
Exam
Essentials of Programming Languages, 2020 SS

Prof. Dr. Peter Thiemann
Hannes Saffrich

August 26, 2020

Submission Deadline: October 15, 2020 (via email1)

In the chapter Lambda, we defined the syntax, semantics, and type system
of the Simply Typed Lambda Calculus (STLC), extended with natural numbers
and µ-recursion.

In the chapter Properties, we then proved the progress and preservation
lemmas, which together correspond to type soundness, i.e. that the type system
correctly describes the semantics. Type soundness is essential for programmers
to rely on the type system: if the type system decides that a program has type N,
then type soundness guarantees that running the program will never crash, and
either return a value of type N or run forever. In our formalization, a program
crashes if after some number of evaluation steps, the program is neither a value
nor can be evaluated any further, e.g. a program which tries to use a number
as a function.

This exam consists of two exercises, in which you are going to extend the be-
forementioned formalization in different ways. In those exercises you must make
various proofs based on Agda code which we provide. For the more complicated
proofs, which require lemmas, we not only state the theorem you need to prove,
but also the lemmas we proved ourself to solve the exercise. You do not have
to prove or use those lemmas, but it is strongly recommended. In case you only
partially finish an exercise, proving the lemmas still counts as progress. If you
design your own lemmas, then they only count if they actually work towards
the main proofs required by the exercise.

Exercise 1: Big-Step Semantics

The semantics, which we have defined in the lecture, is a so-called small-step
semantics: we think of the evaluation of a program as a potentially infinite
sequence of small finite steps → .

(1 + (2 + 3)) → (1 + 5) → 6

1saffrich@informatik.uni-freiburg.de

1

saffrich@informatik.uni-freiburg.de

An alternative way to describe evaluation is by a so-called big-step semantics,
where the evaluation of a program is defined as a relation ⇓ whichs connects
the program directly to its final value:

(1 + (2 + 3)) ⇓ 6

In this exercise, we extend the formalization from the lecture by

– defining a big-step semantics for the language;

– proving that the type system is sound for the big-step semantics;

– proving that the big-step and the small-step semantics are equivalent.

As a starting point we have prepared a set of .agda-files for you, containing
the formalization from the lecture, a definition of the big-step semantics, and
skeletons and hints for the lemmas you need to prove.2

Syntax

Typing Substitution

SemanticsSmallStepSemanticsBigStep SoundnessSubstitution

SoundnessSmallStepSoundnessBigStep SemEq

Figure 1: Dependencies of the .agda-files in Exam/Exercise1/.

The dependencies between those .agda-files are shown in Figure 1. The files
in regular font contain only code from the lecture/book:

– Syntax. Defines the syntax of Terms.

– Substitution. Defines the substitution function [:=].

– SemanticsSmallStep. Defines the small-step semantics relation → , its
reflexive, transitive closure � , and what it means for a Term to be a
Value.

– Typing. Defines the syntax of Types and Contexts, the typing relation
` : , and Context-membership 3 : .

– SoundnessSubstitution. Proves that the typing relation is preserved under
substitution, i.e. the subst-preserve lemma.

2It’s probably a good idea, to take some time to familiarize yourself with the codebase, in
particular to identify the definitions from the lecture, and to understand the new definitions,
instead of directly trying to prove the lemmas.

2

– SoundnessSmallStep. Proves type soundness by proving the preservation
and progress lemmas. In the preservation proof, the subst-preserve

lemma from SoundnessSubstitution is used.

The files in bold font contain new definitions and placeholders for your solutions:

– SemanticsBigStep. Defines the big-step semantics, and shows examples
of how it works.

– SoundnessBigStep. In this file you should prove the soundness of the
big-step semantics. (Further instructions included.)

– SemEq. In this file you should prove that big-step and small-step seman-
tics are equivalent, and then use this equivalence to derive a simpler sound-
ness proof for the big step semantics. (Further instructions included.)

Your task:

– In Exam/Exercise1/SoundnessBigStep.agda, prove the soundness the-
orem.

– In Exam/Exercise1/SemEq.agda, prove the to�, to⇓, and soundness’

theorems.

– If you use the lemmas, which we propose as postulates, you also need to
prove them.

