
Model Driven Architecture
Code Generation

Prof. Dr. Peter Thiemann

Universität Freiburg

05.07.2006

Contents

1 Code Generation
Code Generation Techniques

2 Pragmatics of Code Generation
Interfacing Generated with Non-Generated Code
Splitting in Technical Subdomains
Metaobjects

Code Generation
Reasons

Performance

Code size

Analyzability

Early detection of errors

Portability

Restrictions in the programming language

Aspects

Introspection/Reflection

Code Generation
Instance of Metaprogramming

Programs that generate programs (base programs)
Staging of metaprograms

Independent of base programs (usually earlier)
base program and metaprogram are kept separate
Examples: MDE generators
During compilation of the base program
static metaprogramming: generated program is unaware of
the generation process
Examples: C++ preprocessor, C++ templates
At run-time of the base program
dynamic metaprogramming: base program can be
extended and modified at run time
Examples: metaobject protocol of CommonLisp

Homogeneous vs heterogeneous metaprogramming

Code Generation Techniques
Templates and Filtering

Specification

Filter

apply to
Specification

Subset of apply to
Templates

generated
code

Code Generation Techniques
Templates and Filtering/Example

Code to be generated from templates

Template variables may be bound to model values

Example: generate JavaBean from XML specification

Code Generation Techniques
Templates and Filtering/Example

Bean specification

<class name="Person" package="de.unifrei">
<attribute name="name" type="String"/>
<attribute name="age" type="int"/>

</class>

expected generated code

package de.unifrei;
public class Person {

private String name;
public String getName () {return name;}
public void setName (String name) {this.name=name;}
private int age;
public int getAge () {return age;}
public void setAge (int age) {this.age=age;}

}

Code Generation Techniques
Templates and Filtering/Example using XSLT

<xsl:template match="/class">
package <xsl:value-of select="@package"/>;
public class <xsl:value-of select="@name"/>
{ <xsl:apply-templates select="attribute"/> }

</xsl:template>

<xsl:template match="attribute">
<xsl:variable name="capname"

select="concat(translate(substring(@name, 1, 1),
’abcdefghijklmnopqrstuvwxyz’,
’ABCDEFGHIJKLMNOPQRSTUVWXYZ’),

substring(@name, 2))" />
private <xsl:value-of select="@type"/>

<xsl:value-of select="@name"/>;
public <xsl:value-of select="@type"/>

get<xsl:value-of select="$capname" /> ()
{return <xsl:value-of select="@name"/>;}

public void set<xsl:value-of select="$capname" />
(<xsl:value-of select="@type"/> <xsl:value-of select="@name"/>)
{this.<xsl:value-of select="@name"/>=<xsl:value-of select="@name"/>;}

</xsl:template>

Code Generation Techniques
Templates and Metamodel

generated
code

parse

is based on

Metamodel

Instance
Metamodel− Templates

apply to

creates

instance of

Specification

parse XML and map to user-defined metamodel

generate code from template and metamodel

Code Generation Techniques
Frame Processors

and set
parameters

2) instance

Generator

in
st

an
ce

an
d

se
t p

ar
am

et
er

s

{repeat}

Code−
Frame

Frame
Specification−

1) create &

instance

3) generate

4)
generated

code

A frame is an object consisting of slots and a code
template

Control iterates over frame instantiation

Exporting of the final frame structure generates the code

Code Generation Techniques
Frame Processors/Example Frame Hierarchy

Parent

value3: FRAME
value2: FRAME
value1: int

value1: string

AChild2

value1: string

AnotherOne

value1: string

value2: FRAME

AChild

Code Generation Techniques
Frame Processors/Example

Frame specification

.Frame GenNumberElement (Name, MaxValue)
.Dim vIntQual = (MaxValue > 32767) ? "long" : "short"
.Dim sNumbersInitVal
<!vIntQual!> int <!Name!> <?= <!sNumbersInitVal!>?>;

