Informatik I: Einführung in die Programmierung 10. Bäume

JNI BEBURG

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Peter Thiemann

29. November 2022

1 Der Baum

- Definition
- Terminologie
- Beispiele

Der Baum

Definition Terminologie Beispiele

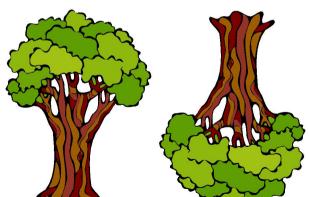
Binärbäume

Suchbäume

Bäume in der Informatik

A THE PARTY OF THE

- Bäume sind in der Informatik allgegenwärtig.
- Gezeichnet werden sie meistens mit der Wurzel nach oben!



Der Baum

Definition Terminologie

Binärbäume

Suchhäum

1 Der Baum

- Definition
- Terminologie
- Beispiele

Der Baum Definition

Terminologie Beispiele

Binärbäume

Suchbäume

- Der leere Baum ist ein Baum.
- Wenn $t_1, ..., t_n$, $n \ge 0$ disjunkte Bäume sind und k ein Knoten, der nicht in $t_1, ..., t_n$ vorkommt, dann ist auch die Struktur bestehend aus der Wurzel k mit zugeordneten Teilbäumen $t_1, ..., t_n$ ein Baum.
- Nichts sonst ist ein Baum.
- Beispiel:



Der Baum Definition

Beispiele

Binarbaume

1 Der Baum

- Definition
- Terminologie
- Beispiele

Der Baum Definition

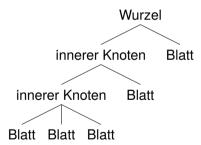
Terminologie Beispiele

Binärbäume

Suchbäume

Terminologie I

- Alle Knoten, denen keine Teilbäume zugeordnet sind, heißen Blätter.
- Knoten, die keine Blätter sind, heißen innere Knoten.



Die Wurzel kann also ein Blatt sein (keine weiteren Teilbäume) oder ein innerer Knoten.

Der Baum Definition

Terminologie Beisniele

Binärbäum

Terminologie II

- Wenn k_1 ein Knoten und k_2 die Wurzel eines zugeordneten Teilbaums ist, dann gilt:
 - \blacksquare k_1 ist Elternknoten von k_2 .
 - Alle Elternknoten von k_2 , deren Elternknoten usw. sind Vorgänger von k_2 .
 - \blacksquare k_2 ist Kind von k_1 .
 - Alle Kinder von k_1 , deren Kinder, usw. sind Nachfolger von k_1 .
- Bäume sind oft markiert. Die Markierung weist jedem Knoten eine Marke zu.
- Formal: Wenn K die Knotenmenge eines Baums ist und M eine Menge von Marken, dann ist die Markierung eine Abbildung $\mu : K \to M$.

Der Baum Definition

Terminologie Beispiele

Binärbäume

Cuchhäume

1 Der Baum

- Definition
- Terminologie
- Beispiele

Der Baum Definition

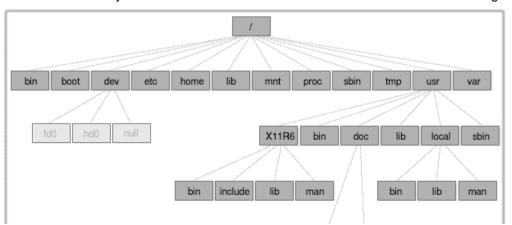
Terminologie Beispiele

Binärbäume

Suchbäume

Beispiel: Verzeichnisbaum

In vielen Betriebssystemen ist die Verzeichnisstruktur im Wesentlichen baumartig.



Der Baum Definition

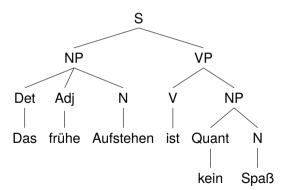
> Terminologie Beispiele

Rinärbäume

Beispiel: Syntaxbaum

UNI FREIBURG

Wenn die Struktur einer Sprache mit Hilfe einer formalen Grammatik spezifiziert ist, dann kann der Satzaufbau durch Syntaxbäume beschrieben werden.



