
P. Thiemann, G. Radanne Wintersemester 2017/18

Functional Programming

http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2017/

Programming project – Grep in Haskell

February 14, 2018

grep is a UNIX utility that prints all the lines matching a given pattern in a set of files. Its
arguments are a pattern (regular expression) followed by a list of files. Your task is to implement a
(simple) grep clone in Haskell, hgrep, including a regular expression matcher, file system accesses,
and a command line interface.

% hgrep "x[0-9]+" file1 file2 file3

1 Project

This project should be worked on by groups of two (or exceptionally three) students. The im-
plementation should contain a file Readme describing how to compile and use the program. For
the final version, each group should send a file “project-FP-<NAMES>.tar” to both Prof. Peter
Thiemann and Gabriel Radanne by email. The email should be titled “project FP <NAMES>”.
The deadline for the project is the February 19, 2018.

The grade of the project will be used to improve the grade of the exam. Additionally, one of the
exercises of the exam will refer to the project.

This project consists of two parts, a core section that all groups should complete and a set of
potential extensions. Each group should pick at least two extensions.

2 Core

Each group should implement a fully-functional executable that takes as argument a regular ex-
pression using the POSIX syntax, a list of files, and prints all the lines matching the regular
expression to the standard output. The implementation of regular expression matching should
follow the description provided in section 2.1. The implementation of regular expression matching
should also be testable stand alone, as described by section 2.2.

2.1 Regular expressions

For this project, we implement a simplified version of Posix Regular Expressions which we describe
in fig. 1. We write ε for the regular expression matching the empty string and ∅ for the regular
expression that does not match any string. For ease of reading, we write the sequence operation
as a · b, although the concrete syntax is simply the concatenation (ab, in this case). The alphabet,
which is the set of printable ASCII characters, is noted A.

We also present a grammar for regular expressions in fig. 2. Special characters such as “*”, “|”,
“(” and “)” must be escaped to be used as regular characters. This syntax corresponds to grep’s
“Extended Regular Expressions”.

2.1.1 Derivatives

In order to decide if a string matches a given pattern, we will use regular expression derivatives.
The derivative or a regular expressions r on a character ’a’ is noted ∂a(r) which is the regular
expression for the language after matching ’a’. For example, given the regular expression (a|b) · c∗,
if we match the char ’a’, we can only match c∗ afterwards hence ∂a((a|b) · c∗) = c∗.

We first define the nullable operation, in fig. 3. nullable(r) is true if and only if the regular
expression r matches the empty string ε. For example, (a|b) ·c∗ is not nullable, but (a|b∗) is. Using
this operation, we define the derivative of a regular expression in fig. 4.

1

http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2017/

Name Example Example matched

Void ∅
Empty ε ""

Atom a "a"

Alternative a|b "a", "b"

Sequence a · b "ab"

Repetition (a|b)∗ "", "a", "abbabba", ...

Figure 1: Regular expression constructions

〈re0 〉 ::= 〈re1 〉 (‘|’ 〈re1 〉)*

〈re1 〉 ::= 〈re2 〉+
〈re2 〉 ::= 〈atom〉 〈postfix 〉
〈postfix 〉 ::= ‘*’ | ε
〈atom〉 ::= A | ‘(’ 〈re0 〉 ‘)’

Figure 2: Grammar of regular
expressions

nullable(∅) = false

nullable(ε) = true

nullable(′a′) = false

nullable(r|r′) = nullable(r) | nullable(r′)

nullable(r · r′) = nullable(r) & nullable(r′)

nullable(r∗) = true

Figure 3: Nullability of regular expressions

∂c(∅) = ∅
∂c(ε) = ∅

∂c(c
′) =

{
ε if c = c′

∅ otherwise

∂c(r | r′) = ∂c(r) | ∂c(r′)

∂c(r · r′) =

{
(∂c(r) · r′) | ∂c r′ if nullable(r)

∂c(r) · r′ otherwise

∂c(r∗) = ∂c(r) · r∗

Figure 4: Derivative of regular expressions

Given these two definitions, we can finally define the matching operation. Matching of a regular
expression r with a string s, noted r∼ s, is defined as follow.

r∼ ε ⇐⇒ nullable(r) r∼ c · s ⇐⇒ ∂c(r)∼ s

For more details on regular expression derivatives, you can consult Owens et al. [2009].