.End Frame

Frame instantiation

.myNumberElem = CreateFrame ("GenNumberElement", "aShortNumber", 100)

Code generation

.Export myNumberElem

Code Generation Techniques
API-based Generators

Program
Client− applies

API
modifies

creates or
Code

instanceof,
corresponds

expressed by
the base of

AST/CST

Grammar

Code Generation Techniques
Inline Generation

contains the version−
Source−Code

specification

Configuration

preprocess Source−Code

resolved
some versions

[all resolved]

Source−Code
all versions

resolved

compilation
Bytecode

Machine− or

{o
pt

io
na

l} preprocess

[else]

Integrated Compiler

Code Generation Techniques
Code Attributes

Annotate code with active comments

Examples: JavaDoc, XDoclet (supported by Eclipse)

/**
* @ejb:bean type="Stateless"
* name="vvm/VVMQuery"
* local-jndi-name="/ejb/vvm/VVMQueryLocal"
* jndi-name="/ejb/vvm/VVMQueryRemote"
* view-type="both"
*/

public abstract class VVMQueryBean
/**

* @ejb:interface-method view-type="both"
*/

public List getPartsForVehicle (VIN theVehicle) {
return super.getPartsForVehicle (theVehicle);

}
}

Code Generation Techniques
Code Attributes/Language Support

.NET supports attributes that can be attached to parts of
C#programs

[AttributeUsage(AttributeTargets.All,
Inherited=true,
AllowMultiple=true)]

public class MyCustomAttribute: System.Attribute
{

private string desc;
private string name;

}

Similar feature: Metadata (aka Annotations) in Java5

Code Generation Techniques
Excursion: Metadata in Java5

Many APIs require extra data that must be kept in sync
with the code
Java 5 defines a general purpose annotation facility that
permits the definition and use of customized annotation
types (generalizing javadoc, @deprecated, transient, etc)
Java 5 annotations consist of

syntax for declaring annotation types,
a syntax for annotating declarations,
APIs for reading annotations,
a class file representation for annotations,
an annotation processing tool (apt)

Annotations do not affect semantics directly, but may
influence the execution context
Annotations can be read from source files, class files, or
reflectively at run time
(Used in EJB 3.0)

Code Generation Techniques
Excursion: an annotation type declaration

/**
* Describes the Request-For-Enhancement(RFE) that led
* to the presence of the annotated API element.
*/

public @interface RequestForEnhancement {
int id();
String synopsis();
String engineer() default "[unassigned]";
String date() default "[unimplemented]";

}

Code Generation Techniques
Excursion: an annotation type use

@RequestForEnhancement(
id = 2868724,
synopsis = "Enable time-travel",
engineer = "Mr. Peabody",
date = "4/1/3007"

)
public static void
travelThroughTime(Date destination) { ... }

annotation is special kind of modifier

precedes all other modifiers

Code Generation Techniques
Summary

Staging program/ generated/
metaprogram manual

Templates
and Filtering

before separate separate

Template and
Metamodel

before separate separate

Frame Pro-
cessors

before separate separate

API-based
Generators

before/during/after separate separate

Inline Gener-
ation

before/during mixed integrated

Code At-
tributes

before/during (mixed) separate

Pragmatics of Code Generation

Which functionality to generate
not provided by the platform
describable with a DSL

Generating the final application
one build process which regenerates all generated and
transformed artifacts
without manual intervention or fixing

Exploiting the model beyond generated code
Component tests
Simple GUIs
Database generation scripts
Component configurations

Code Generation
Examples for Configurations

Software
EJB deployment descriptors
Behavior for web frameworks like Struts
Hibernate configurations
CORBA IDL

Hardware (from deployment diagrams)
Installation of components on particular machines
Generation of database tables
Infrastructure like load balancers

Code Generation
Pretty Code

People look at generated code
They do not trust the generator (initially)
Debugging
Checking the configuration of the generator

How to improve acceptance
Generate comments with information from the models
Pretty printer for code formatting
Use “location strings”
[2006-07-02 10:58:36]
GENERATED FROM TEMPLATE MdsdBook
MODEL ELEMENT aChapter::aSection::generate()

Exception: portions optimized for performance

Code Generation
Interfacing Generated with Non-Generated Code

Keep generated and hand-written code separate as much
as possible
Use a suitable software architecture for this task

what is generated
what is written manually
how the two are combined
tools: interfaces, abstract classes, delegation, design
patterns (Factory, Strategy, Bridge, Template Method)

Generated code should be a throw-away product!

