
P. Thiemann, G. Radanne Wintersemester 2017/18

Functional Programming

http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2017/

Exercise Sheet 8 – GADTs

24/01/2017

Note: For the following exercises, you must turn on the GHC extension GADTs . To do this,
add the following special comment (pragma) at the beginning of your Haskell source file:

{- # LANGUAGE GADTs # -}

In addition, it also recommended to use the pragma

{- # OPTIONS_GHC -fwarn-incomplete-patterns # -}

at the beginning of the file. This will make GHC warn you about pattern matchings that do not
cover all the cases.

Exercise 1 (Safe List)
Define a list type SafeList that supports a “safe” head safeHead operation. That is, the type
checker should allow the use of safeHead only if the argument is a non-empty SafeList:

safeHead (Cons 4 Nil) - ok

- safeHead Nil - Type error

This operation is called “safe” because it does not cause a runtime error on incorrect inputs,
unlike head.

In addition, implement safeDrop and safeAppend in a meaningful way.

Exercise 2 (Stack Calculator)
We previously implemented a stack calculator. This one was quite simple:

• only arithmetic operations

• always returns 0 on underflow

Now, we can do it better! The stack should now have a finite size and contain both Int and
Bool values. The stack programs should consist of the following commands:

sprog ::=

| Noop -- Doesn’t do anything

| Pop -- Removes the top element from the stack

| Push v -- Puts the value v on the stack

| Dup -- Places a duplicate of the top element on the stack

| Dup2 -- Places duplicates of the top two elements on the stack

| Flip -- Swaps the two top elements

| Add | Substract | Multiply

-- Perform an arithmetic operation on the top elements and puts

-- the result on the stack

| Le | Ge -- Compares the two top elements and puts the result on the stack

| Not | And | Or -- Performs a logical operation

| sprog1; sprog2 -- Executes sprog1 first, then sprog2

| if sprog1 sprog2 -- Executes sprog1 if True is at the top and sprog2 otherwise

1. Define the data type SProg so that it only accepts programs that can be executed without
errors.

1

http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2017/

2. Implement a tag-free interpreter for SProg.

3. Write a SProg program that calculates the max of the two top elements. Write two more
SProg toy programs and test them.

4. Now add the loop construct while to SProg.

sprog ::= ... | while sprog

-- Perform sprog as long as the top element of the stack is not True

5. Write a SProg program which, given two integers x, y at the top of the stack, places xmod y
at the top of the stack. Use only the operations from the above syntax (and while, of course)

6. Give an example of a simple error-free stack program that you can not express with your
SProg data type.

2

