
Principles of Programming Languages
Lecture 10 Continuations

Albert-Ludwigs-Universität Freiburg

Peter Thiemann
University of Freiburg, Germany

thiemann@informatik.uni-freiburg.de

09 July 2018

Plan

1 Continuations
Motivation: Exceptions
Motivation: Backtracking
Motivation: Coroutines
Motivation: Threads
Implementing first-class continuations

Thiemann POPL 2018-07-09 2 / 36

Continuations

concept for expressing exceptions, backtracking, coroutines, multi-threading, . . .
became popular with server-side web-programming
“enforced” by reactive programming

Thiemann POPL 2018-07-09 3 / 36

Continuation-Passing Style (CPS)

Places syntactic restrictions on programs
all functions are tail-recursive
functions never return
each function has one or more continuation parameters, each of which is a
function
to return a value, a function invokes a continuation and passes the return value(s)
as a parameter.

Thiemann POPL 2018-07-09 4 / 36

Plan

1 Continuations
Motivation: Exceptions
Motivation: Backtracking
Motivation: Coroutines
Motivation: Threads
Implementing first-class continuations

Thiemann POPL 2018-07-09 5 / 36

Motivation: Exceptions

Multiply a tree of numbers

product xt =
if null xt
then 1
else product (left xt) * value xt * product (right xt)

inefficient if xt contains zero

Thiemann POPL 2018-07-09 6 / 36

Trying to improve . . .

product1 xt =
if null xt
then 1
else if value xt == 0
then 0
else product (left xt) * value xt * product (right xt)

better, but still many useless multiplications

Thiemann POPL 2018-07-09 7 / 36

Rewrite in CPS

product2 xt =
prod xt (\x -> x)
where
prod xt c =

if null xt
then c 1
else if value xt == 0
then c 0
else prod (left xt) (\l -> prod (right xt) (\r -> c (l * r * value xt)))

same as product1, but in CPS
c argument is continuation
now we can exploit the presence of continuations

Thiemann POPL 2018-07-09 8 / 36

Changing the flow of control in CPS

product3 xt =
prod xt (\x -> x)
where
prod xt c =

if null xt
then c 1
else if value xt == 0
then 0 -- do NOT invoke the continuation c
else prod (left xt) (\l -> prod (right xt) (\r -> c (l * r * value xt)))

deliberate violation of CPS
achieves the desired effect
useful, but clumsy

Thiemann POPL 2018-07-09 9 / 36

Call/cc — a Control Operator

product3 xt =
call/cc (\ abort ->

let prod xt =
if null xt
then 1
else if value xt == 0
then abort 0
else prod (left xt) * value xt * prod (right xt)

in prod xt

Call/cc = call with current continuation
Applies its argument to the current continuation
Advantage: no need to write programs in CPS
Disadvantage: some experience/insight needed

Thiemann POPL 2018-07-09 10 / 36

Plan

1 Continuations
Motivation: Exceptions
Motivation: Backtracking
Motivation: Coroutines
Motivation: Threads
Implementing first-class continuations

Thiemann POPL 2018-07-09 11 / 36

A Problem

Consider the subset sum problem which is a specialized version of the knapsack
problem:
You are given

a positive integer C (the weight that you can carry) and
a list of positive integers (the weights of items you want to carry).

Is there a subset of the items the weights of which add up to C? (This problem is
known to be NP-complete.)

Thiemann POPL 2018-07-09 12 / 36

An Implementation (pseudo code)

subsetsum target items =
let work path target items =

if target == 0
then RESULT path
else if null items
then FAIL
else if (head items) <= target
then TRY (work (head items : path) (target - head items) (tail items))

ANDTHEN work path target (tail items)
else work path target (tail items)

in
work [] target items

Thiemann POPL 2018-07-09 13 / 36

Observations

Primitives in pseudo code

RESULT announces a result.
FAIL declares the current invokation to fail.
TRY ...ANDTHEN ... searches for a result in the first argument and then in the
second.

Implementation with continuations

each function has two continuations succ and fail
invoke succ to indicate success and return a result
invoke fail to indicate failure

implement TRY ...ANDTHEN ... by nesting continuations

Thiemann POPL 2018-07-09 14 / 36

Observations

Primitives in pseudo code

RESULT announces a result.
FAIL declares the current invokation to fail.
TRY ...ANDTHEN ... searches for a result in the first argument and then in the
second.

