Principles of Programming Languages

Lecture 10 Continuations

Albert-Ludwigs-Universitat Freiburg

UNI
FREIBURG

Peter Thiemann
University of Freiburg, Germany

thiemann@informatik.uni-freiburg.de

09 July 2018

Continuations

Motivation
Motivation
Motivation
Motivation

. Exceptions

: Backtracking
: Coroutines

: Threads

Implementing first-class continuations

Thiemann

POPL

2018-07-09

2/36

UNI

O
o
=2
Q@
1T}
o
T8

Continuations

UNI
FREIBURG

m concept for expressing exceptions, backtracking, coroutines, multi-threading, ...
m became popular with server-side web-programming

m “enforced” by reactive programming

Thiemann POPL 2018-07-09 3 /36

Continuation-Passing Style (CPS)

UNI
FREIBURG

Places syntactic restrictions on programs
m all functions are tail-recursive
m functions never return

m each function has one or more continuation parameters, each of which is a
function

m to return a value, a function invokes a continuation and passes the return value(s)
as a parameter.

Thiemann POPL 2018-07-09 4 /36

O
o
=2
Q@
1T}
o
T8

UNI

Continuations
m Motivation: Exceptions

Thiemann POPL 2018-07-09 5/ 36

Motivation: Exceptions

UNI
FREIBURG

Multiply a tree of numbers

product xt =
if null xt
then 1
else product (left xt) * value xt * product (right xt)

m inefficient if xt contains zero

Thiemann POPL 2018-07-09 6 /36

Trying to improve . ..

UNI
FREIBURG

productl xt =
if null xt
then 1
else if value xt == 0
then 0
else product (left xt) * value xt * product (right xt)

m better, but still many useless multiplications

Thiemann POPL 2018-07-09 7/ 36

Rewrite in CPS

UNI
FREIBURG

product2 xt =
prod xt (\x -> x)
where
prod xt c =
if null xt
then c 1
else if value xt ==

then ¢ O
else prod (left xt) (\1 -> prod (right xt) (\r -> ¢ (1 * r * value xt)))

m same as productl, but in CPS
B c argument is continuation
m now we can exploit the presence of continuations

Thiemann POPL 2018-07-09 8 /36

Changing the flow of control in CPS

UNI
FREIBURG

product3d xt =

prod xt (\x -> x)

where

prod xt c =
if null xt
then c 1
else if value xt == 0
then 0O -- do NOT invoke the continuation c
else prod (left xt) (\1 -> prod (right xt) (\r -> ¢ (1 * r * value xt)))

m deliberate violation of CPS
m achieves the desired effect

m useful, but clumsy

Thiemann POPL 2018-07-09 9 /36

Call/cc — a Control Operator

UNI
FREIBURG

product3 xt =
call/cc (\ abort ->

let prod xt =
if null xt
then 1

else if value xt ==
then abort O
else prod (left xt) * value xt * prod (right xt)

in prod xt

m Call/cc = call with current continuation

m Applies its argument to the current continuation
m Advantage: no need to write programs in CPS
m Disadvantage: some experience/insight needed

Thiemann POPL 2018-07-09 10 / 36

O
o
=2
Q@
1T}
o
T8

UNI

Continuations

m Motivation: Backtracking

Thiemann POPL 2018-07-09 11 / 36

A Problem

Consider the subset sum problem which is a specialized version of the knapsack
problem:
You are given

m a positive integer C (the weight that you can carry) and
m a list of positive integers (the weights of items you want to carry).

Is there a subset of the items the weights of which add up to C? (This problem is
known to be NP-complete.)

Thiemann POPL 2018-07-09 12 / 36

UNI

FREIBURG

An Implementation (pseudo code)

UNI
FREIBURG

subsetsum target items =

let work path target items =
if target == 0
then RESULT path
else if null items
then FAIL
else if (head items) <= target
then TRY (work (head items : path) (target - head items) (tail items))

ANDTHEN work path target (tail items)

else work path target (tail items)

in
work [] target items

Thiemann POPL 2018-07-09 13 / 36

Observations

(&)
-4
=
-
zl.u
S

Primitives in pseudo code

m RESULT announces a result.
m FAIL declares the current invokation to fail.

m TRY ...ANDTHEN ... searches for a result in the first argument and then in the
second.

Thiemann POPL 2018-07-09 14 / 36

Observations

(&)
-4
=
-
zl.u
S

Primitives in pseudo code

m RESULT announces a result.
m FAIL declares the current invokation to fail.

m TRY ...ANDTHEN ... searches for a result in the first argument and then in the
second.