2.2 Tests

A test library is available on the course’s page as the file RegexTestLib.hs to test your imple-
mentation. This test library provides a function withFeatures that take as argument the list
of features that your library implements and generating test cases using QuickCheck. Here is a
sample of a main file using the test library.

import Regex

import RegexTestLib as Test

basics = Test.Basics mkAtom mkSeq mkAlt mkStar -- Core regex library

features = -- Choose your supported feature

[Test.Match Regex.match

, Test.Set mkSet

, Test.Rep mkRep

-- , Test.And mkAnd

, Test.Parsing show parse

, Test.Any mkAny

, Test.Many mkPlus

-- , Simplify simplify

]

main = Test.withFeatures basics features

2

In order to compile this file, you need to add the library “QuickCheck >= 2.9.2” to your cabal
file. You can find a more detailed documentation at the beginning of the file.

3 Extensions

Here is a list of extensions to the basic grep implementation highlighted above, sorted by approx-
imate difficulty. Each group should implement at least two extensions in this list. In additions
to the two extensions, you are also free to create new extensions of your own invention. You can
consult the grep manual (accessible with man grep) for inspiration.

3.1 Common regex operations

The grep executable implements more operations than the one described in section 2. Here is a
list of very common regular expression operators.

Common operators The regular expression “.” matches any character. The regular expression r+

matches at least one r and r? matches either r or ε.

Generalized repetition The regular expression r{n,m} matches r n to m times, for n and m
non-negative integers.

Character set and classes The regex [anbcd2] matches any character ’a’, ’b’, ’c’, ’d’ or ’2’. The
complement of a set can be taken by prepending ^ as in [^anbcd2].

You can also implement some of the regex operations supported by grep.

3.2 Uncommon regex operations

Here are some less common regex operators.

Intersection and complement The regular expression r&r’ matches both r and r’. The regular
expression r! matches anything except r.

Boundaries Most regular expression engines allow so-called “boundary” operators. For example ^

and $ match the empty string at the very beginning and very end of the line. \b matches
the empty string that is at the beginning or the end of a word.

3.3 Feature-full command line interface

grep has numerous options to alter its behavior such as -invert-match, which only show un-
matched lines, or -ignore-case which ignore case differences. Implement a command line in-
terface (including documentation!) for your grep clone using the optparse-applicative package1.
(Using this package is mandatory).

3.4 Search with a fixed string

grep features the -fixed-strings options, which searches for a fixed string instead of a regular
expression. For efficiency, it uses a dedicated algorithm for string search such as the Boyer-Moore
algorithm. Implement a dedicated string search algorithm.

3.5 Match highlighting

grep can highlight the section of line that was matched by the pattern. Extended the matching
algorithm to remember which positions were matched.

1https://hackage.haskell.org/package/optparse-applicative

3

https://hackage.haskell.org/package/optparse-applicative

3.6 Faster matching

The algorithm outlined in section 2.1.1 is not very fast. It is possible to speed it up using two
methods.

Simplify regular expressions For example, ∅|r is the same as r. While this pattern will not appear
in practice, it might appear in derivatives. There are many such patterns that can be
simplified.

Caching derivatives While matching, the same derivative will be computed many times. Instead
of deriving the same regular expression again and again, we can simply store the derivative
once it has been computed.

References

Scott Owens, John H. Reppy, and Aaron Turon. Regular-expression derivatives re-examined. J.
Funct. Program., 19(2):173–190, 2009. doi: 10.1017/S0956796808007090. URL https://doi.

org/10.1017/S0956796808007090.

4

https://doi.org/10.1017/S0956796808007090
https://doi.org/10.1017/S0956796808007090

	Project
	Core
	Regular expressions
	Derivatives

	Tests

	Extensions
	Common regex operations
	Uncommon regex operations
	Feature-full command line interface
	Search with a fixed string
	Match highlighting
	Faster matching

