}

Outline

1 Message Passing

2 Go

3 Concurrent ML

4 Pi-Calculus

Concurrent ML

Synchronous message passing with first-class events

i.e., events are values in the language that can be passed
as parameters and manipulated before they become part of
a prefix
may be used to create new synchronization abstractions

Originally for ML with implementations in Racket, Caml,
Haskell, etc
But ideas more widely applicable
Requires threads to be very lightweight (i.e., thread
creation at the cost of little more than a function call)

CML’s Channel Interface

type ’a channel (* messages passed on channels *)
val new_channel : unit -> ’a channel

type ’a event (* when sync’ed on, get an ’a *)
val send : ’a channel -> ’a -> unit event
val receive : ’a channel -> ’a event
val sync : ’a event -> ’a

send and receive return an event immediately
sync blocks on the event until it happens
This separation of concerns is important

Simple Synchronous Operations

Define blocking send and receive operations:

let sendNow ch a = sync (send ch a)
let recvNow ch = sync (receive ch)

Each channel may have multiple senders and receivers
that want to synchronize.
Choice of pairing is nondeterministic, up to the
implementation

CML
Example: Bank Account

type action = Put of float | Get of float
type account = action channel * float channel
let mkAcct () =
let inCh = new_channel() in
let outCh = new_channel() in
let bal = ref 0.0 in (* state *)
let rec loop () =
(match recvNow inCh with (* blocks *)

Put f -> bal := !bal +. f
| Get f -> bal := !bal -. f); (* overdraw! *)
sendNow outCh !bal; loop ()

in ignore(create loop ()); (* launch "server" *)
(inCh,outCh) (* return channels *)

CML II
Example: Functional Bank Account

let mkAcct_functionally () =
let inCh = new_channel() in
let outCh = new_channel() in
let rec loop bal = (* state is loop-argument *)
let newbal =

match recvNow inCh with (* blocks *)
Put f -> bal +. f

| Get f -> bal -. f (* overdraw! *)
in sendNow outCh newbal; loop newbal

in ignore(create loop 0.0);
(inCh,outCh)

Viz. model a reference using channels

Account Interface

Interface can abstract channels and concurrency from clients

type acct
val mkAcct : unit -> acct
val get : acct -> float -> float
val put : acct -> float -> float

type acct is abstract, with account as possible
implementation
mkAcct creates a thread behind the scenes
get and put make the server go round the loop once

Races are avoided by the implementation; the account server
takes one request at a time

Streams in CML

A stream is an infinite sequence of values produced lazily.

let nats = new_channel()
let rec loop i =
sendNow nats i;
loop (i+1)

let _ = create loop 0

let next_nat () = recvNow nats

Introducing Choice

sendNow and recvNow block until they find a
communication partner (rendezvous).
This behavior is not appropriate for many important
synchronization patterns.
Example:
val add : int channel -> int channel -> int

Should read the first value available on either channel to
avoid blocking the sender.
For this reason, sync is separate and there are further
operators on events.

Choose and Wrap

val choose : ’a event list -> ’a event
val wrap : ’a event -> (’a -> ’b) -> ’b event
val never : ’a event
val always : ’a -> ’a event

choose: creates an event that: when synchronized on,
blocks until one of the events in the list happens
wrap: the map function for channels; process the value
returned by the event with a function
never = choose []

always x: synchronization is always possible; returns x
further primitives omitted (e.g., timeouts)

The Circuit Analogy

Electrical engineer
send and receive are ends of a gate
wrap is logic attached to a gate
choose is a multiplexer
sync is getting a result

Computer scientist
build up data structure that describes a communication
protocol
first-class, so can be passed to sync

events in interfaces so other libraries can compose

The Circuit Analogy

Electrical engineer
send and receive are ends of a gate
wrap is logic attached to a gate
choose is a multiplexer
sync is getting a result

Computer scientist
build up data structure that describes a communication
protocol
first-class, so can be passed to sync

events in interfaces so other libraries can compose

Outline

1 Message Passing

2 Go

3 Concurrent ML

4 Pi-Calculus

Pi-Calculus

The Pi-Calculus is a low-level calculus meant to provide a
formal foundation of computation by message passing.
Due to Robin Milner (see book “Communicating and
Mobile Systems”, Cambridge University Press, 1999).
Has given rise to a number of programming languages
(Pict, JoCaml) and is acknowledged as a tool for business
process modeling (BPML).

