
P. Thiemann, G. Radanne Wintersemester 2017/18

Functional Programming

http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2017/

Exercise Sheet 4 – High order functions, IO

2017-11-29

1 High order functions

Exercise 1 (Folding)
Fold is a very common functional programming idiom:

foldr :: (a -> b -> b) -> b -> [a] -> b

1. Define foldr.

2. Using foldr, implement:

• or, returns True if at least one item in the list of booleans is true

• filter

• map

• foldl, the left-associative variant of foldr:

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl _ acc [] = acc

foldl f acc (x: xs) = foldl f (f acc xs) xs

• remdups, removes consecutive duplicates from a list

Exercise 2 (Improving the Vector Graphics Library)
In your vector graphics library, implemented during exercise sheet 3, you might have distinguished
the type of coordinates:

data Coord = Coord Float Float

Which is the same as the datatype for 2D Vectors.

1. Write the following high order functions that manipulates pictures:

• mapCoord :: (Coord -> Coord) -> Picture -> Picture.
mappCoord f pic applies f to all the coordinates inside pic.

• mapScalar :: (Float -> Float) -> Picture -> Picture.
mapScalar f pic applies f to all the scalar values inside pic (such as radius of circles).

2. Use these functions to implement move, scale and rotate. These implementations should
now be very short (only one line).

Exercise 3 (Unfolding)
There is also a dual function to foldr, unfoldr:

unfoldr :: (b -> Maybe (a, b)) -> b -> [a]

Instead of reducing a list to a final result, unfoldr f seed builds a new list: The elements of
the list are created by repeatedly applying the f function to the accumulator b. If f b returns
the value Nothing, the list is over. If f b returns the value Just (a, b ’) , then a is added
as the foremost element. The value b ’ is then passed to f to calculate the next element.

1. Define unfoldr.

2. Using unfoldr, define map.

3. Another standard function of functional programming is iterate :: (a -> a) -> a -> [a]

What could this function do? Implement iterate using unfoldr.

1

http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2017/


2 The IO type

Exercise 4 (Numbers game)
In the Numbers game, the computer tries to guess a user-imagined number between 1 and 100.
Here is an example. Texts after the > prompt are user inputs.

Choose a number between 1 and 100!

Is it 50?

> greater

Is it 75?

> smaller

Is it 62?

> smaller

Is it 56?

> Yes

I won in 4 attempts!

Implement this game using the IO type and the do notation. In your Stack project, add this
program in the /bin directory to easily produce a real binary.

Exercise 5 (Stack Calculator Interface)
In exercise sheet 1, we implemented a simple stack calculator. This calculator was missing a crucial
component: a command line interface!

Using IO, add a command line interface to your implementation of the stack calculator. Each
line should represent a command (for example “push 3” or “add”). The program should show the
stack at each step. “exit” should exit the program.

2


	High order functions
	The IO type