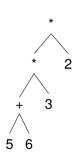
Der Baum Definition

Beispiele

Rinärhäum

Beispiel: Ausdrucksbaum

- Bäume können Ausdrücke so darstellen, dass ihre Auswertung eindeutig durchführbar ist, ohne dass Klammern notwendig sind.
- Beispiel: (5+6) *3 * 2
- Entspricht: ((5+6)*3)*2
- Operatoren als Markierung innerer Knoten, Zahlen als Markierung der Blätter:



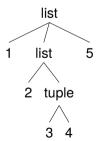
Der Baum Definition

Beispiele

Binärbäume

Dillarbaume

- Jede Liste und jedes Tupel kann als Baum angesehen werden, bei dem der Typ die Knotenmarkierung ist und die Elemente die Teilbäume sind.
- Beispiel: [1, [2, (3, 4)], 5]



Der Baum

Terminologie Beispiele

Binärbäume

2 Binärbäume

- Repräsentation
- Beispiel
- Funktionen auf Bäumen
- Baumeigenschaften
- Traversierung

Der Baum

Binärbäume

Repräsentation

Beispiel

Funktionen au Bäumen

> Baumeigenschaften

Traversierung

uchhäume

Suchbäume

Der Binärbaum

- Der Binärbaum ist ein Spezialfall eines Baumes.
- Ein Binärbaum ist entweder leer oder besteht aus einem (Wurzel-) Knoten und zwei Teilbäumen.
- Für viele Anwendungsfälle angemessen.
- Funktionen über solchen Bäumen sind einfach definierbar.

Der Baum

Rinärhäume

Binarbaur

Repräsentation

Beispiel Euphtienen auf

Bäumen

ten

raversierung

Cualaba ii uu

Suchbäume

2 Binärbäume

- Repräsentation
- Beispiel
- Funktionen auf Bäumen
- Baumeigenschaften
- Traversierung

Der Baum

Binärbäume

Repräsentation

Beispiel

Funktionen au

Baumeigenschaf

Traversierung

Iraversierung

Suchbäume

Binärbäume durch Objekte repräsentieren

- Der leere Baum wird durch None repräsentiert.
- Jeder andere Knoten wird durch ein Node-Objekt repräsentiert.
 - Das Attribut mark enthält die Markierung.
 - Das Attribut left enthält den linken Teilbaum.
 - Das Attribut right enthält den rechten Teilbaum.
- Beispiele:
 - Der Baum bestehend aus dem einzigen Knoten mit der Markierung 8: Node (8, None, None)
 - Der Baum mit Wurzel '+', linkem Teilbaum mit Blatt 5, rechtem Teilbaum mit Blatt 6:

```
Node('+', Node(5, None, None), Node(6, None, None))
```

Der Baum

Binärbäume

Repräsentation

Beispiel Euphtionen auf

Funktionen auf Bäumen

en saumeigenschi

raversierung

uchhäume

Suchbäum

Baumobjekte


```
from typing import Any, Optional
@dataclass
```

class Node:

```
mark
      : Anv
```

: Optional['Node'] left right : Optional['Node']

Bemerkung zu den Typannotationen

- Any: ein Objekt von beliebigem Typ
- Optional[t]: entweder t oder None (aber nichts anderes)
- Der Typ Node existiert erst nach Ausführung der class-Anweisung. Der String 'Node' in der Typannotation wird rückwirkend durch den Typ Node ersetzt.