Pi-Calculus Features

Primitives for describing and analysing global distributed
infrastructure

process migration between peers
process interaction via dynamic channels
private channel communication.

Mobility
processes move in the physical space of computing sites
(successor: Ambient);
processes move in the virtual space of linked processes;
links move in the virtual space of linked processes
(predecessor: CCS).

Pi-Calculus Features

Primitives for describing and analysing global distributed
infrastructure

process migration between peers
process interaction via dynamic channels
private channel communication.

Mobility
processes move in the physical space of computing sites
(successor: Ambient);
processes move in the virtual space of linked processes;
links move in the virtual space of linked processes
(predecessor: CCS).

Evolution from CCS

CCS: synchronization on fixed events

a.P | a.Q −→ P | Q

value-passing CCS

a(x).P | a(v).Q −→ P{x := v} | Q

Pi: synchronization on variable events (names) + value
passing

x(y).P | x(z).Q −→ P{y := z} | Q

Example: Doctor’s Surgery
Based on example by Kramer and Eisenbach

A surgery consists of two doctors and one receptionist. Model
the following interactions:

1 a patient checks in;
2 when a doctor is ready, the receptionist gives him the next

patient;
3 the doctor gives prescription to the patient.

Attempt Using CCS + Value Passing

1 Patient checks in with name and symptoms

P(n, s) = checkin〈n, s〉.?

2 Receptionist dispatches to next available doctor

R = checkin(n, s).(next1.ans1〈n, s〉.R + next2.ans2〈n, s〉.R)

3 Doctor gives prescription

Di = nexti .ansi(n, s).?

In CCS it’s not possible to create an interaction between P
and Di because they don’t have a shared channel name.

Attempted Solution

Use patient’s name as the name of a new channel.

Di = nexti .ansi(n, s).n〈pre(s)〉.Di

P(n, s) = checkin〈n, s〉.n(x).P ′

Receptionist: Same code as before, but now the name of the
channel is passed along.

R = checkin(n, s).(next1.ans1〈n, s〉.R + next2.ans2〈n, s〉.R)

Improvement I

The doctor passes an answering channel to R.

Di = next(ansi).ansi(n, s).n〈pre(s)〉.Di

R = checkin(n, s).next〈ans〉.ans〈n, s〉.R)

WIth this encoding, the receptionist no longer depends on the
number of doctors.
Patient: unchanged

P(n, s) = checkin〈n, s〉.n(x).P ′

Improvement II

If two patients have the same name, then the current
solution does not work.
Solution: generate fresh channel names as needed
Read (νn) as “new n” (called restriction)

P(s) = (νn) checkin〈n, s〉.n(x).P ′

Same idea provides doctors with private identities
Now same code for each doctor

D = (νa) next(a).a(n, s).n〈pre(s)〉.D

In D | D | R, every doctor creates fresh names

Example: n-Place Buffer

Single buffer location

B(in,out) = in(x).out〈x〉.B(in,out)

n-place buffer Bn(i ,o) =

(νo1) . . . (νon−1)(B(i ,o1) | · · · | B(oj ,oj1) | . . .B(on−1,o))

May still be done with CCS restriction () \ oi , which can close
the scope of fixed names.

Example: Unbounded Buffer

UB(in,out) = in(x).(νy) (UB(in, y) | B(x , y ,out))

B(in,out) = in(x).B(x , in,out)

B(x , in,out) = out〈x〉.B(in,out)

Drawback: Cells are never destroyed
A elastic buffer, where cells are created and destroyed as
needed, cannot be expressed in CCS.

Formal Syntax of Pi-Calculus

Let x , y , z, . . . range over an infinite set N of names.

Pi-actions

π ::= x〈ỹ〉 send list of names ỹ along channel x
| x(ỹ) receive list of names ỹ along channel x
| τ unobservable action

Pi-processes

P ::=
∑

i∈I πi .Pi summation over finite index set I
| P | Q parallel composition
| (νx) P restriction
| !P replication

Formal Syntax of Pi-Calculus

Let x , y , z, . . . range over an infinite set N of names.

