
Note on PCF Computable Functions

Peter Thiemann

01.06.2015

This note sketches a proof for the following statement:

There is a PCF term that computes a total function that cannot
be programmed in System T.

• Any (well-typed) System T program (i.e., a closed expression of type
nat → nat) can be encoded as a number. Some variation of Gödel num-
bering will work, so that there is a surjective mapping G from natural
numbers to closed expressions of that type.

• There are PCF-computable functions that, given an encoding number of a
System T expression, return the kind of the expression (variable, lambda,
application, iterator, . . . ) and encoding numbers for the subexpressions.

• Given these functions, we can write an interpreter for System T in PCF.
This interpreter is a PCF term for a function I e n that computes the
result of applying the System T expression G(e) to input n : nat.

• The PCF term for I is terminating (because it is a System T interpreter
and all System T programs terminate).

• Now we can construct a PCF term for a function J : nat → nat defined
by

J(n) = I n n + 1

• The function J is terminating because it just invokes I, which is termi-
nating.

• The function J cannot have a System T program. To derive a contradic-
tion, suppose that J is computed by System T program G(e), for some e.
Then J(e) = I e e + 1 by definition of J . However, I is an interpreter so
that J = I e and J(e) = I e e. Contradiction to J ’s definition!

1