Implementation with continuations

each function has two continuations succ and fail
invoke succ to indicate success and return a result
invoke fail to indicate failure

implement TRY ...ANDTHEN ... by nesting continuations

Thiemann POPL 2018-07-09 14 / 36

Double-barreled CPS

subsetsum1 target items =
let work path target items succ fail =

if target == 0
then succ path
else if null items
then fail ()
else let hi = head items in
if hi <= target
then work (hi : path) (target - hi) (tail items) succ (\ () ->

work path target (tail items) succ fail)
else work path target (tail items) succ fail

in
work [] target items (\ x -> True) (\ () -> False)

Thiemann POPL 2018-07-09 15 / 36

Comments

Using the success continuation in this example is overblown.
Replacing succ path with True yields the same behavior.
However, the success continuation may be used to compose a list of all results or
to compute a best approximation:

Thiemann POPL 2018-07-09 16 / 36

List of all results

subsetsum1 target items =
let work path target items succ fail =

if target == 0
then succ path fail
else if null items
then fail ()
else let hi = head items in
if hi <= target
then work (hi : path) (target - hi) (tail items) succ (\ () ->

work path target (tail items) succ fail)
else work path target (tail items) succ fail

let results = ref []
in work [] target items (\ path fail -> results := path : !results;

fail ())
(\ () -> return !results)

Thiemann POPL 2018-07-09 17 / 36

Best approximation

subsetsum2 target items =
let work path target items succ fail =

if target == 0 || null items
then succ target path fail
else let hi = head items in
if hi <= target
then work (hi : path) (target - hi) (tail items) succ (\ () ->

work path target (tail items) succ fail)
else work path target (tail items) succ fail;

let best = ref target;
let result = ref [];
in work [] target items (\ rest path fail ->

if rest < !best then (best := rest; result := path);
fail ())

(\ () -> return !result)

Thiemann POPL 2018-07-09 18 / 36

Plan

1 Continuations
Motivation: Exceptions
Motivation: Backtracking
Motivation: Coroutines
Motivation: Threads
Implementing first-class continuations

Thiemann POPL 2018-07-09 19 / 36

Motivation: Coroutines

Coroutines

program components like subroutines
on equal footing, without caller-callee hierarchy
exactly one coroutine is active at any instance
active coroutine can yield control (with parameters) to another, which resumes
from where it yielded previously

What are they good for

Coroutines are well suited for implementing programming patterns such as
cooperative tasks, iterators, infinite lists, and pipes.
Available in Python, Lua, C#, etc

Thiemann POPL 2018-07-09 20 / 36

Motivation: Coroutines

Coroutines

program components like subroutines
on equal footing, without caller-callee hierarchy
exactly one coroutine is active at any instance
active coroutine can yield control (with parameters) to another, which resumes
from where it yielded previously

What are they good for

Coroutines are well suited for implementing programming patterns such as
cooperative tasks, iterators, infinite lists, and pipes.
Available in Python, Lua, C#, etc

Thiemann POPL 2018-07-09 20 / 36

Coroutines, example use

/** run-length decompression */
void decompress () {

while ((c = getchar()) != EOF) {
if (c == 0xFF) {

len = getchar();
c = getchar();
while (len--)

emit(c);
} else

emit(c);
}
emit(EOF);

}

Thiemann POPL 2018-07-09 21 / 36

Scanner

void scanner () {
while ((c = getchar()) != EOF) {

if (isalpha(c)) {
do {

add_to_token(c);
c = getchar();

} while (isalpha(c));
got_token(WORD);

}
add_to_token(c);
got_token(PUNCT);

}
}

Thiemann POPL 2018-07-09 22 / 36

Problem: combine decompress and scanner

simple code in separation
task: scanner for compressed documents
standard approach: rewrite one of the functions
not required with coroutines
(here: symmetric coroutines; simpler with asymmetric coroutines as in Python)

Thiemann POPL 2018-07-09 23 / 36

Combining with coroutines

void scanner (COROUTINE producer) {
while ((c = yield(producer)) != EOF) {

if (isalpha(c)) {
do {

add_to_token(c);
c = yield(producer);

} while (isalpha(c));
got_token(WORD);

}
add_to_token(c);
got_token(PUNCT);

}
}

Thiemann POPL 2018-07-09 24 / 36

Combining with coroutines, part 2

void decompress (COROUTINE consumer) {
while ((c = getchar ()) != EOF) {

if (c == 0xFF) {
len = getchar();
c = getchar();
while (len--)

yield(consumer, c);
} else

yield(consumer, c);
}
yield(consumer, EOF);

}

Thiemann POPL 2018-07-09 25 / 36

Driver

run (COROUTINE producer, COROUTINE consumer) {
do {

c = yield (producer);
yield (consumer, c);

} while (c != EOF);
}

...
COROUTINE producer = make_coroutine (decompress);
COROUTINE consumer = make_coroutine (scanner);
COROUTINE driver = make_coroutine (run);

driver (producer, consumer);
...

