
Model Driven Architecture
Meta Modeling

Prof. Dr. Peter Thiemann

Universität Freiburg

24.05.2006



Metamodeling
Intro

What?
meta = above
Define an ontology of concepts for a domain.
Define the vocabulary and grammatical rules of a modeling
language.
Define a domain specific language (DSL).

Why?
Concise means of specifying the set models for a domain.
Precise definition of modeling language.

How?
Grammars and attributions for textbased languages.
Metamodeling generalizes to arbitrary languages (e.g.,
graphical)



Metamodeling
Uses

Construction of DSLs

Validation of Models
(checking against metamodel)

Model-to-model transformation
(defined in terms of the metamodels)

Model-to-code transformation

Tool integration



Terms

Domain restricted area of interest
technical aspects
factual aspects

Syntax well-formedness rules
abstract syntax
just structure, how are the language concepts
composed
concrete syntax
defines specific notation
typical use:
parser maps concrete syntax to abstract
syntax



Terms/Abstract Syntax
Example: Arithmetic expressions

abstract syntax

Expr = Const String
| Var String
| Binop Op Expr Expr

Op = Add | Sub | Mul | Div

Binop Mul (Const "2")
(Binop Add (Var "x") (Const "3"))

concrete syntax

E ::= c | x | E B E | (E)
B ::= + | − | ∗ | /

2 * (x + 3)



Terms/Abstract Syntax
Example: UML class diagram

concrete syntax

Person

name

raise()
salary

abstract syntax

name = "Person"

:Class

name = "name"

:Attribute

name = "raise"

:Operation

name = "salary"

:Attribute



Terms/Static Semantics

Static semantics defines well-formedness rules beyond the
syntax
Examples

“Variables have to be defined before use”
Type system of a programming language
"hello" * 4 is syntactically correct Java, but rejected

UML: static semantics via OCL expressions

Use: detection of modeling/transformation errors



Terms/Domain Specific Language (DSL)

Purpose: formal expression of key aspects of a domain

Metamodel of DSL defines abstract syntax and static
semantics
Additionally:

concrete syntax (close to domain)
dynamic semantics

for understanding
for automatic tools

Different degrees of complexity possible
configuration options with validity check
graphical DSL with domain specific editor



Metamodel vs Model

Model Metamodel

metamodel"real world"
elements

model elements

Domain of discourse

elements
describesdescribes

Insight: Every model is an instance of a metamodel.
Essential: instance-of relationship
Model:Metamodel is like Object:Class
Definition of Metamodel by Meta-metamodel
⇒ infinite tower of metamodels
⇒ “meta” relation always relative to a model
Every element must have a classifying metaelement which

contains the metadata and
is accessible from the element



Metamodeling a la OMG

OMG defines a standard (MOF) for metamodeling

MOF (Meta-Object Facility) used for defining UML
Attention, confusion:

MOF and UML share syntax (classifier and instance
diagrams)
MOF shares names of modeling elements with UML (e.g.,
Class)

Approach
Restrict infinite number of metalevels to four
Last level is deemed “self-describing”



OMG’s Four Metalevels

M2: Metamodel

Typ: Classifier

ID: 764535
Name: Klasse

Features: Attributes, Operations, Assoc’s, ...

M0: Instances Typ: Person
ID: 05034503

Name: Doe
Given name: John

describes instanceof

M1: Model

Typ: Klasse
ID: 21436456

Name: Person
Attribute: Name, Firstn.
Operations: ...
Association: ...

describes instanceof

describes instanceof

M3: Meta−Metamodel

Typ: Classifier

ID: 5346456

Name: Classifier

describes instanceof



Layer M0: Instances

Level of the running system

Contains actual objects, e.g., customers, seminars, bank
accounts, with filled slots for attributes etc

Corresponds to object diagram



Layer M1: Model

Level of system models
Example:

UML model of a software system
Class diagram contains modeling elements: classes,
attributes, operations, associations, generalizations, . . .

