Prof. P. Thiemann, S. Wehr Summer Term 2009

Concepts of Programming Languages

http://proglang.informatik.uni-freiburg.de/teaching/konzepte/2009ss/

Exercise Sheet 6

2009-05-28

Exercise 1 ((4+4) points)
Consider the following language supporting top-level functions and conditionals:

v € Var

f € Fun
Exp e = wv|n|ete]|exe]|zero?(e)|if e then e else e| f(e)
Def d == f)=e
Prog p == d*e

Var and Fun are disjoint, unspecified sets of variable and function symbols. Expressions e
comprise variables v, constants n for numbers in Z, addition e+e and multiplication exe, tests
against null zero?(e), conditionals if e then e else e, and function calls of the form f(e).
For simplicity, a function definition d binds exactly one variable. A program p consists of a
list of definitions d* and a “main expression” e.

By convention, we encode booleans as elements from Z such that 0 corresponds to false
and all x # 0 correspond to true. We assume that the set of constant symbols consists of

..,—2,—1,0,1,2,.... Moreover, there exists a function C mapping constant symbols to their
corresponding number in Z.

(a) Define a big-step style semantics for this language using call-by-value for parameter pass-
ing. The evaluation relation has the form d*,p - e — y, where d* is a list of function
definition, p € Env = Var — Z, e € Exp, and y € Z.

(b) Consider the function definition:
fac(v) = if zero?(v) then 1 else fac(v + -1) * v

Using your big-step semantics to prove that fac(n) evaluates to C(n)! for all n such that
C(n) € N.

Exercise 2 (4 points)
Define a small-step semantics for the language defined in the preceding exercise. This time,
use call-by-name for parameter passing.

Exercise 3 (4 points)
Extend the language from exercise 1 with explicit references as described in chapter 4.2 of
the EOPL book. Define a small-step semantics using call-by-value parameter passing.

Submission
On paper (please don’t send me emails). The strict submission deadline is 2009-06-15, 2:15
pm (before the lecture).