Implementation with continuations

m each function has two continuations succ and fail

m invoke succ to indicate success and return a result
m invoke fail to indicate failure

m implement TRY ...ANDTHEN ... by nesting continuations

Thiemann POPL 2018-07-09 14 / 36

Double-barreled CPS

UNI
FREIBURG

subsetsuml target items =

let work path target items succ fail =
if target ==
then succ path
else if null items
then fail ()
else let hi = head items in
if hi <= target
then work (hi : path) (target - hi) (tail items) succ (\ () ->

work path target (tail items) succ fail)

else work path target (tail items) succ fail

in
work [] target items (\ x -> True) (\ () -> False)

Thiemann POPL 2018-07-09 15 / 36

Comments

UNI
FREIBURG

m Using the success continuation in this example is overblown.
m Replacing succ path with True yields the same behavior.

m However, the success continuation may be used to compose a list of all results or
to compute a best approximation:

Thiemann POPL 2018-07-09 16 / 36

List of all results

UNI
FREIBURG

subsetsuml target items =
let work path target items succ fail =
if target == 0
then succ path fail
else if null items
then fail ()
else let hi = head items in
if hi <= target
then work (hi : path) (target - hi) (tail items) succ (\ OO ->
work path target (tail items) succ fail)
else work path target (tail items) succ fail
let results = ref []
in work [] target items (\ path fail -> results := path : !results;
fail)
(\ O -> return 'results)

Thiemann POPL 2018-07-09 17 / 36

Best approximation

UNI
FREIBURG

subsetsum2 target items =
let work path target items succ fail =
if target == 0 || null items
then succ target path fail
else let hi = head items in
if hi <= target
then work (hi : path) (target - hi) (tail items) succ (\ O ->
work path target (tail items) succ fail)
else work path target (tail items) succ fail;
let best = ref target;
let result = ref [];
in work [] target items (\ rest path fail ->
if rest < !best then (best := rest; result := path);
fail)
(\ O -> return 'result)

Thiemann POPL 2018-07-09 18 / 36

O
o
=2
Q@
1T}
o
T8

UNI

Continuations

m Motivation: Coroutines

Thiemann POPL 2018-07-09 19 / 36

Motivation: Coroutines

(&)
-4
=
-
zl.u
S

Coroutines

m program components like subroutines
m on equal footing, without caller-callee hierarchy
m exactly one coroutine is active at any instance

m active coroutine can yield control (with parameters) to another, which resumes
from where it yielded previously

Thiemann POPL 2018-07-09 20 / 36

Motivation: Coroutines

(&)
-4
=
-
zl.u
S

Coroutines

m program components like subroutines
m on equal footing, without caller-callee hierarchy
m exactly one coroutine is active at any instance

m active coroutine can yield control (with parameters) to another, which resumes
from where it yielded previously

What are they good for

m Coroutines are well suited for implementing programming patterns such as
cooperative tasks, iterators, infinite lists, and pipes.

m Available in Python, Lua, C#, etc

Thiemann POPL 2018-07-09 20 / 36

Coroutines, example use

/** run-length decompression */
void decompress () {
while ((c = getchar()) !'= EOF) {
if (¢ == OxFF) {
len = getchar();
¢ = getchar();
while (len--)
emit(c);
} else
emit(c);
}
emit (EQF) ;

Thiemann POPL

2018-07-09

21 /36

UNI

FREIBURG

Scanner

void scanner () {
while ((c = getchar()) != EOF) {
if (isalpha(c)) {
do {
add_to_token(c);
c = getchar();
} while (isalpha(c));
got_token(WORD) ;
}
add_to_token(c);
got_token (PUNCT) ;

Thiemann POPL

2018-07-09

22 / 36

UNI

FREIBURG

Problem: combine decompress and scanner

UNI
FREIBURG

simple code in separation

task: scanner for compressed documents
standard approach: rewrite one of the functions
not required with coroutines

(here: symmetric coroutines; simpler with asymmetric coroutines as in Python)

Thiemann POPL 2018-07-09 23 / 36

Combining with coroutines

UNI
FREIBURG

void scanner (COROUTINE producer) {
while ((c = yield(producer)) != EOF) {
if (isalpha(c)) {
do {
add_to_token(c) ;
¢ = yield(producer);
} while (isalpha(c));
got_token (WORD) ;
}
add_to_token(c);
got_token (PUNCT) ;

Thiemann POPL 2018-07-09 24 / 36

Combining with coroutines, part 2

UNI
FREIBURG

void decompress (COROUTINE consumer) {
while ((c = getchar ()) != EOF) {
if (c == 0xFF) {
len = getchar();
c = getchar();
while (len--)
yield(consumer, c);
} else
yield(consumer, c);

}

yield(consumer, EOF);