Der Raum

Repräsentation

2 Binärbäume

- Repräsentation
- Beispiel
- Funktionen auf Bäumen
- Baumeigenschaften
- Traversierung

Der Baum

Binärbäume

Repräsentation

Beispiel Funktionen auf

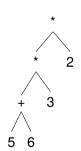
Funktionen a Bäumen

> Baumeigenschaften

Traversierung

Suchhäume

Suchbaume



wird folgendermaßen mit Node Objekten dargestellt:

Der Baum

Binärbäume

Repräsentation

Beispiel Europtionen

Funktionen ar Bäumen

ten

Traversierung

Suchbäume

2 Binärbäume

- Repräsentation
- Beispiel
- Funktionen auf Bäumen
- Baumeigenschaften
- Traversierung

Der Baum

Binärbäume

Repräsentation

Beispiel

Funktionen auf Bäumen

Baumeigenschaften

Traversierung

and the Management

Suchbäume

Drucken von Bäumen

Funktionsgerüst

```
def tree_str(tree : Optional[Node]) -> str:
    match tree:
        case None:
        return "fill in"
        case Node (m, 1, r):
        l_str = tree_str(1)
        r_str = tree_str(r)
        return "fill in"
```

- Node Objekte enthalten selbst wieder Node Objekte (oder None) in den Attributen left und right.
- Zum Ausdrucken eines Node Objekts müssen auch die enhaltenen Node Objekte ausgedruckt werden.
- tree str ist rekursiv, es wird in seiner eigenen Definition aufgerufen!

Der Raum

Binärbäume

Renräsentation

Beispiel Funktionen auf

Funktionen au Bäumen

ten

raversierung

Suchbäume

Drucken von Bäumen erfolgt rekursiv

- Die rekursiven Aufrufe tree_str (tree.left) und tree_str (tree.left) erfolgen nur auf den Kindern des Knotens.
- Ergibt sich zwangsläufig aus der induktiven Definition!
- Rekursive Aufrufe auf den Teilbäumen sind Teil des Funktionsgerüsts, sobald eine baumartige Struktur bearbeitet werden soll.
- Die Alternative "case None" ergibt sich zwangsläufig aus dem Typ tree:Optional[Node]: tree ist entweder None oder eine Node-Instanz.
- Alle Funktionen auf Binärbäumen verwenden dieses Gerüst.

Der Baum

Binärbäur

Repräsentation

Funktionen auf

Bäumen

en Fraversierung

Suchhäume

Suchbäume

Drucken von Bäumen

Funktionsdefinition

Der Baum

Binärbäume

Repräsentation

Beispiel

Funktionen auf Bäumen

Baumeigenscha ten

Traversierung

Suchbäume

Suchbaume

2 Binärbäume

- Repräsentation
- Beispiel
- Funktionen auf Bäumen
- Baumeigenschaften
- Traversierung

Der Baum

Binärbäume

Repräsentation Beispiel

Funktionen auf Bäumen

> Baumeigenschaften

Traversierung

Suchbäume

Tiefe von Knoten, Höhe und Größe von (Binär-)Bäumen

induktiv definiert

- Die Tiefe eines Knotens k (Abstand zur Wurzel) ist
 - 0, falls *k* die Wurzel ist.
 - \blacksquare *i* + 1, wenn *i* die Tiefe des Elternknotens ist.
- Die Höhe eines Baumes ist die maximale Tiefe über alle Blätter:
 - -1 für den leeren Baum.
 - m + 1, wenn m die maximale Höhe aller der Wurzel zugeordneten Teilbäume ist.
- Die Größe eines Baumes ist die Anzahl seiner Knoten.
 - 0 für den leeren Baum.
 - s+1, wenn s die Summe der Größen der Teilbäume ist.

Der Baum

Binärbäun

Dinarbaum

Beispiel

Funktionen auf Bäumen

Baumeigenschaf ten

aversierung

Suchhäume

Suchbaume

Induktive Definition von Höhe und Größe von Binärbäumen

$$height(tree) = \begin{cases} -1, & \text{if } tree \text{ is empty} \\ 1 + \max(& height(tree.left), \\ & height(tree.right)), & \text{otherwise.} \end{cases}$$

$$size(tree) = \begin{cases} 0, & \text{if } tree \text{ is empty}; \\ 1 & +size(tree.left) \\ & +size(tree.right)), & \text{otherwise.} \end{cases}$$

Der Baum

Dinärhäum

Binarbaum

Beispiel

Funktionen auf

Baumeigenschaf ten

m raversierung

Cuchhäum

Sucribaume

def height(tree : Optional[Node]) -> int:


```
UNI
FREIBURG
```

```
Der Baum
Binärbäume
Repräsentation
```