Exercise 2: Mutable References

In this exercise we are going to extend the language from the lecture with a
feature called mutable references and prove type soundness for the extended
language.

Mutable references are a central feature of any imperative programming
language. In C, they are expressed as pointers into heap allocated memory; in
object oriented languages, they appear as object allocation and getting/setting
the value of an object’s field. Consider for example the following Java code:

class Cell {

int value;

}

Cell c = new Cell(42); // allocation

print(c.value); // read, prints 42

c.value = 23 // write

print(c.value); // read, prints 23

In our language extension, we focus on the essence behind mutation: allo-
cation of memory, reading from a memory address, and writing to a memory

3

address. In particular, we do not model classes and objects, so allocated memory
always stores a single value, instead of the values of multiple fields.

Hence, the previous Java example corresponds to the following code in our
language:

let r = new 42 in

let x = (! r) in

let _ = (r := 23) in

let y = (! r) in

y

Running this program behaves as followed:

– In line 1, the term new 42 creates a new memory cell containing the value
42, and returns the memory cell’s location. The returned location is simply
a natural number representing a memory address (also called a reference
or pointer value).

– In line 2, the term ! r retrieves the value currently stored at location r,
so x is going to be 42.

– In line 3, the term r := 23 replaces the value stored at location r with
the new value 23, and returns the unit value, which we ignore.3

– In line 4, we again retrieve the value stored at location r, which now yields
the updated value, so y is going to be 23.

An important detail is that the content of the memory cells is not part of
the program, but instead part of a separate data structure which we call a store.
Hence, the semantics does not describe how one term reduces to another, but
how one term with a certain store reduces to another term with an updated
store, which we write as 〈 , 〉 → 〈 , 〉. We define a store as a list of values,
where the value at index ` describes the value of the memory cell at location `.

For the example above this means the following:

– In line 1, the term new 42 is evaluated in the empty store [], and yields
an updated store containing value 42 at a new location:

〈[], new 42〉 → 〈[42], loc 0〉.

In this case, we store the value 42 at location 0, since the initial store was
empty.

– In line 2, we then evaluate ! r in the new store [42], where r has been
replaced by loc 0:

〈[42], !(loc 0)〉 → 〈[42], 42〉.
3Returning the unit value has the same purpose as defining functions of type void in

Java or C. It signals that the function returns nothing of interest, but instead has interesting
side-effects, like printing on the terminal or changing the state of memory.

4

Retrieving the value at location 0, amounts to looking up the list element
at index 0 of the store. The store itself remains unchanged.

– In line 3, we then evaluate r := 23, where r has been replaced by loc 0:

〈[42], loc 0 := 23〉 → 〈[23], tt〉.

Here we want to update the value at location 0, so we go from the initial
store [42] to the new store [23]. The term itself reduces to the unit value
tt.

– Line 4 works analogously to line 2, but starts from a different initial store.

As for the previous exercise, we have prepared a set of .agda-files for you,
containing the formalization from the lecture extended with mutable references,
and skeletons and hints for the lemmas you need to prove.

Sublist

All2

Syntax

Typing Substitution

SemanticsSmallStepSoundnessSubstitution

SoundnessSmallStep

Figure 2: Dependencies of the .agda-files in Exercise3.

The dependencies between those .agda-files are shown in Figure 2. The new
files are

– Sublist. Contains functions and lemmas about lists, which we need in
the semantics definition to describe how the store is modified. The file
suggests 4 lemmas and 2 bonus exercises for you to prove.

– All2. Contains the definition and lemmas about the All2 type, which is
similar to the All type from the lecture, but for binary relations. The file
suggests 3 lemmas for you to prove.

The other files serve the same purpose as in Exercise 1, but are extended with
the constructs of mutable references and plenty of comments. The following of
those files contain lemmas for you to prove:

– SoundnessSubstitution. Contains 2 lemmas to prove.

– SoundnessSmallStep. Contains 3 lemmas to prove, and the actual preser-
vation theorem.

5

Your task:

– In Exam/Exercise2/SoundnessSmallStep.agda, prove the preserve the-
orem.

– If you use the lemmas, which we propose as postulates, you also need to
prove them.

6

