
P. Thiemann, G. Radanne Summersemester 2017/18

Essentials of Programming Languages

https://proglang.informatik.uni-freiburg.de/teaching/konzepte/2018ss/

Language 1 – Lambda calculus

2018-04-18

Lambda calculus

The lambda calculus needs no introduction! We will consider the lambda calculus with Weak Head
normal forms with evaluation contexts and arithmetic operators.

e ::= x Variables
| (e e . . .) Application
| λx.e Abstraction

Exercise 1 (Small step – Call by value)
Implement a small step call-by-value semantics for the lambda calculus that evaluates to Weak
Head Normal Forms (WHNF) using evaluation contexts, as defined in the lecture. Write and test
a few encoding such as booleans, church numerals, Try some big numerals.

Warning Be mindful about the definition of substitutions! Substitutions are often the source of
bugs in the implementation of semantics. A file subst.rkt defining a simple substitution function
can be found on the course website.

To use it, add the following at the top of your file:

(require "subst.rkt")

You can then use the metafunction subst like below. Notes how it avoids substitution for bound
variables.

> (term (subst (x 1) (+ x)))

’(+ 1)

> (term (subst (x 1) (λ y ((+ x) y))))

’(λ y ((+ 1) y))

> (term (subst (x 1) (λ x ((+ x) y))))

’(λ x ((+ x) y))

We will see later how to extend this file to other types of variable declarations.

Exercise 2 (Call by Name)
Define a second reduction relation which uses different evaluation contexts to implements call-by-
name. Show off some examples where call-by-value and call-by-name differs.

Bonus Write a non-deterministic semantics that can simulate both call by name and call by
value. Does it always end up with the same result? If it doesn’t, when?

Exercise 3 (Constants – Arithmetic operations)
Extend the language with arithmetic operations using the define-extended-language function
provided by plt-redex. Reuse the initial reduction relation as much as possible. You might want
to define a metafunction delta (or δ) to implement the application of constants.

e ::= . . .
| number | + | . . . Arithmetic operations

Exercise 4 (More constants)
Define some more constants of your choosing (booleans, lists, . . .).

1

https://proglang.informatik.uni-freiburg.de/teaching/konzepte/2018ss/