Thiemann POPL 2018-07-09 26 / 36

Implementing Coroutines with Call/cc

running = ref (ref Nothing)
make_coroutine f =

let mycont = ref Nothing
in \ x ->

running := Just mycont
case cont of

Nothing -> f x
Just ff -> ff x

yield g y =
call/cc (\ resume ->

!running := Just resume;
g y)

Idea: represent each coroutine state by the coroutine’s current continuation.
Thiemann POPL 2018-07-09 27 / 36

Plan

1 Continuations
Motivation: Exceptions
Motivation: Backtracking
Motivation: Coroutines
Motivation: Threads
Implementing first-class continuations

Thiemann POPL 2018-07-09 28 / 36

Motivation: Threads

native threads vs. simulated threads. The former rely on the operating system
and may be executed on different processors. The latter simulate concurrency
inside of a sequential process.
preemptive vs. cooperative. In each thread implementation, a scheduler
determines which thread becomes active next. With preemption, the scheduler
runs at regular time intervals. It suspends the currently active thread and selects
another thread from a pool of suspended threads to run in the next time slice.
With cooperative threading, a thread remains active until it explicitly relinquishes
control or until it gets blocked due to an I/O operation.

Thiemann POPL 2018-07-09 29 / 36

Implementing cooperative threads with call/cc

Simple user-level implementation of simulated, cooperative threads with call/cc.
A thread yields to the scheduler.
Threads communicate exclusively via shared state. They cannot receive
parameters or return values while they are running.

Thiemann POPL 2018-07-09 30 / 36

A typical thread interface

spawn :: (Unit -> Unit) -> Thread
yield :: Unit -> Unit
terminate :: Unit -> Unit

Thiemann POPL 2018-07-09 31 / 36

A simple thread implementation

currentThread = NULL
runQueue = emptyQueue

spawn f =
enqueue (runQueue, makeThread f)

makeThread f =
{ cont =

\ () ->
f (); terminate ()

...
}

Thiemann POPL 2018-07-09 32 / 36

A simple thread implementation (cont)

terminate () =
scheduleThread (dequeue (runQueue))

scheduleThread (thread) =
currentThread = thread;
currentThread.cont ()

yield () =
call/cc (\ mycont ->

currentThread.cont = mycont;
enqueue (runQueue, currentThread);
scheduleThread (dequeue (runQueue));
)

Thiemann POPL 2018-07-09 33 / 36

Plan

1 Continuations
Motivation: Exceptions
Motivation: Backtracking
Motivation: Coroutines
Motivation: Threads
Implementing first-class continuations

Thiemann POPL 2018-07-09 34 / 36

Implementing first-class continuations
via interpretation

Syntax

e ::= x | λx .e | e e | 0 | e+e | if e e e | call/cc

Semantic domains

y ∈ Val = Z + (Val → Comp)
κ ∈ Cont = Val → Answer

Comp = Cont → Answer
ρ ∈ Env = Var → Val

E : Exp → Env → Comp

Thiemann POPL 2018-07-09 35 / 36

Implementing first-class continuations
via interpretation

Syntax

e ::= x | λx .e | e e | 0 | e+e | if e e e | call/cc

Semantic domains

y ∈ Val = Z + (Val → Comp)
κ ∈ Cont = Val → Answer

Comp = Cont → Answer
ρ ∈ Env = Var → Val

E : Exp → Env → Comp

Thiemann POPL 2018-07-09 35 / 36

Definition of the interpreter

EJxKρκ = κ(ρ(x))
EJλx .eKρκ = κ(λy .λκ.EJeKρ[x 7→ y]κ)
EJe1 e2Kρκ = EJe1Kρ(λy1.EJe2Kρ(λy2.y1 y2 κ))
EJ0Kρκ = κ(0)
EJe1+e2Kρκ = EJe1Kρ(λy1.EJe2Kρ(λy2.κ(y1+y2)))
EJif e1 e2 e2Kρκ = EJe1Kρ(λy .if y (EJe2Kρκ) (EJe3Kρκ))
EJcall/ccKρκ = κ(λf .λκ.f (λy .λκ′.κy)κ)
EJcall/cc eKρκ = EJeKρ(λf .f (λy .λκ′.κy)κ)

Interpreter E is written in CPS
BTW, internalizes call-by-value
Alternatives

transform the program to CPS and run it directly
implement call/cc natively

Thiemann POPL 2018-07-09 36 / 36

	Continuations
	Motivation: Exceptions
	Motivation: Backtracking
	Motivation: Coroutines
	Motivation: Threads
	Implementing first-class continuations