Concepts of M1 categorize (or classify) instances at layer
M0

Each element of M0 is an instance of M1 element

No other instances are allowed at layer M0



Relation between M0 and M1

Customer 

title = "Dr"
name = "Joe Nobody"

Customer

title = "Mr"
name = "Mark Everyman"

M0: System

Order

number = "200604"
name = "somename"

Order

name      : String
number  : String

M1: Model of a System

title    : String
name : String

     Customer

<<instance of>> <<instance of>><<instance of>>



Layer M2: Metamodel
“Model of Model”

Level of modeling element definition

Concepts of M2 categorize instances at layer M1

Elements of M2 model categorize M1 elements: classes,
attributes, operations, associations, generalizations, . . .
Examples

Each class in M1 is an instance of some class-describing
element in layer M2 (in this case, a Metaclass)
Each association in M1 is an instance of some
association-describing element in layer M2 (a
Metaassociation)
and so on



Relation between M1 and M2

UML Attribute

name = "number"

UML ClassUML Class UML Attribute

name = "Order"name = "Customer"

M1: Model

UML AttributeUML Class

name: Stringname: String

M2: Model of a Model

<<instance of>> <<instance of>> <<instance of>>



Layer M3: Meta-Metamodel

Level for defining the definition of modeling elements

Elements of M3 model categorize M2 elements:
Metaclass, Metaassociation, Metaattribute, etc

Typical element of M3 model: MOF class
Examples

The metaclasses Class, Association, Attribute, etc are all
instances of MOF class

M3 layer is self-describing



Relation between M2 and M3

MOF Class MOF Class

name = "UML Attribute"name = "UML Class"

M2: Model of a Model

name: String

MOF Class M3: Model of a Model of a Model

<<instance of>><<instance of>>



Overview of Layers

UML AttributeUML Class

name: String name: String

M2: Model of a Model

name: String
MOF Class M3: Model of a Model of a Model

Customer Customer Order

title = "Dr"
name = "Joe Nobody"

title = "Mr" number = "200604"
name = "somename"name= "M. Everyman"

M0: System

Customer Order

name: String name: String
number: Stringtitle: String

M1: Model of a System

<<instance of>> <<instance of>>

<<instance of>> <<instance of>> <<instance of>> <<instance of>>

<<instance of>> <<instance of>>
<<instance of>>



Excerpt from MOF/UML

can throw

Model
Element

Import Namespace Constraint Tag Feature

Behavioral
Feature

Generalizable
Element

Package

generalizes

Classifier Operation Exception

ClassAssociation



Meta vs Abstract

MOF

M1

M2

M3

PSMPIM

PIM−
Metamodel

PSM−
Metamodel

<<instanceof>>

<<instanceof>> <<instanceof>>

Transformation

"meta"

"abstract"

Models on the same metalevel may have different degrees of abstraction

Transformations map between models of different abstraction levels

Source and target model of a transformation may be defined by different
metamodels



MOF vs UML

UML (M2) is an instance of MOF (M3)

UML is older than MOF

UML had to change to suit MOF

MOF reuses concrete syntax and some model elements



Designing a DSL

Definition of a new M2 language too involved

Typical approach: Extension of UML
Extension Mechanisms

Extension of the UML 2 metamodel
applicable to all MOF-defined metamodels
Extension using stereotypes (the UML 1.x way)
Extension using profiles (the UML 2 way)



Extending the UML Metamodel

generalizes

MOF::Classifier

<<instanceof>>

<<instanceof>>

<<instanceof>>

UML::Class

CM::Component

Extended UML−Metamodel MOF

MOF sanctions the derivation of a new metaclass
CM::Component from UML::Class

CM::Component is an instance of MOF::Classifier

the generalization is an instance of MOF’s generalizes
association



Extending the UML Metamodel/Concrete Syntax

CustomAdmin::Person

{metaclass=CM::Component}<CM::Component>>

CustomAdmin::Person

CustomAdmin::Person

CustomAdmin::Person

<<component>>

<<instanceof>>

<<CM::Component>>
(2)