Beispiel
Funktionen auf
Bäumen
Baumeigenschaf

en raversierung

Suchbäume

```
match tree:
        case None:
            return -1
        case Node (m, l, r):
            return(max(height(l), height(r)) + 1)
def size(tree : Optional[Node]) -> int:
    match tree:
        case None:
            return 0
        case Node (m, 1, r):
            return(size(1) + size(r) + 1)
```

2 Binärbäume

- Repräsentation
- Beispiel
- Funktionen auf Bäumen
- Baumeigenschaften
- Traversierung

Der Baum

Binärbäume

Repräsentation

Beispiel

Bäumen
Baumeigenschaf-

ten

Traversierung

Suchbäume

Traversierung von Bäumen

- Oft sollen alle Knoten eines Baumes besucht und bearbeitet werden.
- 3 Vorgehensweisen (Traversierungen) sind üblich:
 - Pre-Order (Hauptreihenfolge): Bearbeite zuerst den Knoten selbst, dann besuche den linken, danach den rechten Teilbaum
 - Post-Order (Nebenreihenfolge): Besuche zuerst den linken, danach den rechten Teilbaum, zum Schluss bearbeite den Knoten selbst
 - In-Order (symmetrische Reihenfolge): Besuche zuerst den linken Teilbaum, dann bearbeite den Knoten selbst, danach besuche den rechten Teilbaum
- Manchmal auch Reverse In-Order (anti-symmetrische Reihenfolge): Rechter Teilbaum, Knoten, dann linker Teilbaum
- Auch das Besuchen nach Tiefenlevel von links nach rechts (level-order) ist denkbar

Der Baum

Binärbäume

Repräsentation

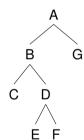
Beispiel Funktionen auf Bäumen

ten Traversierung

Suchhäume

Pre-Order Ausgabe eines Baums

Gebe den Baum pre-order aus



■ Ausgabe: A B C D E F G

Der Baum

Binärbäume

Repräsentation

Beispiel Funktionen au

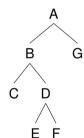
Bäumen Baumeigenschaf-

ten Traversierung

Suchbäume

Post-Order Ausgabe eines Baums

Gebe Baum post-order aus



■ Ausgabe: C E F D B G A

Der Baum

Binärbäume

Repräsentation

Beispiel Funktionen ar Bäumen

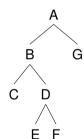
> Baumeigenschaften

Traversierung

Suchbäume

In-Order Ausgabe eines Baums

Gebe Baum in-order aus.



■ Ausgabe: C B E D F A G

Der Baum

Binärbäume

Repräsentation

Beispiel Funktionen au Bäumen

Baumeigenschaften

Traversierung

Suchbäume

Der Baum

Binärbäume

Binarbaume

Beispiel Funktionen auf Bäumen

> Baumeigensch ten

Traversierung

Suchbäume

Zusammen-

Die *post-order* Ausgabe eines Ausdrucks heißt auch <u>umgekehrt polnische</u> oder <u>Postfix-Notation</u> (HP-Taschenrechner, Programmiersprachen *Forth* und *PostScript*)

- Definition
- Suche
- Aufbau

Der Baum

Binärbäume

Suchbäume

Definition Suche

Suche Aufbau

- Definition
- Suche
- Aufbau

Der Baum

Binärbäume

Diriaibaaiiic

Definition Suche

Aufbau

- Suchbäume dienen dazu, Objekte schnell wieder zu finden.
- Ein Suchbaum ist ein binärer Baum, bei dem jeder Knoten *k* die Suchbaumeigenschaft erfüllt:
 - Alle Markierungen im linken Teilbaum sind *kleiner* als die Markierung von *k*, alle Markierungen im rechten Teilbaum sind *größer*.
- Suchen nach einem Objekt *m* beginnend beim Knoten *k*: Vergleiche *m* mit Markierung des aktuellen Knotens *k*,
 - wenn gleich, stoppe und gebe True zurück,
 - wenn *m* kleiner ist, suche im linken Teilbaum,
 - wenn *m* größer ist, such im rechten Teilbaum.
- Suchzeit ist proportional zur Höhe des Baums! Im besten Fall *logarithmisch in der Größe des Baums*.