Generated vs Non-Generated
Standard Solution: Protected Regions

accelerate(dv:int)

speed: int

stop()

Auto

}

//protected area end − 0002

//protected area begin − 0002

//insert your code here

public void stop(){
}
//protected area end −0001
//insert your code here

//protected area begin − 0001

public void accelerate (int dv){

int speed = 0;

public class Auto{

}

complex generation

not always possible to preserve contents

weak separation between generated and non-generated
code

Generated vs Non-Generated
Alternative Solution: Layered Implementation

Platform Layer

Model Layer

Application Logic Layer

Base class
(part of platform)

Manually programmed, abstract

generated, abstract

"Middle" − class

concrete class

manually implemented

Three layers of functionality
identical for all components of a certain kind
different for each component, but can be generated from
the model
manual implementation

Generated vs Non-Generated
Combination a

non−generated codegenerated code

Generated code calls non-generated code

Advice: only generate a small portion of code at a time and
integrate with existing, tested code

Generated vs Non-Generated
Combination b

generated

non−generated code

Manual code calls generated code

Requires knowledge of generated code

May generate dependencies in the build process

Generated vs Non-Generated
Combination c

generated

non−
generated

Generated code
inherits from manual code or
implements a manual interface

Manual code
has some interface to program against
can instantiate generated code via Factory pattern

Generated vs Non-Generated
Combination d

generated

non−
generated

Manual code inherits from generated code

Implementation may override generated, generic behavior

Factory

Generated vs Non-Generated
Combination e

generated

non−
generated

Generated code inherits from manual code

Invokes operations in manual code

Generated vs Non-Generated
Combination f

generated

non−

generated

Manual class invokes operations of generated subclass

Template Method pattern

Superclass defines abstract operations

Generated subclass implements these operations

Generated vs Non-Generated
Consequences for Methodology

Multi-layer generation may be necessary because of
dependencies
First generation step:

generates set of base classes from certain model elements
yields “API” for the manual part

Second generation step:
generation involves all model elements
references (potentially) manually written parts

Generated vs Non-Generated
Constraints

post: balance > balance@pre + amount
pre: amount > 0

context Account.increase (int amount)
Account

balnace: int

increase (int amount): void

The programmer shoud not be able to subvert the model
constraints.

Generated vs Non-Generated
Constraints and Protected Regions

// generated
class Account {

int balance;
public void increase (int amount) {

assert (amount > 0);
// check precondition
int balance_atPre = balance;
// saved for postcondition
// --- protected region begin ---

// --- protected region end ---
assert (balance = balance_atPre + amount);
// check postcondition

}
}

insufficient protection

simple inheritance does not help, either

Generated vs Non-Generated
Constraints and Template Method

// generated
class Account {

int balance;
public final void increase (int amount) {

assert (amount > 0); // check precondition
int balance_atPre = balance; // saved for postcondition
increase_internal (amount);
assert (balance = balance_atPre + amount); // chk postcondition

}
protected abstract void increase_internal (int amount);

}

no way to subvert the dynamic contract monitoring

// manually written code
class AccountImpl extends Account {

protected void increase_internal (int amount) {
balance += amount;

}
}

Generated vs Non-Generated
Consistency

The programmer still has to follow some conventions in
manually written code

Naming conventions
Class must inherit from a certain generated class and must
override certain operations
Class must implement certain interfaces
Class must implement certain operations