(3)

(1) (4)

(5)
CustomAdmin::Person

1 Explicit instance of metaclass

2 Name of metaclass as stereotype

3 Convention

4 Tagged value with metaclass

5 Own graphical representation (if supported)



Adding to a Class

transactional: boolean

<<CM::Component>>

{transactional = true}

CustomAdmin::Person

CM::Component

UML::Class

“just” inheriting from UML::Class leads to an identical copy
Adding an attribute to the CM::Component metaclass
leads to

an attribute value slot in each instance
notation: tagged value (typed in UML 2)



Meta vs Generalization

"meta"

"meta"

"base"

Base metamodel

<<instanceof>>
<<instanceof>> <<instanceof>>

<<instanceof>>

M1

M2

M3

UML Model

Metamodel

Domain 2
Metamodel

Domain 1

MOF

UML Metamodel

ApplicationsmodelApplicationsmodel
Domain 2 Domain 1



Extension Using Stereotypes (UML 1.x)

<<stereotye>>
<<metaclass>>
UML::Class

<<stereotype>> CM::Component
{<<taggedValue>>
 transactional}

Simple specialization mechanism of UML

No recourse to MOF required

Tagged Values untyped

No new metaassociations possible



Extending Using Profiles (UML 2)

usedefinition

transactional: boolean

UML::Class
<<metaclass>>

CM::Component

<<stereotype>>

{transactional = true}

CustomAdmin::Person

<<CM::Component>>

Extension of the stereotype mechanism

Requires “Extension arrow” as a new UML language construct
(generalization with filled arrowhead)

Not: generalization, implementation, stereotyped dependency, association, . . .

Attributes⇒ typed tagged values

Multiple stereotypes possible



More on Profiles

Profiles make UML into a family of languages

Each member is defined by application of one or more
profiles to the base UML metamodel

Tools should be able to load profiles and corresponding
transformations
Profiles have three ingredients

stereotypes
tagges values
constraints

Profiles can only impose further restrictions

Profiles are formally defined through a metamodel



Profile Metamodel

Stereotype ExtensionEnd

PropertyExtension

Association

Class

Profile

ProfileApplication

PackageImport

Package

n

1

/metaclass

1

n

1

1

n
1n

1

/extension

typeStereotype
owned

{subsets ownedMember}

appliedProfile

n1

imported Profile

{subsets importedPackage}

{subsets
importedPackage}



Example Profile for EJB

<<profile>>

<<enumeration>>

<<stereotype>>

<<stereotype>> <<stereotype>>

<<stereotype>>

<<stereotype>>

<<stereotype>>

StateKind

EJB

Component Bean

EntityBean SessionBean

JAR

Remote

Home

Artifact

Interface

context Bean:
inv: realization−>

stateless
stateful

select( hasStereotype( "Remote" ))−>size()=1
&&
realization−>
select( hasStereotype( "Home" ))−>size()=1



Further Aspects of Profiles

Stereotypes can inherit from other stereotypes

Stereotypes may be abstract

Constraints of a stereotype are enforced for the
stereotyped classifier

Profiles are relative to a reference metamodel
e.g., the UML metamodel or an existing profile
Most tools today do not enforce profile-based modeling
restrictions, so why bother with profiles?

constraints for documentation
specialized UML tools
validation by transformer / program generator



Metamodeling and OCL

<<metaclass>>

<<metaclass>>

UML::Attribute

CM::ConfigParam

name: String

type: Type

[...]

context Attribute:

inv: Type.Name == "String"

OCL constraints are independent of the modeling
language and the metalevel

OCL on layer Mn + 1 restricts instances on layer Mn


	Metamodeling
	Extending UML