Der Baum

Binärbäume

Suchbäum Definition

luche

Höhe und Größe eines Binärbaums

Lemma

Ist h die Höhe eines Binärbaums, so ist seine Größe kleiner gleich $2^{h+1} - 1$.

Beweis (Induktion)

Ist der Baum leer, so ist seine Höhe −1 und seine Größe 0.

Besteht ein Baum t aus einem Knoten und zwei Teilbäumen l und r mit Höhen h(l) und h(r), so gilt nach Induktionsvoraussetzung $s(l) \le 2^{h(l)+1} - 1$ und $s(r) < 2^{h(r)+1} - 1$.

$$S(r) \leq 2^{n(r)+1}-1.$$

Wegen s(t) = 1 + s(l) + s(r) und $h(t) = 1 + \max(h(l), h(r))$ gilt

$$s(t) = 1 + s(t) + s(r) \le 1 + (2^{h(t)+1} - 1) + (2^{h(r)+1} - 1) \le 2 \cdot 2^{\max(h(t)+1,h(r)+1)} - 1 = 2^{h(t)+1} - 1$$

Der Baum

Binärbäume

Definition

Suche Aufbau

Autbau

- Definition
- Suche
- Aufbau

Der Baum

Binärbäume

Diriaibaairie

Definition Suche

Aufbau

Suche im Suchbaum


```
def search(tree : Optional[Node], item : Any) -> bool:
   if tree is None:
       return False
   elif tree mark == item:
       return True
   elif tree.mark > item:
       return search(tree.left. item)
   6186.
       return search(tree.right, item)
# smaller values left, bigger values in right subtree
nums = Node(10, Node(5, leaf(1), None),
               Node (15, leaf(12), leaf(20))
print(search(nums, 12))
```

Der Baum

Binärbäume

Definition

Suche Aufbau

- Definition
- Suche
- Aufbau

Der Baum

Binärbäume

Suchbäum

Definition Suche

Aufbau

- Aufruf insert(tree. item) für das Einsortieren von item in tree
- Ist tree leer, so wird der Knoten leaf (item) zurückgegeben.
- Wenn die Markierung tree.mark größer als item ist, wird item in den linken Teilbaum eingesetzt und der Baum rekonstruiert (das erhält die Suchbaumeigenschaft!).
- Falls tree.mark kleiner als item ist, entsprechend.
- Falls tree.mark == item ist nichts zu tun!

Der Baum

Binärbäume

Suchbäum

Suche

Aufbau

Suchbaumaufbau

Immutable — unveränderlich

```
Z Z
```

```
def insert(
        tree : Optional[Node], item : Any
          ) -> Node:
    if tree is None:
        return leaf(item)
    elif tree mark > item:
        return Node(tree.mark,
                    insert(tree.left, item).
                    tree.right)
    elif tree.mark < item:
        return Node(tree.mark.
                    tree.left,
                    insert(tree.right, item))
    else:
        return tree
```

Der Baum

Binärbäume

Definition Suche

Aufbau

Der Baum

Binärbäume

Suchbäun

Suche

Aufbau

Der Baum

Binärbäume Suchbäume

Zusammenfassung

- Der Baum ist eine Struktur, die in der Informatik allgegenwärtig ist.
- Operationen über Bäumen lassen sich einfach als rekursive Funktionen implementieren.
- In einem Binärbaum besitzt jeder Knoten genau zwei Teilbäume.
- Es gibt drei Hauptarten der Traversierung von Binärbäumen: pre-order, post-order, in-order.
- Suchbäume sind Binärbäume, die die Suchbaumeigenschaft besitzen, d.h. im linken Teilbaum sind nur kleinere, im rechten nur größere Markierungen als an der Wurzel
- Das Suchen und Einfügen kann durch einfache rekursive Funktionen realisiert werden. Sortierte Ausgabe ist auch sehr einfach!

Der Baum

_