
P. Thiemann, G. Radanne Wintersemester 2017/18

Functional Programming

http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2017/

Exercise Sheet 1 – First steps

2017-10-25

Exercise 1 (Warming up)
1. Write two functions maxi and mini which computes the maximum and the minimum of two

Ints. Provide type signatures for each functions. (Don’t use the predefined min and max,
obviously!)

2. Define max3, which compute the maximum of three Ints.

3. Define a function med, which computes the Median of three Ints.

4. Test your definitions with QuickCheck Properties. Try to use Data.List.sort as as reference.

Exercise 2 (Stack calculator)
We will now implement the core of a small stack-based calculator. A stack computer is capable of
using Ints with the following operations: push n, pop, dup, add, substract, multiply and neg.

We represent the stack as a list of Ints: [Int]. The initial stack is infinitely deep and filled with
zeros. This means the following sequence of operation succeeds and returns 8.

pop

push 8

add

1. Implement the stack operations as function that takes the initial stack as argument and
return the updated stack.

2. Test your functions using QuickCheck. Be aware that QuickCheck can generate very long
lists. If that is the case, use Properties instead.

3. In order to make our stack calculator convenient to use, we want users to be able to provi-
de textual commands. Implement a function readCommand :: String -> [Int] -> [Int]

which decodes the provided string and call the appropriate operations. An unrecognized ope-
ration should leave the stack unchanged (noop). The exact format of textual commands is
up to you.

Tip: Strings are list of Chars. You can use the functions presents in Data.Char.

Exercise 3 (List functions)
Implement the following functions: head, tail, init, last, length, reverse, (++), iterate, map,
filter, intersperse, concat, zipWith, repeat, and, takeWhile, dropWhile, maximum.

You can consult the type and the documentation for all these functions here:

https://hackage.haskell.org/package/base-4.10.0.0/docs/Data-List.html

1

http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2017/
https://hackage.haskell.org/package/base-4.10.0.0/docs/Data-List.html