Pi-actions

π ::= x〈ỹ〉 send list of names ỹ along channel x
| x(ỹ) receive list of names ỹ along channel x
| τ unobservable action

Pi-processes

P ::=
∑

i∈I πi .Pi summation over finite index set I
| P | Q parallel composition
| (νx) P restriction
| !P replication

Summation

In
∑

i∈I πi .Pi , the process Pi is guarded by the action πi

0 stands for the empty sum (i.e., I = ∅)
π.P abbreviates a singleton sum
The output process x〈ỹ〉.P can send the list of free names
ỹ over x and continue as P
The input process x(z̃).P binds the list distinct names z̃. It
can receive any names ũ over x and continues as
P{z̃ := ũ}

Examples

x(z).y〈z〉 x(z).z〈y〉 x(z).z〈y〉+ w〈v〉

Summation

In
∑

i∈I πi .Pi , the process Pi is guarded by the action πi

0 stands for the empty sum (i.e., I = ∅)
π.P abbreviates a singleton sum
The output process x〈ỹ〉.P can send the list of free names
ỹ over x and continue as P
The input process x(z̃).P binds the list distinct names z̃. It
can receive any names ũ over x and continues as
P{z̃ := ũ}

Examples

x(z).y〈z〉 x(z).z〈y〉 x(z).z〈y〉+ w〈v〉

Restriction

The restriction (νz) P binds z in P.
Processes in P can use z to act among each others.
z is not visible outside the restriction.

Example

(νx) ((x(z).z〈y〉+ w〈v〉) | x〈u〉)

Restriction

The restriction (νz) P binds z in P.
Processes in P can use z to act among each others.
z is not visible outside the restriction.

Example

(νx) ((x(z).z〈y〉+ w〈v〉) | x〈u〉)

Replication

The replication !P can be regarded as a process consisting
of arbitrary many compositions of P.
As an equation: !P = P |!P.

Examples
!x(z).y〈z〉.0
Repeatedly receive a name over x and send it over y .
!x(z).!y〈z〉.0
Repeatedly receive a name over x and repeatedly send it
over y .

Replication

The replication !P can be regarded as a process consisting
of arbitrary many compositions of P.
As an equation: !P = P |!P.

Examples
!x(z).y〈z〉.0
Repeatedly receive a name over x and send it over y .
!x(z).!y〈z〉.0
Repeatedly receive a name over x and repeatedly send it
over y .

Variation: Monadic Pi-Calculus

Send and receive primitives are restricted to pass single
names.

Monadic pi-actions

π ::= x〈y〉 send name y along channel x
| x(y) receive name y along channel x
| τ unobservable action

Monadic processes defined as before on top of monadic
pi-actions.

Simulating Pi with Monadic Pi
First attempt

Obvious idea for a translation from Pi to monadic Pi:

x〈ỹ〉 → x〈y1〉 . . . x〈yn〉
x(ỹ) → x(y1) . . . x(yn)

Does not work
Counterexample

x(y1 y2).P | x〈z1 z2〉.Q | x〈z ′1 z ′2〉.Q′

Simulating Pi with Monadic Pi
First attempt

Obvious idea for a translation from Pi to monadic Pi:

x〈ỹ〉 → x〈y1〉 . . . x〈yn〉
x(ỹ) → x(y1) . . . x(yn)

Does not work

Counterexample

x(y1 y2).P | x〈z1 z2〉.Q | x〈z ′1 z ′2〉.Q′

Simulating Pi with Monadic Pi
First attempt

Obvious idea for a translation from Pi to monadic Pi:

x〈ỹ〉 → x〈y1〉 . . . x〈yn〉
x(ỹ) → x(y1) . . . x(yn)

Does not work
Counterexample

x(y1 y2).P | x〈z1 z2〉.Q | x〈z ′1 z ′2〉.Q′

Simulating Pi with Monadic Pi
Correct encoding

Suppose that w /∈ fn(P,Q)

x〈ỹ〉.P → (νw) x〈w〉w〈y1〉 . . .w〈yn〉.P†
x(ỹ).Q → x(()w).w(y1) . . .w(yn).Q†

where P† and Q† are recursively transformed in the same way.

Recursion by Replication

The Pi-calculus can encode recursion. Suppose a process is
defined using recursion

A(x̃) = QA

where QA depends on A and P is the scope of A.
The translation is given by

1 invent a new name a to stand for A;
2 for any process R, write R̂ for the result of replacing every

call A(w̃) by a〈w̃〉;
3 replace P and the old definition of A by

ˆ̂P = (νa) (P̂ |!x(x̃ .Q̂A))

	Message Passing
	Go
	Concurrent ML
	Pi-Calculus

