P. Thiemann, G. Radanne Wintersemester 2017/18

Functional Programming

http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2017/

Exercise Sheet 5 — Combinators, Parsing
2017-12-13

Download the file ParserCon.hs from the lecture page. It contains a parser module similar to
the one developed during the lecture, but equipped with Functor, Applicative, Alternative,
Monad and MonadPlus Instances.

Exercise 1 (Parsing)
Define the parser combinators described below:

e pmany :: parser t r -> parser t [r]

pmany p accepts p zero or more times and summarizes the results in a list.

e pmanyl :: Parser t r -> parser t [r]

pmanyl p accept p one or more times and summarize the results in a list.

e pIntList :: Parser Char [Integer]

pIntList accepts lists in Haskell syntax that contain integer literals.

For example pIntList "[1, 22,33 \ n, 44]" == ([1, 22, 33, 44], "")
e pPaliAB :: Parser Char String

pPaliAB accepts palindromes from the characters *a’ and ’b’
e pPali :: (Eq r) => parser t r -> parser t [r]

pPali p accepts the palindromes that consist of elements that accept p.

For example: pPaliAB = pPali (lit ’a’ ‘palt‘ 1lit ’b’).

e pTwice :: (Eq t) => parser t [t] -> parser t [t]
For all ts accepting p, ts ++ ts is accepted by pTwice p.

Exercise 2 (While)
Implement a parser for the following grammar of a simple programming language:

stmts :: = stmt ’;’ stmts
| stmt
stmt :: = ’while’ exp ’do’ stmts ’done’
| id ’: =’ exp
exp :: = ’if’ exp ’then’ exp ’else’ exp ’fi’
| aexp cmp aexp
| ’not’ exp
| aexp
aexp :: = num
| id
| >’ aexp op aexp ’)’
cmp ceo= 0= | 1> |) == | =
OP ceo= 040 |)) |)% I ;/7
num :: = "[0-9] +"
id :: = "[a-zA-Z] [a-zA-Z0-9] x*"

In the grammar above, terminal symbols are either literals in single quotes (for example, >if’) or
regular expressions in double quotes (for example, " [0-9]+").

http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2017/

An example program of the language:

x: =0; y: = 5;

while x <= 10 do

y: = (y*5); xt = (x+ 1)

done;

y: = if y> 10000 then 10000 else y fi

On the homepage you will find the module MiniWhile.hs with some basic structure to get you
started. Notably, a lexer:

lexer :: string -> Maybe [Token]

which should be used to preprocess the string.

Your task is to implement a parser for the language and to extend the various type definitions
to the full language.