Check these conventions by generating code that tests
them

Generated vs Non-Generated
Consistency Example

// generated
public abstract class SomeGeneratedBaseClass

extends SomePlatFormClass {
protected abstract void someOperation ();
public void someOtherOp() {

someOperation();
}

}

Obligations of the developer
must inherit from this class
must override someOperation()
must name the class ...Impl
must implement IExampleInterface

Generated vs Non-Generated
Consistency Example: Good Implementation

public class SomeGeneratedBaseClassImpl
extends SomeGeneratedBaseClass
implements IExampleInterface {

protected void someOperation () {
// do something

}
public void anOperationFromExampleInterface() {

// ...
}

Generated vs Non-Generated
Consistency Example: Enforcement by Compiler

public abstract class SomeGeneratedBaseClass
extends SomePlatFormClass {

// (see above)
private void dontCallMe () {

new SomeGeneratedBaseClassImpl();
// checks that class is present
// and not abstract

SomeGeneratedBaseClass a =
new SomeGeneratedBaseClassImpl ();
// checks that class is subclass

IExampleInterface x =
new SomeGeneratedBaseClassImpl ();
// checks that class implements

}
}

Splitting in Technical Subdomains

Large systems have a multitude of aspects
Consequently

models become large
one single DSL not adequate
splitting of tasks for multiple teams hard

Multiple DSLs with different modeling required

Generator unifies the different models

Must communicate via gateway metaclasses

Splitting in Technical Subdomains
Gateway Metaclasses

Technical Subdomain

(e.g. Workflow)

Technical Subdomain 2
(e.g. persistence)

Technical Subdomain 3
(e.g. GUI)

Metamodel
1

DSL 1 2
Metamodel

DSL 2
Metamodel

3 DSL 3

Metamodel elements which are used in multiple
metamodels

May result in information duplication because multiple
definitions of a modeling element must be kept consistent

Solved via proxy elements that reference modeling
elements in another metamodel

Splitting in Technical Subdomains
Proxy Elements

anotherOp():long

Model 2Model 1

SomeInterface
<<interfaceref>>

SMSApp
TextEditor

<<interface>>
SomeInterface

anOperation(int)
<<references>>

Component

UML::Class

Interface

InterfaceRefPort
*

delegate

Metaobjects
The Problem

Some applications need model information at runtime
for scripting
for debugging

How can model information be transported to runtime?

Example: Logging of generated objects should happen
with attribute names and attribute values

Reflection helps only partially, it still cannot provide info
from the underlying model (before model transformation)

Solution: generate metaobjects that contain the desired
information
Association with concrete objects

via generated getMetaObject () operations
via central registry

Metaobjects
Example

getLabel()
setValue (Object newVal): void

getName():String
getValue():Object

AttributeMetaObject
<<interface>>

StringAttributeMetaObject
<<interface>>

getRegexp():String

SomeClass

<<pk>>name:String

 {label="PLZ",
zip:String

 min=0, max=100}
 {label="Alter",
age:int
 {label="Vorname"}
firstname:String
 {label="Nachname"}

 regexp="99999"}

label: String = "PLZ"
name: String = "zip"

:StringAttributeMetaObject:SomeClassMetaObject

attributeNames: String=
{"name", "firstname",
"age", "zip"}

name:String
firstname:String
age:int

SomeClass

zip:String

name: String = "age"
label: String = "Alter"
min: int = 0
max: int = 100

:NumAttributeMetaObject

Generated
Code

getAttribue(name:String):AttributeMetaObject

getAttributeNames():String[]

<<interface>>
ClassMetaObject

NumAttributeMetaObject
<<interface>>

getMax():int
getMin():int

Model

<<instanceof>> <<instanceof>>
<<instanceof>>

	Code Generation
	Code Generation Techniques

	Pragmatics of Code Generation
	Interfacing Generated with Non-Generated Code
	Splitting in Technical Subdomains
	Metaobjects