Thiemann POPL 2018-07-09 25 / 36

Driver

UNI
FREIBURG

run (COROUTINE producer, COROUTINE consumer) {
do {
¢ = yield (producer);
yield (consumer, c);
} while (c '= EQOF);
}

CORQUTINE producer = make_coroutine (decompress);
COROUTINE consumer = make_coroutine (scanner);
COROUTINE driver = make_coroutine (run);

driver (producer, consumer);

Thiemann POPL 2018-07-09 26 / 36

Implementing Coroutines with Call/cc

UNI
FREIBURG

running = ref (ref Nothing)
make_coroutine f =
let mycont = ref Nothing
in \ x ->
running := Just mycont
case cont of
Nothing -> f x
Just ff -> ff x

yield g y =
call/cc (\ resume ->
'running := Just resume;
gy

Idea: represent each coroutine state by the coroutine's current continuation.

Thiemann POPL 2018-07-09 27 / 36

O
o
=2
Q@
1T}
o
T8

UNI

Continuations

m Motivation: Threads

Thiemann POPL 2018-07-09 28 / 36

Motivation: Threads

UNI
FREIBURG

m native threads vs. simulated threads. The former rely on the operating system
and may be executed on different processors. The latter simulate concurrency
inside of a sequential process.

m preemptive vs. cooperative. In each thread implementation, a scheduler
determines which thread becomes active next. With preemption, the scheduler
runs at regular time intervals. It suspends the currently active thread and selects
another thread from a pool of suspended threads to run in the next time slice.
With cooperative threading, a thread remains active until it explicitly relinquishes
control or until it gets blocked due to an 1/O operation.

Thiemann POPL 2018-07-09 29 / 36

Implementing cooperative threads with call/cc

UNI
FREIBURG

m Simple user-level implementation of simulated, cooperative threads with call/cc.
m A thread yields to the scheduler.

m Threads communicate exclusively via shared state. They cannot receive
parameters or return values while they are running.

Thiemann POPL 2018-07-09 30 / 36

A typical thread interface

UNI
FREIBURG

spawn :: (Unit -> Unit) -> Thread
yield :: Unit -> Unit
terminate :: Unit -> Unit

Thiemann POPL 2018-07-09 31/ 36

A simple thread implementation

currentThread = NULL
runQueue = emptyQueue

spawn f =
enqueue (runQueue, makeThread f)

makeThread f =
{ cont =
\ O ->
f (); terminate ()

Thiemann POPL

2018-07-09

32 /36

UNI

FREIBURG

A simple thread implementation (cont)

UNI
FREIBURG

terminate () =
scheduleThread (dequeue (runQueue))

scheduleThread (thread) =
currentThread = thread;
currentThread.cont ()

yield O =
call/cc (\ mycont ->
currentThread.cont = mycont;
enqueue (runQueue, currentThread);
scheduleThread (dequeue (runQueue));

)

Thiemann POPL 2018-07-09 33 /36

O
o
=2
Q@
1T}
o
T8

UNI

Continuations

m Implementing first-class continuations

Thiemann POPL 2018-07-09 34 / 36

Implementing first-class continuations

via interpretation

UNI
FREIBURG

e = x|Mx.e|lee|0|ete]|if eee|call/cc

Thiemann POPL 2018-07-09 35 /36

Implementing first-class continuations

via interpretation

e 1= x|Ax.e|ee|0|ete|if eee]call/cc

Semantic domains

Thiemann

y €
K €

pE

Val
Cont
Comp
Env

Z + (Val — Comp)
Val — Answer

Cont — Answer

Var — Val

Exp — Env — Comp

POPL 2018-07-09 35 /36

2
=

O
o
=2
Q@
1T}
o
T8

Definition of the interpreter

FREIBURG

2
)

£x]pr — w(p(x)

E[Mx.e]pr = k(Ay.Ak.E[e]p[x — y]r)

5[[61 egﬂpli = Eﬂelﬂp()\yl.g[[ez]]p()\yg.yl Y2 Iﬁ;))

lolpr = #(0)

Elertelpr = Eledp(n-Elelp(y2k(yi+y2)))

Elif e1 & &]pr = Ele]p(Ay.if y (E]elpr) (Eles]pr))

Elcall/cc]pr = k(AFA&F(Ay A& Ky)K)

E[call/cc e]pr = E[e]p(Af.f(Ay &' .ky)kK)

m Interpreter &£ is written in CPS

m BTW, internalizes call-by-value

m Alternatives
m transform the program to CPS and run it directly
m implement call/cc natively

Thiemann POPL 2018-07-09 36 / 36

	Continuations
	Motivation: Exceptions
	Motivation: Backtracking
	Motivation: Coroutines
	Motivation: Threads
	Implementing first-class continuations

